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Abstract—A current-aided inertial navigation framework is pro-
posed for small autonomous underwater vehicles in long-duration
operations (>1 h), where neither frequent surfacing nor consistent
bottom tracking is available. We instantiate this concept through
mid-depth underwater navigation. This strategy mitigates dead-
reckoning uncertainty of a traditional inertial navigation system
by comparing the estimate of local ambient flow velocity with
preloaded ocean current maps. The proposed navigation system
is implemented through a marginalized particle filter where the
vehicle’s states are sequentially tracked along with sensor bias and
local turbulence that is not resolved by general flow prediction. The
performance of the proposed approach is first analyzed through
Monte Carlo simulations in two artificial background flow fields,
resembling real-world ocean circulation patterns, superposed with
smaller scale turbulent components with Kolmogorov energy spec-
trum. The current-aided navigation scheme significantly improves
the dead-reckoning performance of the vehicle even when unre-
solved small-scale flow perturbations are present. For a 6-h nav-
igation with an automotive-grade inertial navigation system, the
current-aided navigation scheme results in positioning estimates
with under 3% uncertainty per distance traveled (UDT) in a tur-
bulent double-gyre flow field, and under 7.3% UDT in a turbulent
meandering jet flow field. Further evaluation with field test data
and actual ocean simulation analysis demonstrates consistent per-
formance for a 6-h mission, positioning result with under 25%
UDT for a 24-h navigation when provided direct heading measure-
ments, and terminal positioning estimate with 16% UDT at the
cost of increased uncertainty at an early stage of the navigation.

Index Terms—Autonomous vehicles, navigation, ocean current,
state estimation.

I. INTRODUCTION

ACCURATE navigation is a prerequisite for mobile robots
to accomplish basic autonomous tasks such as trajec-

tory tracking and path planning. It is notoriously challenging
for an autonomous underwater vehicle (AUV) to maintain a
consistently reliable navigation performance [1]–[3]. The high
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attenuation of electromagnetic waves in sea water creates a
poorly illuminated ocean environment while acoustic communi-
cation, the primary communication method for most underwater
applications, suffers from large delays and high error rates. A
universal underwater localization system, similar to the global
positioning system (GPS), would have been prohibitively ex-
pensive to implement with severely limited coverage.

Existing navigation techniques for AUVs are typically built
upon inertial navigation systems (INSs) that usually consist
of combinations of accelerometers, gyroscopes, and magne-
tometers. Sampling noise of these sensors is propagated and
amplified during the integration steps of dead reckoning. Thus,
an INS usually suffers from severe drift error if no reliable exter-
nal references are available. Intermittent corrections of the state
estimation error with exteroceptive sensors are, therefore, nec-
essary for maintaining a reasonably accurate navigation perfor-
mance. To this end, several techniques have been proposed [4],
including sonar-based methods [5], [6] and surface-agent-aided
methods [7]–[9]. However, one common limitation of these
techniques is that the vehicle must stay close to either artificial
beacons (e.g., long baseline), static landmarks [e.g., underwater
simultaneous localization and mapping (SLAM)], or the sea
bottom [e.g., Doppler velocity log (DVL) bottom tracking].

When a mobile robot utilizes external features to mitigate its
navigation error, an aided navigation system is established. De-
pending on the characteristics of the features, the resultant aided
navigation systems are different. The vast majority of existing
aided navigation schemes can be classified as the first category,
which utilizes the static properties of navigation features (e.g.,
positions of landmarks [10]–[12]). Nevertheless, usually there
are situations where the robot does not encounter a sufficient
number of, or any, such features for the navigation system to ref-
erence, hence static-feature-based navigation schemes become
inapplicable. The second category of aided navigation systems
utilizes features’ states that are time dependent, such as the lo-
cation of moving beacons [8], [13], or neighboring robots [14],
[15]. However, the dynamics governing the changes in states of
these features are often not utilized. This motivates us to explore
a new category of aided navigation systems that exploits the dy-
namics of environmental features in robot navigation problems
where the environment and the features therein are considered
as another dynamic system interacting with the robot.

One of the key factors that affects the performance of an aided
navigation method is the frequency at which a robot has access
to the features for reference. Navigation methods based on phys-
ical landmarks limit the robot’s navigation range to the milieu
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of these features. In contrast, methods based on field features
utilize a certain type of background field, either natural or arti-
ficial, as the navigation reference. The robot is able to perform
correction for positioning error at any location by measuring the
local strength of the background field [16], [17]. This type of
methods significantly expands the robot’s navigation range with
a prerequisite that a map of the field needs to be known before-
hand. When the background field is spatiotemporally changing,
it is necessary to understand the dynamics of the field to extract
useful features for navigation.

