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Analytic solutions to two quaternion attitude estimation problems
Yujendra Mitikiri1 and Kamran Mohseni2

Abstract—This paper presents solutions to the following two
common quaternion attitude estimation problems: (i) estimation
of attitude using measurement of two reference vectors, and (ii)
estimation of attitude using rate measurement and measurement
of a single reference vector. Both these problems yield to a direct
geometric analysis and solution. The former problem already
has a well established analytic solution in literature using linear
algebraic methods. This note shows how the solution may also
be obtained using geometric methods, which are not only more
intuitive, but also amenable to unconventional extensions. With
respect to the latter problem, existing solutions typically involve
filters and observers and use a mix of differential-geometric
and control systems methods. However, no analytic solution
has yet been reported to this problem. In this note, both the
problems are formulated as optimization problems, which can be
solved analytically to obtain a unique closed-form solution. The
analytic attitude estimates are (i) instantaneous with respect to the
measurements, thus overcoming the latency inherent in solutions
based upon negative feedback upon an error, which can at best
show asymptotic convergence, (ii) exact, thus overcoming errors
in solutions based upon linear methods, and (iii) geometry-based,
thus enabling imposition of geometric inequality constraints.

I. INTRODUCTION

The problem of estimating the attitude of a rigid body
with respect to a reference coordinate system, by measuring
reference vectors in a body-fixed frame, originally posed by
G. Wahba in [1], has been treated abundantly in literature.
Multiple solutions have been reported for Wahba’s problem:
using polar decomposition [2], Davenport’s q-method [3], an
SVD method, a three-axis attitude estimator TRIAD [4], the
Quaternion estimator QUEST [5], etc.

Although both Davenport’s q-method and QUEST use the
quaternion representation of attitude, they ultimately reduce
to an eigenvalue-eigenvector problem. Thus it can be seen
that all solutions are linear algebraic in nature, and given
the vast array of tools available for linear problems, they
are all readily solved. This advantage is, however, associated
with the accompanying weakness that it is not straightforward
to incorporate nonlinear and nonholonomic constraints in the
problem. For instance, in [6], the authors describe the attitude
control of a spaceshuttle during a docking operation, when
there is a hard constraint with respect to a nominal pitch
angle in order to ensure that a trajectory control sensor is
oriented towards the target platform. The attitude guidance
module then estimates an optimal pitch attitude that complies
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with the hard constraint and minimizes the control effort.
Similarly, in [7], the authors describe a reference governor
with a pointing inclusion constraint such that the spacecraft
points towards a fixed target, or an exclusion constraint such
that sensitive equipment is not exposed to direct solar radiation.
Such inequality constraints are obviously nonholonomic, and
while being quite common in practice, are notoriously difficult
to incorporate in a linear algebraic solution. Once the guidance
or reference module determines an attitude that complies with
the constraints, a controller module is used to achieve bounded
or asymptotic stability with respect to the reference.

Relatedly, the advent of small unmanned vehicles has moti-
vated the development of solutions that depend upon minimal
measurement resources in order to reduce the weight and cost
of the sensor payload. In particular, it is of considerable interest
to estimate the attitude using a single vector measurement,
possibly supplemented by a rate measurement, thus leading us
to the second of the stated problems. This interest is partly
fueled by the availability of cheap commercial-off-the-shelf
inertial measurement units (IMUs) that contain MEMS-based
gyroscopes and accelerometers [8]. The research is also partly
fueled by the realization that attitude estimation and control
is a key challenge in the design of small autonomous aerial
robots [9].

The second problem is most frequently solved using an
extended Kalman filter (EKF) [10]. The EKF provides a point-
wise attitude estimate and is instantaneous with respect to
the measurements. However, resulting from linearization of an
intrinsically nonlinear problem, this solution is not robust to
large changes in the attitude state [11].

More recently, some solutions have been reported in litera-
ture which use nonlinear observers or filters to solve the single-
vector measurement problem [11], [12], [13], [14], [15]. These
solutions have typically used an appropriate error signal in neg-
ative feedback to estimate the attitude. The solutions in [11],
and [13] are quite general, and while having been developed
for multiple vector measurements, they extend smoothly to the
case of a single vector measurement. The solutions presented
in [14], and [15] are more specific to the availability of single
vector measurements. A common characteristic in this group
of solutions is the use of negative feedback from an error signal
to estimate the attitude and an (a-priori) unknown gain, that
needs to be tuned in order to achieve satisfactory estimator
performance. Such an estimator is bound to have a finite
latency with respect to the input, and cannot instantaneously
track abrupt or discontinuous changes in the measurements,
and the convergence of the estimate to the true attitude is at
best asymptotic.

In contrast to the linear algebraic and filter approaches avail-
able in literature, this paper analyzes the attitude estimation
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problems from a geometric perspective. In the process, we
obtain solutions that overcome some of the shortcomings in
the previous solutions. Firstly, being of a geometric nature,
the solutions easily extend to problems involving geomet-
ric constraints, irrespective of whether they are holonomic
equations or nonholonomic inequality constraints. Secondly,
the analytic solutions provide an instantaneous estimate for
the attitude which is consistent with respect to the vector
measurement at every time step. Besides the mathematical
elegance of having an analytic solution, this also has several
applications in autonomous guidance, navigation, and control
systems: it enables the deployment of frugal single-vector-
measurement sensor-suites, and the zero-latency accuracy of
the solution is useful in multiple-vector-measurement suites in
overcoming sudden failures or intermittent losses in some of
the components without leading to large transient errors that
could potentially cause system breakdown.

A brief outline of the paper is as follows. We begin by
introducing the geometric approach and formulating the stated
problems in the language of mathematics in section II. The
next section, section III-A, presents the solution to the first
problem, and relates it to the existing solutions from literature.
The next section, Section III-B, solves the second problem and
also provides results relating to the accuracy of the solution,
and an estimation of the bias errors in the rate measurement.
This is followed by verification of the theory using simulations
in section IV.

II. NOTATION, DEFINITIONS, AND PROBLEM FORMULATION

In this section, we describe the geometry associated with
vector measurements and formulate the attitude estimation
problems as well-posed mathematical problems.

The attitude of the rigid body with respect to a reference
coordinate system shall be represented in the form of the
quaternion q̌ = [q0 q1 q2 q3]T which is constrained to
have unit magnitude: q̌T q̌ = 1, or q̌ ∈ S3, the unit 3-
sphere. The quaternion components are related to the axis-
angle representation of a rotation by the relation q0 = cos Φ/2,
and [q1 q2 q3]T = n sin Φ/2, for a rotation through Φ about
the axis n. The product of two quaternions q̌ and p̌ shall be
denoted as q̌ ⊗ p̌. For a discussion on the quaternion based
attitude representation, the reader is referred to [16] chapter
11.

A reference vector, h, shall be defined as a unit magnitude
vector that points in a specified direction. Examples include
the direction of fixed stars relative to the body, the Earth’s
magnetic field, gravitational field etc. The components of any
such vector lie on a 2-sphere S2, and may be measured in any
three-dimensional orthogonal coordinate system. In the context
of our problems, two obvious choices for the coordinate system
are the reference coordinate system (relative to which the
rigid body’s attitude is to be determined), and a coordinate
system fixed in the body. We assume the availability of
measurement apparatus to obtain the vector’s components in a
three-dimensional orthogonal coordinate system, h ∈ S2 ⊂ R3

in the reference coordinate system, and b ∈ S2 ⊂ R3 in the
body-fixed coordinate system.

Suppose we have a vector measurement available at our
disposal. What information does the measurement of b (and
knowledge of h) provide regarding the body’s attitude relative
to the reference coordinate system? A rotation quaternion
(or, for that matter, any rotation representation) has three
scalar degrees of freedom. We see that we have 3 scalar
measurements in b that are related to h in terms of the rotation
quaternion. However, we also know that the measurement
would retain the magnitude of h, i.e., ‖h‖2 = hTh = bT b = 1,
so there is one scalar degree of redundancy in our measurement
and only two scalar degrees of information. Reconciling with
this redundancy, we can therefore isolate the quaternion from
a three-dimensional set of possibilities to a single-dimensional
set.

The redundancy can be visualized as shown in figure 1. The
measurement of a single vector in body-fixed axes confines
the body’s attitude to form a conical solid of revolution
about h: those and only those attitudes on the cone would
yield the same components b. We shall refer to the set of
attitude quaternions consistent with a measurement as the
“feasibility cone” Qb corresponding to that measurement b,
i.e., the measurement confines the attitude quaternion q̌ to lie
in Qb. From the previous discussion, Qb is one-dimensional
and q̌ has effectively a single degree of freedom. We shall
repeatedly draw intuition from the geometry in figure 1 to
guide us in the solutions to the stated problems.
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Fig. 1. Possible attitudes of a minimal rigid body formed out of three
non collinear points (represented by the triangular patch) consistent with a
measurement of a single vector h.

A. Problem 1. Estimation using measurements of two reference
vectors

Let the components of two vectors h and k be a =
[a1 a2 a3]T and b = [b1 b2 b3]T in the body coordinate
system, and h = [h1 h2 h3]T and k = [k1 k2 k3]T in the
reference coordinate system respectively. As described above,
each reference vector measurement provides two scalar degrees
of information regarding the attitude of the rigid body. It is
immediately clear that the problem is overconstrained, and
we have more equations than unknowns. Geometrically, we
have two feasibility cones Qa and Pb, with the body-axes
intersecting along two lines, but with different roll angles for
the body about the body-axis. Thus there is no exact solution
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to this problem in general, unless some of the measurement
information is redundant or discarded.

A trivial means to well-pose the problem is to discard com-
ponents of one of the vector, say k, along the second, h. This
is exactly what is done with the TRIAD solution [4], where
we use the orthogonal vector triad h, h× k, and h× (h× k)
to determine the attitude. A more sophisticated approach is
to use all the measurement information – four scalar degrees
of information with two reference vector measurements –
, and frame the problem as a constrained four-dimensional
optimization problem in terms of the quaternion components.
This leads to Davenport’s q-method and QUEST solutions to
Wahba’s problem [1].

A novel third approach presented in this paper, is to first
determine two solutions q̌ and p̌, one each lying on each
of the feasibility cones Qa and Pb corresponding to the
measurements a and b, and “closest” to the other cone in
some sense. We then fuse the estimates q̌ and p̌ appropriately
to obtain the final attitude estimate. For example, the final
estimate could be obtained using linear spherical interpolation,
and the weights be chosen to represent the relative significance
attached to the individual measurements.

The first problem can therefore be stated as: given the
measurements a and b of the two reference vectors h and k
in a rotated coordinate system, we would like to estimate the
rotated system’s two attitude quaternions q̌ ∈ Qa closest (in
the least squares sense) to Pb and p̌ ∈ Pb closest (in the least
squares sense) to Qa, where Qa and Pb are the respective
feasibility cones.

B. Problem 2. Estimation using rate measurement and mea-
surement of single vector

Suppose we have a measurement of the components ω =
[ω1 ω2 ω3]T of the angular velocity ω of a moving rigid body,
and that we also have a measurement of the components b =
[b1 b2 b3]T of a reference vector h, both measurements being
made in the body coordinate system. The components of h
in the reference coordinate system are also known, say h =
[h1 h2 h3]T . The problem is to make a “best” estimate of the
body’s attitude q̌ on the basis of the pair of measurements ω
and b, and knowing h.

Without loss of generality, the initial attitude quaternion
may be assumed to be 1̌. The angular velocity ω can be
forward integrated to obtain a “dead-reckoning” estimate of
the rotation quaternion. We start with the initial attitude, 1̌, and
then integrate the differential kinematic equation, to obtain the
integrated estimate p̌. On account of errors in the measurement
of ω, this differs from the actual attitude q̌ of the body.
Since we are integrating the errors, the attitude estimates are
expected to diverge with time and lead to what is referred to
as “drift” in the predicted attitude estimate. Constant errors
in the measurement lead to a drift that is proportional to the
time of integration, while random white wide-sense stationary
noise leads to a drift that is proportional to the square-root
of time [17]. Let the error in ω be denoted by the unknown
signal e(t) ∈ R3 in the body coordinate system. The integrated
estimate also has three scalar degrees of error, though it may
depend upon e in some complicated path-dependent form.

The second measurement available is b – and of course
the knowledge of its reference axes components h. As de-
scribed at the beginning of this section, this provides two
additional scalar degrees of information besides the three from
the rate measurement, and constrains the attitude q̌ to lie in
the feasibility cone Qb. In order to determine the six scalar
unknowns, three related to the attitude q̌, and three related to
the integration of the rate measurement error e, we are still
lacking one scalar degree of information. In order to specify
this degree of freedom and close the problem, we now impose a
sixth scalar constraint that uses the attitude p̌ that was obtained
by integrating the kinematic differential equation. We choose
that particular q̌ ∈ Qb which is best in the sense that it deviates
the least from p̌.

To summarize, the second problem is to estimate the attitude
quaternion q̌ which would yield the measurement b in the
rotated coordinate system for the reference vector h, and
closest (in the least squares sense) to the estimate p̌ obtained
by integrating the angular velocity measurement ω as given in
the kinematic differential equation.

C. Nature of measurements of reference vector and angular
velocity

The reference vector measurements are assumed to have
random, unbiased noise in each of the components, but that
they are subsequently normalized for unit magnitude before
being passed on to the attitude estimator. This is the most
common situation in practice. Any deterministic errors in
the measurement are also assumed to be compensated for,
e.g. acceleration compensation in gravity sense, local field
compensation in magnetic field sense.

The angular velocity measurement is assumed to have
random, unbiased noise in each of the components, and
additionally have an independent, constant (or of negligible
variation with time) bias error [13]. Deterministic errors in
this measurement are also assumed to be compensated for.
The angular velocity is not of unit magnitude, in general.

Having laid the groundwork for both the problems, the
detailed solutions follow in the next section.

III. ATTITUDE QUATERNION ESTIMATION

We first motivate the use of quaternions for attitude rep-
resentation by establishing the equivalence between attitude
deviations and angles in the following lemma.

Lemma 1. The Euclidean distance ‖q̌ − 1̌‖ of an attitude
quaternion, q̌ = [cΦ/2 sΦ/2n]T , from the identity element, 1̌,
is a positive definite and monotonic function of the magnitude
of the principal angle of rotation Φ.

Proof.

‖q̌ − 1̌‖2 = (cΦ/2 − 1)2 + s2
Φ/2 = 2(1− cΦ/2) = 4 sin2(Φ/4),

which is a positive definite monotonic function of Φ in the
interval [−2π, 2π].