Traditionally, omnipresent ocean currents are usually consid-
ered as a major culprit behind the performance degradation in
control and navigation of small underwater vehicles. Due to the
lack of understanding of ocean current dynamics, background
flows were usually treated as small disturbances for conven-
tional underwater vehicles. Since the emergence of smaller-
size AUVs, the impact of ocean currents on a vehicle’s motion
has drawn a certain amount of attention because the velocities
of ocean currents sometimes exceed the maximum speed of
these actuation-limited AUVs [18], [19]. Fortunately, the ever-
increasing computational power and the emergence of multiple
in situ ocean sampling techniques have contributed to the recent
progress in ocean general circulation models (OGCMs) that
simulate the general movement of large-scale ocean currents.
By closing this knowledge gap, researchers have been utiliz-
ing the background flow dynamics in various aspects of under-
water robotics, including path planning and vehicle guidance
[20]–[22], multivehicle cooperative control [23]–[25], optimal
sensing [26]–[29], sensor network mobility analysis [30], [31],
and mobile sensor allocation [32]. Nonetheless, to the best of
our knowledge, the background flow dynamics has not been well
exploited for underwater localization and navigation problems
with only a few exceptions [33]–[37].

OGCMs simulate large-scale ocean movement by numeri-
cally solving the Navier–Stokes equations with multiple bound-
ary conditions, and by assimilating real-time in-situ measure-
ment data obtained by satellites, surface vessels, underwater
gliders, etc. Particularly, Lagrangian instruments, such as drifter
buoys (e.g., the Global Drifter Program by NOAA AOML Phys-
ical Oceanographic Division) or floats, are usually used as prox-
ies for ocean flow advection and have contributed significantly
to the study of general ocean circulations [38]–[42]. At present,
publicly available OGCMs can provide forecasts of global ocean
currents for up to six days with an average spatial resolution of
3 km and a temporal resolution of 3 h or less [43], [44]. With
smaller scale regional models, higher spatiotemporal resolution
often can be achieved. Fig. 1 shows the velocity field of the
linearly interpolated surface currents of the Gulf of Mexico at 9
P.M. on June 10, 2015 predicted by HYCOM [43].

During long-range AUV operations, such as long-duration
underwater sampling or surveillance, it is often the case that fre-
quent surfacing for dead-reckoning error correction with GPS
is not desirable, the limited number of structural features pre-
vents the implementation of underwater SLAM, and consistent
DVL bottom tracking is not always available, if at all. In situa-
tions like these, the ubiquitous background flow may be utilized

Fig. 1. Velocity field of the linearly interpolated surface current of the Gulf of
Mexico at 21:00:00 Z on June 10, 2015 predicted by HYCOM Gulf of Mexico.

Fig. 2. Conceptual illustration of a time-tagged current velocity map series
generated an OGCM. Variables dx and dy depend on the longitudinal and
latitudinal resolution of the ocean model, and dt depends on the temporal
resolution.

to mitigate the dead-reckoning error when the general ocean
circulation is predictable.

In this paper, we demonstrate the concept of current-aided
inertial navigation. This system improves the inertial navi-
gation performance by utilizing local measurements of rel-
ative flow velocities and predictions of the flow field pro-
vided by OGCMs [45], [46]. Before the deployment of an
AUV, a sequence of current velocity maps of the naviga-
tion domain can be predicted by an OGCM, such as RTOFS-
Atlanta [44] or HYCOM [43] (see Fig. 2). During operations,
the AUV estimates local absolute flow velocities through on-
board sensors and deduces its own states from preloaded cur-
rent velocity maps. A marginalized sequential Monte Carlo
method is adopted to implement such a recursive Bayesian
estimator.