We next provide two particular solutions for the simpler
problem of estimating the attitude quaternion using a single
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reference vector measurement, in lemma 2. We note the
algebraic constraint imposed by a vector measurement on the
attitude quaternion q̌. The quaternion q̌ represents a rigid body
rotation, and it transforms the components of the reference
vector from h in the reference coordinate system to b in the
body-fixed coordinate system:

ȟ = q̌ ⊗ b̌⊗ q̌−1

or q̌ ⊗ b̌ = ȟ⊗ q̌ , (1)

where the checked quantities ȟ = [0 hT ]T and b̌ = [0 bT ]T

are the quaternions corresponding to the 3-vectors h and b.
Equation (1) expresses the vector measurement constraint as a
linear equation in q̌.

Lemma 2. Suppose the components of a reference vector are
given by h and b in the reference and body coordinate systems
respectively. Let Φ = acos bTh, c = cos Φ/2 =

√
(1 + bTh)/2

and s = sin Φ/2 =
√

(1− bTh)/2. Then, two particular
solutions for the body’s attitude are given by:

ř =

[
c

s(b× h)/‖b× h‖

]
and š =

[
0

(b+ h)/‖b+ h‖

]
. (2)

Proof. These two solutions are orthogonal in quaternion space,
and correspond to the smallest and largest single axis rotations
in [0, π] that are consistent with the vector measurement in
three-dimensional Euclidean space. Geometrically, the first is
a rotation through acos(bTh) about (b×h)/‖b×h‖, the second
is a rotation through π about (b + h)/‖b + h‖. Noting that
‖b× h‖ = ‖b‖‖h‖ sin Φ = ‖b‖‖h‖2sc, and ‖b+ h‖ = 2c, we
obtain[

c
(b× h)/(2c)

]
⊗
[
0
b

]
=

[
0

cb+ (h− bbTh)/(2c)

]
=

[
0

(b+ h)/2c

]
=

[
0
h

]
⊗
[

c
(b× h)/(2c)

]
,

and[
0

(b+ h)/(2c)

]
⊗
[
0
b

]
=

[
0

(h× b)/(2c)

]
=

[
0
h

]
⊗
[

0
(b+ h)/(2c)

]
,

which completes the proof. As a clarification, when b → h,
ř and š are assumed to take the obvious limits, 1̌ and ȟ, and
when b → −h, they are assumed to take the obvious limits,
ǐ = [0 i]T and ǰ = [0 j]T , where [h i j] is an orthogonal
vector triplet.

The two special solutions can be rotated by any arbitrary
angle about the reference vector h and we would still lie within
the feasibility cone, as shown in the next lemma.

Lemma 3. If q̌ lies in the feasibility cone Qb of the measure-
ment b for the reference vector h, then so does any attitude
quaternion obtained by rotating q̌ through an arbitrary angle
about h. Conversely, all attitude quaternions lying on the
feasibility cone are related to each other by rotations about
h.

Proof. Let Φ be any angle, and let p̌ be q̌ rotated through Φ
about h, i.e.,

p̌ =

[
c
sh

]
⊗ q̌ ,

where c = cos Φ/2 and s = sin Φ/2. Then,

p̌⊗ b̌ =

[
c
sh

]
⊗ q̌ ⊗ b̌ =

[
c
sh

]
⊗ ȟ⊗ q̌

= ȟ⊗
[
c
sh

]
⊗ q̌ = ȟ⊗ p̌ .

where we have used the fact that two nonzero rotations com-
mute if and only if they are about the same axis. Conversely,

q̌−1 ⊗ ȟ⊗ q̌ = b = p̌−1 ⊗ ȟ⊗ p̌
⇒ p̌⊗ q̌−1 ⊗ ȟ = ȟ⊗ p̌⊗ q̌−1

⇒ p̌⊗ q̌−1 =

[
c
sh

]
,

which completes the proof.

Thus, we already see that we have a one dimensional infinity
of possible solutions for the attitude quaternion if we have a
single reference vector measurement. In fact, the two special
solutions provided in lemma 2 are rotations of each other about
h through π. In order to obtain a unique solution, we could
add either another vector measurement (Wahba’s problem), or
include an angular velocity measurement.

A. Attitude estimation using two vector measurements

We now derive a unique solution for the attitude quaternion
when we have measurements of two reference vectors and
would like to incorporate both of them in deriving the attitude
estimate. Let a and b be the body-referred components of
reference vectors h and k (h, k ∈ S2 contain the components
of the two vectors along some reference coordinate axes)
respectively. Suppose the rotation quaternion is estimated to
be q̌ = [q0 q]T on the basis of a, and it is independently
estimated to be p̌ = [p0 p]

T on the basis of b.
The estimates q̌ and p̌ are each indeterminate to one scalar

degree of freedom as shown in lemma 3: a rotation about the
corresponding vectors h and k respectively. Let these rotations
be given by the quaternions ř1 = [c1 s1h]T and ř2 = [c2 s2k]T

respectively where ci = cos Φi/2 and si = sin Φi/2 for i ∈
{1, 2}. The problem is to determine the optimal values of Φ1

and Φ2 so as to minimize the displacement from the rotated
ř1 ⊗ q̌ to ř2 ⊗ p̌.

ř1 ⊗ q̌ =

[
c1
s1h

]
⊗
[
q0

q

]
=

[
c1q0 − s1q

Th
c1q + s1q0h+ s1h× q

]
,

ř2 ⊗ p̌ =

[
c2
s2k

]
⊗
[
p0

p

]
=

[
c2p0 − s2p

T k
c2p+ s2p0k + s2k × p

]
. (3)

We could either minimize ‖ř1⊗ q̌−ř2⊗p̌‖2, or equivalently,
maximize the first component of (ř1⊗ q̌)−1⊗ ř2⊗ p̌. In order
to keep the reasoning straightforward, we choose the former.
So we need to minimize the cost function

J(Φ1,Φ2) = (c1q0 − s1q
Th− c2p0 + s2p

T k)2
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+ ‖c1q + s1(q0h+ h× q)− c2p− s2(p0k + k × p)‖2 ,
= c21(q2

0 + qT q) + s2
1((qTh)2 + ‖q0h− q × h‖2)

+ c22(p2
0 + pT p) + s2

2((pT k)2 + ‖p0k − p× k‖2)

− 2c1c2(q0p0 + qT p)

− 2s1s2(qThpT k + (q0h− q × h)T (p0k − p× k))

+ 2c1s1(−q0q
Th+ q0q

Th− qT q × h)

+ 2c2s2(−p0p
T k − p0p

T k + pT p× k)

+ 2c1s2(q0p
T k − p0q

T k + qT p× k)

+ 2c2s1(p0q
Th− q0p

Th+ pT q × h)

= 2 + 2ac1c2 + 2bs1s2 + 2cc1s2 + 2ds1c2 , (4)

where a = −q0p0−qT p, b = (−q0p
T+p0q

T−(q×p)T )h×k−
(q0p0+qT p)hT k, c = kT (q0p−p0q+q×p), and d = hT (p0q−
q0p+ p× q), are known quantities. Now minimizing the cost
function with respect to the independent pair of variables Φ1 +
Φ2 and Φ1 − Φ2 yields[

Φ1 − Φ2

Φ1 + Φ2

]
= 2

[
atan2(c− d,−(a+ b))
atan2(−(c+ d), b− a)

]
. (5)

Equation (5) can be solved for Φ1, and Φ2, and that completes
the solution. The above derivation can be summarized in the
form of the following theorem:

Theorem 4. If q̌ and p̌ are any two special attitude estimates
for a rotated system, derived independently using the mea-
surements a and b in the body-fixed coordinate system of two
linearly independent reference vectors h and k respectively,
then the optimal estimate incorporating the measurement b
in q̌ is ř1 ⊗ q̌, and the optimal estimate incorporating the
measurement a in p̌ is given by ř2 ⊗ p̌, where ř1 = [c1 s1h]T

and ř2 = [c2 s2k]T , and c1, c2, s1, and s2 are given by
equation (5).