Different from this paper, Chang et al. [35] proposed a real-
time guidance system for underwater gliders using predictive
ocean models in combination with glider-derived flow estimate
to improve the gliders’ navigation performance in complex flow
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regions with large spatial and temporal flow changes. Their nav-
igation scheme focuses on gliders that perform dead reckoning
using depth and attitude sensors instead of initial navigation sys-
tems and requires the vehicles to resurface at regular intervals.
Stanway [34] and Medagoda et al. [37] focused on the navi-
gation performance during vehicle descent by utilizing the fact
that ocean currents are approximately invariant within a short
period of time. Similarly, Hegrenæs and Berglund [33] only con-
sidered their DVL water-tracking technique as an intermediate
approach to bridge the gap between other more reliable global
localization techniques involving GPS or USBL. By including
the knowledge of ocean general circulation, we aim to provide
long-term performance improvement over INSs alone. We con-
sider our approach and the aforementioned existing methods
mutually complementary. Major contributions of this paper in-
clude a generalized INS based on ocean general circulation,
treatment of unpredictable turbulence, and a systematic per-
formance analysis of a current-aided navigation estimator in a
simulated environment.

In what follows, the current-aided navigation system is de-
rived based on a recursive Bayesian structure in Section II. A
marginalized particle filter (MPF) realization is presented and
the parametric Cramér–Rao lower bound (CRLB) is derived for
a reduced system. Section III includes a systematical perfor-
mance evaluation of the current-aided INS in two turbulent flow
fields with pregenerated sensor samples. The proposed current-
aided MPF is compared to an extended Kalman filter (EKF)
based method and the parametric CRLB. Section IV further
justifies the feasibility of the current-aided navigation scheme
through a simulated experiment with field test data and OGCM
results. Finally, we conclude this paper in Section V.

II. CURRENT-AIDED INERTIAL NAVIGATION

Current-aided inertial navigation can be formulated as a par-
tially observable nonlinear state estimation problem. We first
mathematically formulate it in probability theory. Targeting at
estimating a probability distribution of the vehicle’s states given
proprioceptive and exteroceptive sensor measurements, a re-
cursive Bayesian structure is adopted to guide the entire state
estimation process. Sensor bias and unmodeled local turbulence
are tracked in an online fashion along with the vehicle’s states.
This general formulation will then be realized through numerical
approximation since an optimal solution to the target Bayesian
recursion in not easily tractable.

A. Preliminaries on Probabilistic Formulation

Typically, a mid- to long-range AUV is equipped with an INS
that provides acceleration and angular velocity measurements
for purposes including state estimation and disturbance rejec-
tion. Magnetometers and pressure sensors are also often used
to provide direct attitude and depth estimates, respectively. We
assume that the vehicle can measure the relative flow veloci-
ties of the ambient fluid with respect to itself. The locations of
these measurements should be at least one body length away
from the vehicle-fluid boundary layer such that the presence
of the vehicle does not significantly alter the flow velocities at

Fig. 3. Illustration of the concept of current-aided inertial navigation.

the locations of measurement. Such measurements can be ob-
tained by using an acoustic Doppler current profiler (ADCP)
or the current profiling function on some DVLs, which are
now becoming standard for small AUVs. With such a sensor
suite, improved navigation performance, although with theo-
retically unbounded uncertainty, can be potentially achieved
in mid-depth applications utilizing methods proposed by Stan-
way [34] or Medagoda et al. [37] that overlap the consecutive
current profiling measurements. We aim at providing long-term
performance improvement to INSs by taking advantage of the
information contained in large-scale ocean current simulation.
This requires the current forecast maps to be preloaded onto the
vehicle, which we consider practical given the current state of
data storage capacity for compact devices. This design concept
is illustrated in Fig. 3.

The vehicle’s state vector at time k ∈ N+ can be generally
denoted as xk ∈ Rn . This state vector contains the vehicle’s
position, sensor bias, and local turbulence. We divide them into
two subgroups such that xk = [xKF

k ,xPF
k ], where xPF

k denotes
the location of the vehicle to be estimated using a particle filter
(PF), and xKF

k contains the remaining states including vehicle
velocity, sensor bias, etc., that can be estimated using paramet-
ric state estimators such as a Kalman filter (KF) or its exten-
sions. This is motivated by the fact that the vehicle’s location
will be used for deducing the local ocean current based on the
preloaded forecast maps that are typically grid maps without an
analytical description. Although analytical approximation may
be obtainable for the digital current maps such that an EKF
or alike can be applied for tracking all of the states, the addi-
tional computations and the potential inaccuracy in linearizing
the flow map (typically highly nonlinear) may keep practitioners
from doing so. All the sensor measurements, including accel-
erations, angular velocities, and relative current velocities, can
be denoted by zk ∈ Rl . To simplify the notation, we group the
history of vehicle states and measurements up to time step k as
Xk = {x0 , . . . ,xk} and Zk = {z1 , . . . ,zk}, respectively. The
following derivations are based upon two standard assumptions.

1) The change of vehicle states can be modeled as a Markov
process such that Pr(xk |Xk−1 , Zk−1) = Pr(xk |xk−1).

2) Observations at different time steps are mutually in-
dependent conditional on the vehicle’s states such that
Pr(zk |Zk−1 ,Xk ) = Pr(zk |xk ).

The current-aided inertial navigation problem can now be for-
mulated to estimate the conditional probability density function
(pdf) p(Xk |Zk ). We take the factorization of the target pdf such
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that

p(Xk |Zk ) = p(XKF
k |XPF

k , Zk ) · p(XPF
k |Zk ). (1)

This factorization allows us to marginalize the location of the
vehicle such that all the other states can be estimated with a KF
or alike. Based on the aforementioned assumptions, a Bayesian
recursion can be found for the second term in (1) as

p(XPF
k |Zk ) ∝ p(zk |xPF

k ) · p(xPF
k |xPF

k−1) · p(XPF
k−1 |Zk−1). (2)

Due to the nature of an ocean current map, the posterior pdf
p(XPF

k |Zk ) is almost always multimodal. A series of random

measure of it can be defined as {xPF,i
k , wi

k}Np

i=1 , where wi
k can

be considered as the weights of the corresponding support points
(particles) xPF,i

k , satisfying
∑NP

i wi
k = 1, where Np ∈ Z+ de-

notes the number of support points. Thus, a discrete approxima-
tion of the posterior pdf p(XPF

k |Zk ) can be obtained as

p(XPF
k |Zk ) ≈

Np∑

i=1

wi
kδX PF, i

k
(XPF

k ). (3)

A sequential importance sampling scheme [47] can be ap-
plied by defining the particle weights as wi

k = p(XPF,i
k |Zk )/

q(XPF,i
k |Zk ) such that sampling from the proposal distribution

q(XPF,i
k |Zk ) is easy to accomplish. In the case of filtering, where

one only cares about the present location of the vehicle, the
weights can be updated recursively at the arrival of new obser-
vations such that

wi
k+1 ∝ wi

k

p(zk+1 |xPF,i
k+1) p(x

PF,i
k+1 |xPF,i

k )

q(xPF,i
k+1 |xPF,i

k ,zk+1)
. (4)

A proper choice of the proposal distribution has been proven
crucial in many studies [48]. One widely adopted option in
navigation applications is the prior distribution p(xPF,i

k+1 |xPF,i
k ),

which leads to a simple yet practically efficient update recur-
sion for particle weights wi

k+1 ∝ wi
k · p(zk+1 |xPF,i

k+1). Such a
prior distribution has shown to be suitable for sequential es-
timation problems with observation noise larger than process
noise, which is the case for our application.

Conditional on p(XPF,i
k+1), the joint conditional pdf of the re-

maining states p(XKF
k |XPF

k , Zk ) can be sequentially estimated
using parametric estimators, and the implementation details will
be discussed in Section II-C. It is worth motioning that factoriza-
tion (1) is different from its conventional form where nonlinear
states are marginalized such that all the remaining states are
linear and optimal estimators are applicable [49]. In our case,
including the vehicle’s attitude as an estimation state makes the
remaining states nonlinear due to coordinate transformations.
Tracking the vehicle’s attitude using nonparametric methods
along with the vehicle’s location will lead to larger numbers of
sampling dimension (e.g., from 3 to 6 in a 3-D case), which
requires significantly more computational resources. Instead,
we directly tackle the nonlinearity in the remaining states us-
ing an EKF. The approximation inaccuracy associated with the
linearization step can be considered negligible for AUV appli-
cations since heading changes are typically small due to large
hydrodynamic damping effects. If available, additional heading

correction can be utilized to provide bounded attitude estimate,
allowing for implementation of KFs for the remaining linear
states.

B. System Models

One major distinction between our current-aided inertial nav-
igation strategy and many existing terrain-based navigation
methods is that the navigation references are dynamic targets,
i.e., a spatiotemporally changing flow field. Due to the scarcity
of reliable alternative features in mid-depth ocean, we take ad-
vantage of our knowledge in the dynamics of the general ocean
circulation that has been accumulated for decades. However,
the chaotic nature of ocean currents makes it impossible for a
numerical model to capture the exact motion of the flows on all
scales. This requires deliberation in the utilization of an ocean
circulation forecast as the navigation reference.