Proof. The proof follows from the construction leading to
equations (3, 5). Refer figure 2.

Remark 4.1. Sign indeterminacy: The solution for c1, s1, c2,
and s2 in equation (5) involves taking a square-root, but once
the sign of the square-root is chosen for one of the four
quantities, it gets decided for the other three. Both of the
resulting attitude quaternions represent the same rotation in
three-dimensional Euclidean space.
Remark 4.2. Relation to the TRIAD attitude estimate: The
attitude estimates ř1 ⊗ q̌ and ř2 ⊗ p̌, where ř1 = [c1 s1h]T

and ř2 = [c2 s2k]T , are the same as the TRIAD solution in
literature [18]. Each of them individually yields an estimate
that is competely consistent with one measurement, but only
partially consistent with the other.
Remark 4.3. Relation to the solutions of Wahba’s problem: In
order to obtain the solution to Wahba’s problem [3], [18], we
could now interpolate between the two solutions obtained in
equations (3, 5). Let q̌, p̌ be unit quaternions and x ∈ R ∈
[0, 1]. The interpolated quaternion from q̌ to p̌ is given by any
of the following four equivalent expressions [19]:

q̌ ⊗ (q̌−1 ⊗ p̌)x = p̌⊗ (p̌−1 ⊗ q̌)1−x

= (q̌ ⊗ p̌−1)1−x ⊗ p̌ = (p̌⊗ q̌−1)x ⊗ q̌ . (6)

The scalar x is now choosen to perform a desired weighting
of the two estimates q̌ and p̌ in the final result. When the
noise in each of the measurements a and b is random and
unbiased with variance σ2

i , the appropriate choice for x would
be σ2

a/(σ
2
a + σ2

b ). The resulting estimate is then the same as
that obtained using Davenport’s q-method.

Remark 4.4. Incorporating hard inequality constraints: Since
the presented solution is geometric in nature, it is straight-
forward to include geometric constraints on the solution. For
instance, some attitude estimation problems have hard con-
straints [6], [7]. In control solutions, such constraints are most
often enforced using Barrier Lyapunov functions (BLFs) [20]
for bounded solutions. Such a strategy can easily be employed
in our framework, in contrast with the linear algebraic solutions
which are more suitable to handle quadratic forms. Instead of
determining the interpolaton factor x using the noise variance,
it can be determined as the argument that minimizes a cost
function that contains a BLF:

x = argmin
x∈[0,1]

(α sec(x/a) + (1− x)2), (7)

where α and a are appropriately chosen constants. It may be
appreciated that the cost function can be any infinite potential
well, and not just the above formulation. This generality is
enabled by the simple interpolation of the geometric angle
between the two solutions of theorem 4.
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Fig. 2. A visual depiction of the solutions presented in theorems 3 and 4. The
image on the left shows the two solutions ř1⊗ q̌ (dotted triangle) and ř2⊗ p̌
(dashed triangle) of theorem 3. The figure on the right shows the solution q̌
(solid triangle) of theorem 4 obtained by projecting the integrated attitude p̌
(dashed triangle) onto the feasibility cone of vector measurement b.

B. Attitude estimation using single vector measurement and
rate measurement

We first write down the constraints imposed by the mea-
surement upon the attitude quaternion q̌ = [c s[n]]T =
[c sn1 sn2 sn2]T , where c = cos(Φ/2) and s = sin(Φ/2)
are functions of the rotation angle Φ, and n is a unit vector
along the rotation axis with components n = [n1 n2 n3]T

in the reference coordinate system. The constraint is given in
equation (1). Converting the quaternion multiplication to vector
notation, equation (1) can also be written as:[

−snT b
cb+ s[n×]b

]
=

[
−shTn

ch+ s[h×]n

]
,

i.e.,
[

−s(h− b)Tn
c(h− b) + s[(h+ b)×]n

]
= 0 ,
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where [n×] denotes the cross product matrix associated with
the 3-vector n. Expanding the vectors,

−f1 −f2 −f3

f1 −g3 g2

f2 g3 −g1

f3 −g2 g1



c
sn1

sn2

sn3

 = 0 , (8)

where f = h− b and g = h+ b ,

so that f1g1 + f2g2 + f3g3 = fT g = hTh− bT b = 0 .

While it is not obvious, equation (8) has a double redundancy,
so the system of four linear equations actually has rank 2 and
nullity 2. This can be seen by considering the solution:

q̌ =


c

(−cf2 + sn3g1)/g3

(cf1 + sn3g2)/g3

sn3

 , (9)

where sn1 and sn2 are solved in terms of c and sn3 using the
inner two row equations in equation (8). Substituting these in
the outer two rows of equation (8) satisfies them trivially, so
these two rows do not yield any additional information. This
makes sense as we have not yet imposed the normalization
constraint that n2

1 +n2
2 +n2

3 = 1 (c and s, representing cos Φ/2
and sin Φ/2, are already assumed to satisfy c2 + s2 = 1). And
we are anyway to end up with one degree of freedom in q̌ if
using the vector measurement constraint alone, as discussed
earlier.

We could apply the normalization constraint,

n2
1 + n2

2 + n2
3 = 1 , (10)

at this point to express n completely in terms of Φ:

c2f2
2

s2g2
3

+
g2

1

g2
3

n2
3 +

c2f2
1

s2g2
3

+
g2

2

g2
3

n2
3 + 2

c

sg2
3

n3(f1g2 − f2g1)

+ n2
3 = 1 ,

or,

n2
3g
T g + 2

c

s
n3(f1g2 − f2g1) +

c2

s2
(f2

1 + f2
2 ) = g2

3 . (11)

The above quadratic equation can be solved for n3 in terms
of c/s = cot Φ/2 to yield:

n3 = −c(f1g2 − f2g1)

sgT g

±

√
c2((f1g2 − f2g1)2 − gT g(f2

1 + f2
2 ))

(sgT g)2
+

g2
3

gT g
.

(12)

The above equation in conjunction with the inner two rows of
equation (9) expresses all three components of n in terms of
c/s = cot(Φ/2) and the measured quantities f and g. Thus
we are left with the single degree of freedom, Φ, in q̌, as
expected. However, as shall be seen later, it is easier to retain
n3 as a variable in our problem, along with the normalization
constraint 11.

We now move on to utilizing the angular velocity measure-
ment that determines the differential evolution of the attitude.
The kinematic differential equation for the quaternion is:

˙̌q =
1

2
q̌ ⊗ ω̌ =

1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0
ω1

ω2

ω3

 , (13)

where ⊗ indicates quaternion multiplication, and ω̌ is the
quaternion form of the 3-vector ω. In discrete time, denoting
the integrated estimate as p̌i+1, the above equation takes the
form

p̌i+1 = q̌i +
T

2
q̌i ⊗ ω̌i , (14)

where T is the time step from the previous estimation of q̌i to
the current estimation p̌i+1. In the subsequent derivation, we
shall omit the subscript of p̌, as there is no ambiguity.