In fluid dynamics, the velocity of a turbulent flow field can
be separated based on Reynolds decomposition as U(x, t) =
U(x) + u(x, t), where U is the large-scale slowly varying
steady component andu includes the small-scale local perturba-
tions. In this study, we assume that the ocean circulation models
can provide predictions of the large-scale currents, which the
vehicle will utilize as navigation references. The unmodeled
turbulent flow component at the vehicle’s locations will be es-
timated online. Ocean current forecast maps can be generated
and loaded on to the vehicle before deployment. As we will be
showing soon, knowledge about the ocean turbulence statistics
in the navigation domain will further benefit the estimation of
the unmodeled turbulence.

To simplify the demonstration of the current-aided navigation
concept, we focus on 2-D horizontal navigation of an AUV. This
does not prevent the extension of the proposed method to 3-D
cases since the vehicle depth can generally be estimated inde-
pendently using absolute pressure measurements and the cou-
pled six-degrees-of-freedom motion can be tackled by simply
extending this 2-D treatment to a higher dimensional state space.
Such an extension is particularly straightforward for AUVs that
do not relay on control surfaces (e.g., AUVs designed by our
research group [50], [51]).

The state vector to be estimated can be defined
as xk = [p{n}�k ,v

{n}�
k , ψk , b

{b}�
a,k , br,k , b

{b}�
z,k ,u

{n}�
c,k ]� ∈ R12 .

Here, p{n}k = [x, y]�, v{n}k = [vx, vy ]�, and ψk represent the
location, linear velocity, and heading of the vehicle in the iner-
tial frame {n}, respectively. b{b}a,k , br,k , and b{b}z,k are sensor bias

of acceleration measurement a{b}
k , yaw rate measurement r{b},

and relative current velocity measurementz{b} in the body frame
{b}. The last state u{n}

c,k = [ux, uy ]� is the local unmodeled tur-
bulent flow component at the vehicle’s location represented in
the inertial frame.

The discrete system dynamics for the vehicle can be
expressed as

p̂
{n},−
k+1 = p̂

{n},+
k + v̂{n},+k δt (5)

v̂
{n},−
k+1 = v̂

{n},+
k +Rn

b (ψ̂+
k )(a{b}

k − b̂{b},+a,k −wa,k )δt (6)

ψ̂−
k+1 = ψ̂+

k + (rk − b̂+r,k − wr,k ) δt (7)
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where Rn
b (ψ̂+

k ) is the standard coordinate transformation
matrix from {b} to {n} and “−/+” denote the estimation of
the corresponding quantity before/after the observation update.
wa,k ∼ N (0,σ2

a) and wr,k ∼ N (0, σ2
r ) are white Gaussian

noises. Constant bias components can often be measured and
compensated for before missions. Here, we focus on estimating
the sensor bias due to bias instability. This component can be
modeled as a Gaussian Markov process such that

b̂
−
∗,k+1 = (1 − δt/τb) b̂

+
∗,k +wb,k δt (8)

where (∗) ∈ {a, r,z} with τb being the autocorrelation time
constant. The driving process wb,k ∼ N (0, 2fσ2

b/τb) is
assumed to be white Gaussian and f is the sampling frequency
of the corresponding sensor.

Most experiments and computations of homogeneous
isotropic turbulence have shown that the velocity distribution
at one point is approximately Gaussian [52]. Thus, we approx-
imate the unmodeled turbulent flow component as a Gaussian
Markov process. Since the ocean current can be considered
invariant within a time period on the order of minutes, we
correlate changes in turbulence velocity with the vehicle’s
velocity such that

û
{n},−
c,k+1 =

[
I2×2 − diag(v̂{n},+k )δt/Lc

]
û
{n},+
c,k +wu,k δt

(9)
where Lc is the correlation length scale of the turbulent flow
component and wu,k ∼ N (0, 2kσ2

u/Lc) is white Gaussian
noise with k being the smallest wave number of the turbulence.
The values of Lc and k can be obtained based on empirical
evidence given the region of navigation.

As the vehicle navigates in the ocean, relative velocities of the
ambient flow with respect to the vehicle can be measured. Such
measurements are represented in the body-fixed frame as vbr . In
this paper, we consider the relative flow velocity measurement
to be obtained by an ADCP. It has been widely implemented
in many marine engineering applications [53], including re-
lated current-aided navigation techniques for AUV descent [37].
Given the preloaded current velocity map Φ(p̂{n}, t), the mea-
surement model can be described as

ẑk = h(x̂−
k ,wz,k )

= Rb
n (ψ̂

−
k )
[
Φ(p̂−k , tk ) + û{n},−

c,k −̂v{n},−k

]
+ b̂

−
z,k +wz,k

(10)

where wz,k ∼ N (0,σ2
z) is the white Gaussian observation

noise.

C. Implementation With a Marginalized Particle Filter

Based on the aforementioned state vector factorization, the
system state vector can be divided into xPF

k = p
{n}
k and xKF

k =
[v{n}�k , ψk , b

{b}�
a,k , br,k , b

{b}�
z,k ,u

{n}�
c,k ]�, where [.]T denotes the

transpose. The linearized system dynamics (5)–(9) and the mea-

surement model (10) can be compactly expressed as

x̂PF,−
k+1 = x̂PF,+

k +APF x̂KF,+
k (11)

x̂KF,−
k+1 = Fk (x̂

KF,+
k ) x̂KF,+

k +Gk (x̂
KF,+
k ) wxKF,k (12)

ẑk = Hk (x̂
PF,−
k ) x̂KF,−

k +wz,k (13)

where APF = diag(δtI2×2 , 08×8), and

Fk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I2×2 F12 F13 02×1 02×2 02×2

01×2 1 01×2 −δt 01×2 02×2

02×2 02×1 F33 02×1 02×2 02×2

01×2 0 01×2 F44 01×2 01×2

02×2 02×1 02×2 02×1 F55 02×2

F61 02×1 02×2 02×1 02×2 F66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with

F12 = ∇ψR
n
b (ψ̂+

k )(ak + b̂
+
a,k )δt

F13 = −Rn
b (ψ̂+

k )δt

F33 = (1 − δt/τa)I2×2

F44 = 1 − δt/τr

F55 = (1 − δt/τz)I2×2

F61 = diag{−û+
c,k}/Lcδt

F66 = I2×2 − diag{v̂+
k δt/Lc

Gk = diag{−Rn
b (ψ̂+

k )δt,−δt, δtI7×7},

and

Hk = diag{−Rb
n (ψ̂−

k ), ∇ψR
b
n (ψ̂−

k ) [Φ(p̂−k , tk )

+û−
c,k − v̂−k ], 02×3 , I2×2 , R

b
n (ψ̂−

k )}.

For tracking problems in vehicle navigation, prior distribu-
tions of the system’s states are often known. Therefore, updated
system states can be sequentially estimated as new sensor mea-
surements are acquired. At each time step,Np samples are drawn
from the proposal distribution (prior distribution in this case)
based on (11) as an estimate of xPF,−

k+1 , during which xKF,+
k are

considered as process noise. Each sample maintains an individ-
ual estimate of the remaining states xKF,i,−

k+1 with i = 1, . . . , N .
The estimates of the remaining states propagate as Gaussian
distributions according to (12), the covariance matrix of which
are updated accordingly as

P i,−
k+1 = F i

kP
i,+
k (F i

k )
� +Gi

kQ(Gi
k )

�. (14)

Matrix Q = E{wxKF ,w�
xKF} is the covariance of the process

noise for xKF
k .

When a new measurement of the relative flow velocityzk+1 is
obtained, which typically occurs less frequently than the system
state propagation process, the sample weightwi

k associated with
each particle xPF,i,−

k updates based on a Gaussian likelihood as
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Algorithm 1: Current-aided INS.

Require: x0 , Φ(p, t), a0:k , and r0:k
1: Sample Np particles {xi0 , wi

0} ∼ Pr(xPF
0 ) and

set wi
0 = 1/Np ∀ i = 1, . . . , Np

2: Initialize x̂KF,i
0 and P i

0
3: while tk < tf do
4: for i = 1, 2, . . . , Np do
5: Predict the relative flow velocity ẑik �(10)
6: Update the particle weight wi

k based on the
actual sensor measurement zk �(15)

7: Update x̂KF,i
k and P i

k �(16)–(19)
8: Normalize particle weights such that

∑Np

i=1 w
i
k = 1

9: if Neff < Np/2 then �Neff =
(∑N

i=1(w
i
k )

2
)−1

10: Resample particles with replacements Np times
11: for i = 1, 2, . . . , Np do
12: Predict x̂ik+1 and Pk+1 �(11)–(12)

previously discussed in (4)

wi
k ∝ wi

k−1
1

√
2π det(Sik )

× exp
{
−1/2(zk − h(x̂i,−k , 0))�(Sik )

−1(zk − h(x̂i,−k , 0))
}
.