The deviation of the vector-aligned quaternion estimate, q̌ in
equation (9), from the integrated estimate, p̌ in equation (14),
can be expressed as the difference of p̌−1⊗ q̌ from 1̌. But min-
imizing the distance of a quaternion from the unit quaternion
is the same as minimizing the rotation angle Ψ which is, in
turn, the same as maximizing the zeroeth component of the
quaternion, cos(Ψ/2). Note that, the quaternions p̌−1 ⊗ q̌ and
−p̌−1⊗ q̌ affect the same rigid body rotation in 3-dimensional
Euclidean space, but minimizing the distance of one from 1̌
maximizes the distance of the other in quaternion space. So we
just extremize the distance, rather than specifically minimize it.
Once we have the solution set, we can check which solutions
correspond to a maximum and which to a minimum, and
choose the latter.

We therefore need to extremize the zeroeth component of
p̌−1q̌, where p̌ = [p0 p1 p2 p3]T is the attitude estimate
obtained by integrating the angular velocity ω as given in
equation (13) and q̌ is expressed in terms of c/s and n3 as
in equation (9), while enforcing the constraint in equation (1).
This can be accomplished by using the method of Lagrange
multipliers to define a cost function that invokes the error norm
as well as the constraint. Below, we have multiplied the cost
function by the constant g3 and the constraint by g2

3 , noting
that the solution is unaffected by such a scaling:

J(Φ, n3) = g3[p̌−1 ⊗ q̌]0 + λg2
3(n2

1 + n2
2 + n2

3 − 1)

= (cp0 + sn3p3)g3 + (−cf2 + sn3g1)p1 + (cf1 + sn3g2)p2

+ λ

(
n2

3g
T g + 2

cn3

s
(f1g2 − f2g1) +

c2

s2
(f2

1 + f2
2 )− g2

3

)
= c(g3p0 + f1p2 − f2p1) + sn3g

T p

+ λ

(
n2

3g
T g + 2

cn3

s
(f1g2 − f2g1) +

c2

s2
(f2

1 + f2
2 )− g2

3

)
,

(15)

where p denotes the vector portion of p̌. Now we set the first
order partial derivatives of J to 0:

0 = ∂ΦJ = −s(g3p0 + f1p2 − f2p1) + cn3g
T p

+

(
−2λ

s2

)( c
s

(f2
1 + f2

2 ) + n3(f1g2 − f2g1)
)
, (16)
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0 = ∂n3J = sgT p+ 2λgT gn3 + 2λ
c

s
(f1g2 − f2g1) , (17)

0 = ∂λJ = n2
3g
T g − g2

3 +
2cn3

s
(f1g2 − f2g1) +

c2

s2
(f2

1 + f2
1 ) .

(18)

Equation (17) yields:

−2λ =
sgT p

gT gn3 +
c

s
(f1g2 − f2g1)

. (19)

Substituting this in equation (16), we obtain:

− s(g3p0 + f1p2 − f2p1)
(
gT gn3 +

c

s
(f1g2 − f2g1)

)
+

gT p
[
cn3

(
gT gn3 +

c

s
(f1g2 − f2g1)

)
+

c

s2
(f2

1 + f2
2 ) +

n3

s
(f1g2 − f2g1)

]
= 0 . (20)

The factor in the square brackets can be substantially simplified
using the constraint equation (18) as:

cn3

(
gT gn3 +

c

s
(f1g2 − f2g1)

)
+

c

s2
(f2

1 + f2
2 )

+
n3

s
(f1g2 − f2g1)

= c

(
g2

3 −
c2

s2
(f2

1 + f2
2 )− cn3

s
(f1g2 − f2g1)

)
+

c

s2
(f2

1 + f2
2 ) +

n3

s
(f1g2 − f2g1)

= c(g2
3 + f2

1 + f2
2 ) + sn3(f1g2 − f2g1) .

Substituting this back into equation (20), we obtain:

− (g3p0 + f1p2 − f2p1)
(
sgT gn3 + c(f1g2 − f2g1)

)
+ gT p(c(g2

3 + f2
1 + f2

2 ) + sn3(f1g2 − f2g1)) = 0 .

Accumulating terms containing sn3 and c, we obtain an
expression for the ratio κ = c/(sn3) in terms of known
quantities as:

κ =
(g3p0 + f1p2 − f2p1)gT g − gT p(f1g2 − f2g1)

gT p(f2
1 + f2

2 + g2
3)− (g3p0 + f1p2 − f2p1)(f1g2 − f2g1)

,

(21)

where f = h − b and g = h + b were defined in terms of
the vector measurements, and p̌ is obtained by integrating the
angular velocities. Fortuituously, c/s = cot(Φ/2) is therefore
just proportional to n3, and upon expressing c/s in terms of
n3 in the normalization constraint (equation (18)), the resulting
equation becomes extremely simple to solve:

g2
3 = gT gn2

3 + 2κ(f1g2 − f2g1)n2
3 + κ2n2

3(f2
1 + f2

2 ) ,

or

n3 =
g3√

gT g + 2κ(f1g2 − f2g1) + κ2(f2
1 + f2

2 )
, (22)

c

s
=

κg3√
gT g + 2κ(f1g2 − f2g1) + κ2(f2

1 + f2
2 )

. (23)

The other components of the attitude quaternion can be ob-
tained using the inner two rows of equation (9). Thus we obtain
the following theorem.

Theorem 5. If the angular velocity of a rigid body is in-
tegrated to yield a attitude quaternion estimate p̌, then the
estimate q̌ ∈ Qb lying in the feasibility cone of measurement
b which is closest to p̌, is given by equations (9, 21, 22, 23).

Proof. The proof follows from the construction leading to
equations (9, 21, 22, 23). Refer figure 2.

Remark 5.1. Sign indeterminacy: There are two instances of
taking square-roots in the construction of the optimal estimate:
one in the denominators in equations (22, 23), and a second
when determining s = 1/

√
(c/s)2 + 1. They multiply all the

components, and thus result in a net sign indeterminacy of the
complete quaternion. We could choose the sign as yielded by
the equations, or such that the zeroeth component is positive.
Both choices yield a correct attitude in three-dimensional
Euclidean space.
Remark 5.2. Solution when reference vector is aligned with z-
axis: A common application of the presented solution would
be to an aerial robot that uses an accelerometer to measure
the gravity vector (after acceleration compensation). Since
the reference coordinate system’s z-axis is aligned with the
reference vector h, we have f = [(−b1) (−b2) (1− b3)]T and
g = [b1 b2 (1 + b3)]T . Equations (21, 23) now simplify to:

κ =
c

sn3
=

(1 + b3)p0 − b1p2 + b2p1

b1p1 + b2p2 + (1 + b3)p3
,

q0

q1

q2

q3

 =


c
sn1

sn2

sn3

 =
1√

2(1 + κ2)(1 + b3)


κ(1 + b3)
κb2 + b1
−κb1 + b2
(1 + b3)

 ,
(24)

where we have used the fact that (1+b3)2+b21+b22 = 2(1+b3).
While the introduction of the auxillary variable κ in equations
(21 - 23) seems adhoc, its role is more clearly visible now –
κ parameterizes the feasibility cone Qb in terms of the two
special solutions provided in lemma 2:

√
2(1 + κ2)(1 + b3)q̌ = κ


1 + b3
b2
−b1

0

+


0
b1
b2

1 + b3

 ,
or, q̌ = (κř + š)/

√
1 + κ2 . (25)

Equation (24) may be checked for sanity against the Euler
angle solution by using the relations sin θ = 2(q0q2 − q1q3),
cos θ sinφ = 2(q0q1+q2q3), and cos θ cosφ = q2

0−q2
1−q2

2+q3
3 .