(15)

Matrix Sik represents the covariance of the innovation eik =
zk − h(x̂i,−k , 0) and it is calculated based on the relationship

Sik = Hi
kP

i,−
k (Hi

k )
� +R (16)

where R = E{wz,w
�
z } is the covariance of the observation

uncertainty. Estimates of the remaining states are then corrected
using the new observation based on

Ki
k = P i,−

k (Hi
k )

�(Sik )
−1 (17)

x̂KF,i,+
k = x̂KF,i,−

k +Ki
ke

i
k (18)

P i
k = (I −Ki

kH
i
k )P

i,−
k . (19)

Algorithm 1 summarizes the current-aided inertial navigation
framework.

D. Parametric Cramér-Rao Lower Bound

Before testing the practical performance of the current-aided
INS, it is beneficial to estimate the expectable theoretical per-
formance of an unbiased estimator for the system of interest.
To this end, we analyze the theoretical estimation bound, using
the parametric CRLB, of the reduced system dynamics. The
reduction is in regard to omitting the sensor bias and the tur-
bulent flow component from the original system state vector
xk . This should not prevent the validity of the resulting per-
formance bound in evaluating the performance of the proposal
method since a tighter bound can be expected when all states
are included. When the accuracy of trajectory-following and the
performance of disturbance rejection can be guaranteed, this
analysis can also be used as an indication of the possible nav-

igation performance to be expected given a current map and a
prescribed vehicle trajectory.

We consider the reduced system dynamics as

x̃−
k+1 = F̃ 0

k x̃
−
k + G̃0

k w̃x,k (20)

zk = H̃0
k x̃

−
k +wz,k (21)

where x̃k = [p{n}�k ,v
{n}�
k , ψk ]� and w̃x,k = [w�

a , wr ]
� ∼

N (0, Q̃). Superscript “0” indicates that the corresponding vari-
able is evaluated with the true states and their actual rates of
changes. The Jacobian matrices take the forms

F̃ 0
k =

⎡

⎢
⎣

I2×2 δtI2×2 02×1

02×2 I2×2 ∇ψR
n
b a

0
k δt

01×2 01×2 1

⎤

⎥
⎦

G̃0
k =

⎡

⎢
⎣

02×2 02×1

−Rn
b δt 02×1

01×2 −δt

⎤

⎥
⎦, H̃

0
k =

⎡

⎢
⎣

Rb
n∇pΦ(p0

k , tk )
−Rb

n

∇ψR
b
n [Φ(p0

k , tk ) − v0
k ]

⎤

⎥
⎦

�

.

The parametric CRLB for one-step-ahead prediction and filter-
ing [54] can then be computed recursively based on

P̃k+1|k = F̃ 0
k P̃k |k F̃

0,�
k + G̃0

k Q̃G̃
0,�
k (22)

P̃k |k = P̃k |k−1 − P̃k |k−1H̃
0,�
k

× (H̃0
k P̃k |k−1H̃

0,�
k +R)−1H̃0

k P̃k |k−1 . (23)

It is worth mentioning that the CRLB is a function of the spatial
gradient of the mean flow component. Relationship (23) indi-
cates a smaller positioning variance when the current map has
larger spatial variations.

III. PERFORMANCE EVALUATION IN TURBULENT FLOWS

We demonstrate the performance of the current-aided naviga-
tion scheme in simulations with two different background flow
fields: a double-gyre flow field [55] and a meandering jet
flow field [56]. They both resemble typical real-world ocean
flow patterns and have been widely used to study the transporta-
tion and mixing properties of ocean flows due to their simple
analytical expressions. Additional turbulent components that
resemble the energy spectrum of real-world turbulence were su-
perposed on top of the mean flow. The lawn-mowing vehicle
trajectory, a common trajectory widely adopted in ocean sam-
pling tasks [57], was used in both cases. State estimation for
vehicles following such a trajectory is quite challenging since
there exist multiple large-angle turns, which may lead to large
attitude estimation error and further affect the overall naviga-
tion performance. The lawn-mowing trajectory was locally per-
turbed for simulating a more realistic scenario where the vehicle
has a bounded trajectory-following error.