The reduction of the quaternion form to the Euler angle form
is straightforward, but the details are long and omitted. The
final result is that − sin θ

cos θ sinφ
cos θ cosφ

 =

b1b2
b3

 .
So, [

tanφ
sin θ

]
=

[
b2/b3
−b1

]
,

as expected.
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Remark 5.3. Relation to the EKF: A filtered attitude estimate
q̌f can be obtained by suitable interpolation between the
integrated estimate p̌ and the vector aligned estimate q̌ of
theorem 5:

q̌f = p̌⊗ (p̌−1 ⊗ q̌)x. (26)

The optimal interpolation parameter x in equation 6 is obtained
from the measurement noise variances, similar to the Kalman
gain in an EKF. An exact expression for x under a standard
set of assumptions is derived in the following subsection. In
the limit ωT → 0, the interpolated estimate is identical to
the solution obtained using an optimally tuned EKF. However,
for large incremental changes in the attitude, the geometric
solution presented in this note is superior to the EKF which
suffers from a loss of accuracy on account of the linearization.

C. Gyroscopic bias estimation

With the simplifying choice for the reference coordinate
system’s z-axis that leads to equation (24), the following
corollary is apparent.

Corollary 6. The correction that takes the integrated estimate
p̌ into the feasibility cone Qb is essentially a rotation about
an axis that is orthogonal to the reference vector h.

Proof. The correcting rotation in the reference coordinate
system is:

ř = q̌ ⊗ p̌−1 =


κ(1 + b3)
κb2 + b1
−κb1 + b2
(1 + b3)

⊗

p0

−p1

−p2

−p3

 /√2(1 + κ2)(1 + b3) .

So, using the expression for κ in equation (24), we obtain
r3 = 0.

The underlying reason for this result is just that a rotation
about any other axis would have an unnecessary component
about h, and that would make the correction to reach Qb
suboptimal.

Theorem 7. In the absence of any other measurement errors,
a fixed bias error in the angular velocity measurement can be
completely estimated by applying theorem 5 on two linearly
independent vector measurements.

Proof. Similar to the proof of corollary 6, the incremental
change from the integrated attitude quaternion estimate, p̌, to
the vector-aligned estimate, q̌, is essentially the correction to
the integrated error in the rate measurement e(t). Denoting
the increment by ř, now in the body-fixed coordinate system
(since ω is available only in this system), for a constant e over
a small integration time δt, we must have:

ř =

[
1
δr

]
= p̌−1 ⊗ q̌ =

[
1

(eδt)/2

]
+ δµb̌ , (27)

where δµ is an unknown infinitesimal rotation about b in the
body system. We have assumed that we start on the feasibility
cone, and integrate the rate measurement over a small time,
so ř is close to 1̌, and its scalar portion is approximately 1.
However, with a single vector measurement, a correction is

possible only in the subspace normal to the measured vector
b. Therefore, we have an unknown term proportional to b̌ in
equation (27). Projecting onto the subspace orthogonal to b̌,
we obtain (1 − bbT )e = 2(1 − bbT )δr/δt in the case of a
correction onto the feasibility cone of a single measurement
b. Since b and δr are known, this may be used to estimate
the portion of e normal to b. With two or more independent
measurements bi and corrections ri at a constant e, the
matrix

∑
i(1− bibTi ) becomes invertible, and we can actually

determine e completely:∑
i

(1− bibTi )e =
∑
i

2(1− bibTi )δri/δt . (28)

Equation (28) thus constructs the desired correction for the
bias in the rate measurement.

Remark 7.1. Observability condition: The condition for in-
vertibility of

∑
i(1 − bib

T
i ) is the same as the full-rank

condition in literature, and for a single vector observation,
it is equivalent to the persistently non-parallel and sufficient
excitation conditions.

Remark 7.2. Non constant bias: If only measurements of a
single constant vector are available, the body would have to
rotate faster than the variation in e, if any such variation
exists, for this estimation to be accurate. If e does happen to
vary significantly, we would only be estimating the weighted
average of the error, e, during the time over which the
measurements were taken and the corrections determined:∑

i

(1− bibTi )e =
∑
i

2(1− bibTi )δri/δt . (29)

Remark 7.3. Random-walk bias: Filtered bias estimation for
variable bias with exponential autocorrelation (WIP). Filtering
details to be expanded.

Ai+1 = (1− T/τ)Ai + (1− bibTi )

Bi+1 = (1− T/τ)Bi + 2(1− bibTi )δri/δt

Ae = B. (30)

D. Effect of noise in measurements on the estimation

We now analyze the effect of random, unbiased noise in
the angular velocity measurement ω and vector measurement
b on the estimated attitude q̌. In particular, we shall assume
that there is no bias error in ω. Further, we shall make the
reasonable assumption that the errors are small enough relative
to the norms of the quantities to consider them as perturbations,
and therefore add the effects of individual noise sources to
obtain the cumulative effect.

We shall introduce some new notation, to avoid lengthy
expressions. The quaternion attitude estimate is given by
equation (24):

√
2(α2 + β2)(1 + b3) q̌ =


α(1 + b3)
αb2 + βb1
−αb1 + βb2
β(1 + b3)

 = αǔ+ βv̌ ,

(31)
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where ǔ = [(1 + b3) b2 −b1 0]T and v̌ = [0 b1 b2 (1 + b3)]T

are scaled versions of the two special solutions from lemma 2,
α = p0(1 + b3) + p1b2 − p2b1 = p̌T ǔ, and β = p1b1 + p2b2 +
p3(1 + b3) = p̌T v̌.

Let us first consider the effect of noise in ω alone. Suppose
the noise in ω leads to a small error in the integrated estimate
δp̌ = (T/2)q̌ ⊗ δω̌ (refer equation (14) for a small T ). The
errors in α, β would then be:[

δα
δβ

]
=

[
1 + b3 b2 −b1

b1 b2 1 + b3

]
δp̌ =

[
ǔT

v̌T

]
δp̌ .

Theorem 8. In the absence of any other errors, a perturbation
error δp̌ in the integrated attitude estimate p̌ leads to a
perturbation in the vector-aligned attitude estimate q̌ (equation
(24)) equal to the projection of δp̌ onto the feasibility cone, i.e.,
the subspace spanned by the two special solutions in lemma
2, and orthogonal to the nominal attitude estimate.

Proof. Taking differentials of equation (31):

√
2(α2 + β2)(1 + b3) δq̌ =

−
(αδα+ βδβ)

√
2(1 + b3)√

α2 + β2
q̌

+ǔδα+ v̌δβ

,

= (1−

√
2(1 + b3)

α2 + β2
q̌p̌T )(ǔδα+ v̌δβ) . (32)

Once we have expressed the error as the sum of first order
differentials, the multiplying coefficients may now be approx-
imated to their nominal values – any error on account of the
approximation would be multiplied by the differentials and
therefore be of higher order. Specifically, we may approximate
p̌ ≈ q̌, so p̌⊗b̌ ≈ ȟ⊗p̌, so α ≈ 2p0 ≈ 2q0, and β ≈ 2p3 ≈ 2q3,
in the coefficients, to obtain

α2 + β2 = 4q2
0 + 4q3

3 = 2(1 + b3) ,

2(1 + b3)δq̌ = (1− q̌q̌T )
[
ǔ v̌

] [δα
δα

]
,

= (1− q̌q̌T )
[
ǔ v̌

] [ǔT
v̌T

]
δp̌ ,

= (1− q̌q̌T )(ǔǔT + v̌v̌T )δp̌

δq̌ = (1− q̌q̌T )(řřT + ššT )δp̌ = ťťT δp̌ , (33)

where ť ∈ Qb, and ť = (−ř + κš)/
√

1 + κ2 = ȟ⊗ q̌.

A similar but tedious derivation yields the following theorem
for noise in the vector measurement b. We shall reuse some of
the previous notation leading to theorem 8 and equation (31).

Theorem 9. In the absence of any other errors, a perturbation
error δb̌ in the vector measurement b̌ leads to a perturbation
in the vector-aligned attitude estimate q̌ (equation (24)) equal
to a rotation through the angle −b× δb, which is the smallest
angle rotation that takes b to b+ δb.

Proof. Taking differentials of equation (31):√
2(α2 + β2)(1 + b3)δq̌

+q̌
√

2(1 + b3)
αδα+ βδβ√
α2 + β2

+q̌
√

2(α2 + β2)
δb3

2
√

1 + b3


=

{
δαǔ+ δβv̌

+αδǔ+ βδv̌
. (34)

Similar to the proof of theorem 8, the coefficients multiplying
the first order differentials are approximated to their nominal
values.

α2 + β2 = 4q2
0 + 4q2

3 = 2(1 + b3) ,[
α β

] [δα
δβ

]
= p̌T

[
ǔ v̌

] [δα
δβ

]
= q̌T

[
ǔ v̌

] [δα
δβ

]
. (35)

Working on the δǔ and δv̌ terms,

q̌T (αδǔ+ βδv̌) = q̌T (2q0δǔ+ 2q3δv̌) ,

= 2q̌T

q0


1

1
−1

+ q3

1
1

1


 δb ,

= 2(q0

[
−q2 q1 q0

]
+ q3

[
q1 q2 q3

]
)δb ,

=
[
b1 b2 (1 + b3)

]
δb = δb3 . (36)

Substituting from equations (35, 36) back in equation (34),

2(1 + b3)δq̌ + q̌q̌T (ǔδα+ v̌δβ)

+q̌q̌T (αδǔ+ βδv̌)

}
=

{
ǔδα+ v̌δβ

+ αδǔ+ βδv̌
,

It can be seen that the terms on the RHS are projected
onto q̌ and the projection appears on the LHS. This is just
a consequence of the fact that q̌ has unit magnitude, and
therefore δq̌ must be orthogonal to q̌:

2(1 + b3)δq̌ = (1− q̌q̌T ) (ǔδα+ v̌δβ + αδǔ+ βδv̌) . (37)

We now simplify the terms within the parantheses on the RHS
using the relations that bT δb = 0 and q̌ ⊗ b̌ = ȟ⊗ q̌:

ǔδα+ v̌δβ + αδǔ+ βδv̌

=


−q2(1 + b3) q1(1 + b3) q0(1 + b3)

(−q2b2 + q1b1) (q1b2 + q2b1) (q0b2 + q3b1)
(q2b1 + q1b2) (−q1b1 + q2b2) (−q0b1 + q3b2)
q1(1 + b3) q2(1 + b3) q3(1 + b3)

 δb

+ 2q0


1

1
−1

 δb+ 2q3

1
1

1

 δb ,

=


−q2(1 + b3) q1(1 + b3) 0

(2q3 − q2b2 + q1b1) (2q0 + q1b2 + q2b1) 0
(−2q0 + q2b1 + q1b2) (2q3 − q1b1 + q2b2) 0

q1(1 + b3) q2(1 + b3) 0

 δb

+


0 0 q0(1 + b3)
0 0 (q0b2 + q3b1)
0 0 (−q0b1 + q3b2)
0 0 q3(1 + b3)

 δb+ 2


q0

q3

 δb3 ,
(Using q̌ ⊗ b̌ = ȟ⊗ q̌)

=


−q2(1 + b3) q1(1 + b3) 0

(2q1b1 + q3(1 + b3)) (2q1b2 + q0(1 + b3)) 0
(2q2b1 − q0(1 + b3)) (2q2b2 + q3(1 + b3)) 0

q1(1 + b3) q2(1 + b3) 0

 δb

+


0 0 q0(1 + b3)
0 0 (q0b2 + q3b1)
0 0 (−q0b1 + q3b2)
0 0 q3(1 + b3)

 δb+ 2


q0

q3

 δb3 ,
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(Using bT δb = 0)

= (1 + b3)


−q2 q1 q0

q3 q0 −q1

−q0 q3 −q2

q1 q2 q3

 δb

+


0

q1 − q1b3 + q0b2 + q3b1
q2 − q2b3 − q0b1 + q3b2

0

 δb3 + 2


q0

q3

 δb3 ,
(Again using q̌ ⊗ b̌ = ȟ⊗ q̌)

= (1 + b3)


−q2 q1 q0

q3 q0 −q1

−q0 q3 −q2

q1 q2 q3

 δb+ 2


q0

q1

q2

q3

 δb3 ,

= (1 + b3)


−q2 q1 q0

q3 q0 −q1

−q0 q3 −q2

q1 q2 q3

 δb+ 2q̌δb3 . (38)

Substituting from equation (38) back in equation (37), we
obtain:

δq̌ = −1

2
q̌ ⊗ b̌⊗ δb̌ = −1

2
ť⊗ δb̌ , (39)

where ť = ȟ ⊗ q̌ = [(−q3) (−q2) q1 q0]T = q̌ ⊗ b̌, and q̌ ⊗ b̌
is already orthogonal to q̌.

A quick consistency check may be obtained using equation
1:

q̌ ⊗ b̌ = ȟ⊗ q̌,
⇒ δq̌ ⊗ b̌+ q̌ ⊗ δb̌ = ȟ⊗ δq̌.

Checking equation 39,

−(1/2)q̌ ⊗ b̌⊗ δb̌⊗ b̌+ q̌ ⊗ δb̌+ (1/2)ȟ⊗ q̌ ⊗ b̌⊗ δb̌ ?
= 0,

⇐ (1/2)q̌ ⊗ b̌⊗ b̌⊗ δb̌+ q̌ ⊗ δb̌+ (1/2)q̌ ⊗ b̌⊗ b̌⊗ δb̌ ?
= 0,

⇐ −(1/2)q̌ ⊗ δb̌+ q̌ ⊗ δb̌− (1/2)q̌ ⊗ δb̌ ?
= 0.X

Equations (14, 33, 39) can be used to derive an equation
for the evolution of noise in the integrated and vector-aligned
estimates:

δp̌i+1 = δq̌i ⊗
(

1̌ +
ω̌iT

2

)
+ q̌i ⊗

δω̌iT

2
= P

[
δq̌i
δωi

]
,

δbq̌ = −(1/2)q̌ ⊗ b̌⊗ δb̌ = −(1/2)ȟ⊗ q̌ ⊗ δb̌,
δpq̌ = ťťT δp̌,

⇒ δq̌i+1 = ťi+1ť
T
i+1

[
δq̌i ⊗

(
1̌ +

ω̌iT

2

)
+ q̌i ⊗

δω̌iT

2

]

− 1

2
ťi+1 ⊗ δb̌i+1 = Q

δq̌iδωi
δbi

 . (40)

Equation (40) can be used to derive expressions for the
covariance matrices corresponding to p̌i+1 and q̌i+1, say Πi+1

and Ξi+1, which can be used in deriving a filtered estimate:

δp̌i+1 = P

[
δq̌i
δωi

]
,

δq̌i+1 = Q

 δq̌i
δωi
δbi+1

 ,
Πi+1 = P

[
Ξi

Wi

]
PT ,

Ξi+1 = Q

Ξi
Wi

Bi+1

QT ,
q̌f,i+1 = (Π−1

i+1 + Ξ−1
i+1)−1(Π−1

i+1p̌i+1 + Ξ−1
i+1q̌i+1), (41)

where W and B are the covariance matrices corresponding to
measurements ω and b.

IV. SIMULATION RESULTS

In this section, we use Matlab simulations to verify the
key theoretical results derived in the previous section. The
first group of simulations correspond to verifying the solution
for the first problem – attitude estimation using two vector
measurements. We assume that the directions of two linearly
independent vectors, h and k, are measured at 100Hz in the
body-fixed coordinate system as a and b. Measurements a and
b are assumed to have random, unbiased noise of 0.01 and
0.02 normalized units respectively. The body is prescribed an
oscillatory roll and pitch motion, and a constant yaw angle.

Figure 3 (left) shows the attitude estimated using theorem
4, q̌G, in comparison with the attitude derived by using the
TRIAD method, q̌T , when reference vector h is of greater
significance. Both the solutions are identical upto machine
precision.
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Fig. 3. Matlab simulations of full attitude estimation using two vector
measurements. The dashed lines on the left figure correspond to the TRIAD
solution, while those on the right figure correspond to Davenport’s q-method.
The solid lines in both figures correspond to the attitude estimated using the
methods presented in this note, viz, theorem 4 and equation (6). The solid
lines match the dashed lines to machine precision.

By using equation (6) to interpolate between the two so-
lutions obtained from theorem 4, we obtain the solution to
Wahba’s problem. The interpolation parameter x is chosen
to be 22/(12 + 22) = 0.8, as the noise of the two vector
measurements have a ratio of 2. Figure 3 (right) shows
the equivalence between the result obtained by interpolating
(equation (6)) on the two estimates of theorem 4, q̌I , and that
obtained by using Davenport’s q-method, q̌D.

The next group of simulations verify the result of theorem 5.
In these simulations, we assume a constant gyroscopic bias of
[−0.32 0.16 −0.08]T rad/s along the three axes, and a random,
unbiased noise of 0.04rad/s in each component. The reference
vector components are assumed to be h = [0 0 1]T . The vector
measurement is also assumed to have a random, unbiased
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noise of 0.01 normalized units, but we assume any constant
biases in this measurement have been eliminated. The vector
measurement is then normalized before being passed on to the
attitude estimator.
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Fig. 4. Simulated attitude estimation for pure sinusoidal roll (left) and pitch
(right) manoeuvres. While the gyro integrated estimate drifts with time, the
vector measurement correction (equation (24)) realigns the roll and pitch
angles at every time step.

The quaternion output of the attitude estimator is converted
to 3-2-1 Euler angles for ease of readability. The angular
velocity is measured at 100Hz and integrated (along with
the bias and noise errors) to return an integrated estimate
for the attitude (φp and θp after conversion to roll and pitch
Euler angles). Then, a corrected attitude is determined that is
consistent with the noisy vector measurement, also at 100Hz,
to yield the vector-aligned estimate (φq and θq respectively).

In this case of the reference vector being aligned with the z-
axis, the attitude estimator cannot correct for errors on account
of yaw drift in the integrated estimate p̌. Therefore, we can
evaluate the estimator’s performance after isolating the roll
and pitch angles from the estimate. The first plot (figure 4
left) considers the case of a sinusoidal roll manoeuvre of
amplitude ±5π/6rad and frequency 0.25Hz. The second plot
(figure 4 right) repeats the simulation with a fixed roll angle
and a sinusoidal pitch manoeuvre of amplitude ±4π/9rad and
frequency 0.25Hz. It can be seen that the integrated estimates
drift with time, but the vector-aligned estimates, while having
more noise, stay true to the actual values.

The attitude estimate q̌ of theorem 5 can be filtered to
reduce the noise variance using interpolation, as decribed in
equation 26. For small attitude increments between time-steps,
the filtered estimate is the same as that obtained using the tradi-
tional EKF, but the linearization inherent in the EKF begins to
introduce significant errors for large attitude increments (figure
5).

We finally verify the estimation of a constant bias error
in the angular velocity measurement as given in theorem 7,
equation (28). This estimator requires the correction quaternion
determined using atleast two linearly independent vector mea-
surements, so the estimator is enabled only after the smallest
eigenvalue of

∑
i(1 − bib

T
i ) is above a constant. Figure 6

(left) shows the simulation results that validate equation (28).
As mentioned in the statement of theorem 7, the bias errors
are assumed to be constant with time in this simulation. The
estimated bias is then compensated in the attitude estimate
(figure 6 right) in order to overcome the steady yaw drift with
time. The initial error in the yaw attitude, and a random-walk
error on account of the noise in ω are all that remain.
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Fig. 5. Interpolation using equation (26) to obtain a filtered attitude estimate.
The interpolated solution (top left) has lower errors than an optimally tuned
EKF (top right) for large attitude increments (≈ 0.04 rad) between time-steps.
In the limit of smaller attitude increments (≈ 0.004 rad), the EKF (bottom
right) approaches the more accurate interpolated solution of equation (26)
(bottom left).
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Fig. 6. Estimation of constant bias errors in the rate measurement from the
correction required to align the integrated estimate with a vector measurement
(solid lines on left). The bias error estimation uses equation (28) on attitude
estimations derived from multiple linearly independent vector measurements.
The estimated bias is utilized to correct for yaw drift (solid lines on right).
The correction removes the yaw drift proportional to t, and only the initial
error and a random-walk drift that goes as

√
t remain.

V. CONCLUSION

We have thus reported a geometry-based analytic solution
for the problem of attitude estimation using two reference
vector measurements and using a rate measurement and a mea-
surement of a single reference vector. The estimated attitude is
exact in the sense that it yields the vector measurement exactly
when applied on the reference measurement. The estimate also
has no latency and is available at the same timestep when
the measurement is available. The estimator is verified using
Matlab simulations. It is also shown how the corrections to the
integrated estimate can be used to estimate the time-averaged
bias errors in the rate measurement. A perturbation analysis
derives the effect of small signal noise in the measurements
on the estimation, and can be used to derive a filtered attitude
estimate using quaternion interpolation.

A concluding remark is that the presented approach can be
extended in principle to problems involving more than two
vector measurements. For instance, with three measurements,
the problem reduces to one of determining the centroid with
respect to three feasibility cones. On account of the nonlinear
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nature of the problem, it is not easy to obtain closed-form
solutions to such problems by extending the presented solu-
tions. Notwithstanding the algebraic difficulties involved, the
conceptual extension to such problems is straightforward.
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