A. Sensor Sample Generation

Given a prescribed vehicle trajectory, actual vehicle accelera-
tion a{n}

real and angular velocity rreal were calculated. To generate
noisy measurement samples from an INS, additional noise terms
were injected. Depending on the manufacture and the class, an
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TABLE I
PARAMETERS FOR SENSOR SAMPLE GENERATION USED IN SIMULATIONS

WITH ARTIFICIAL TURBULENT FLOW FIELDS

INS VectorNav VN-100

Accel. bandwidth 260 Hz
Accel. white noise SD (σa ) 0.14 mg/

√
Hz

Accel. in-run bias stability (σba ) 0.04 mg
Accel. correlation time constant (τa ) 300 s
Gyro. bandwidth 256 Hz
Gyro. white noise SD (σr ) 0.0035 ◦/s/

√
Hz

Gyro. in-run bias stability (σbr ) 10 ◦/hr
Gyro. correlation time constant (τr ) 300 s
Update rate used 10 Hz

ADCP RDI 1200 kHz

Measurement uncertainty (σz) 0.01 m/s
Bias instability (σbz ) 0.01 m/s
Correlation time constant (τz ) 100 s
Update rate used 1 Hz

INS typically has different sources of errors due to tempera-
ture fluctuation, calibration errors, constant bias, random walk,
bias instability, etc. Here, we assume that the INS in use has a
built-in temperature sensor to compensate for the measurement
noise caused by temperature fluctuation, and the constant bias
can also be estimated and compensated for before deployment.

We corrupted the vehicle’s actual acceleration in the body
frame and angular velocity with noises due to random walk and
bias instability such that

a{b}
noisy = Rb

n (ψreal)a
{n}
real + ba

instability + νa
white (24)

rnoisy = rreal + brinstability + νrwhite (25)

where ν∗
white is white Gaussian noise, and ḃ

∗
instability =

−b∗instability/τ∗ +wb is an exponentially correlated process
driven by a white Gaussian noise wb with standard deviation
(SD) σb and correlation time τ∗. The SD of the white Gaus-
sian driving process for bias instability can be determined based
on the resultant power spectrum density Qν = 2σ2

b/τ∗. Sensor
noise generated in such a way leads to Allen variance similar to
corresponding physical sensors.

Similarly, we corrupted the real relative background flow
velocity (including both the mean flow and the turbulent com-
ponents) with respect to the vehicle with random walk and bias
instability modeled as a first-order Markov process driven by
white Gaussian noise. The resulting noisy relative flow veloci-
ties are used as actual observation measurements in the follow-
ing analysis.

In the following two tests, parameters for sensor sample gen-
eration were based on characteristics of an automotive-grade
INS VN-100 from VectorNav and an RDI 1200 Khz DVL with
ADCP function from Teleldyne. Values of the related parame-
ters used in this paper are tabulated in Table I.

B. Turbulence With Kinematic Simulation (KS)

The current-aided INS depends on the knowledge of the back-
ground flow field. The fact that small-scale turbulence cannot be

fully resolved by general circulation models poses a potential
issue to the navigation performance of a vehicle. To evaluate the
robustness of the proposed technique in turbulent flow fields,
it is necessary to create background flows with characteristics
that resemble real-world ocean flows. To this end, additional
turbulent components are superposed on top of the mean flow
that is assumed to be known by the vehicle.

To create a turbulent flow field with consistent length scales
between the mean flow and local perturbations, small-scale
turbulence was generated through KS [52]. The KS models
are non-Markovian–Lagrangian models for turbulent-like flow
structures widely adopted in investigation of particle dispersion/
collision where kinetic interactions do not play a key role in the
analysis. Although the resulting flow fields do not necessarily
satisfy the dynamic equations, flow fields generated with KS
models have shown good agreement with experimental mea-
surements in terms of Lagrangian statistics. Despite their sim-
ple mathematical forms, the solutions have a self-similar energy
spectrum over a large range of scales, making it a good tool
for introducing small-scale eddies to a mean flow (large-scale
eddies).

The temporal structure of the turbulent flow component is
determined by a frequency series generated using the kinetic
simulation inertial model [52]. The flow field can be calculated
as a summation across a series of modes

u(x, t) =
Nk∑

n=1

[
(an × k̂n ) cos(kn · x+ ωnt)

+ (bn × k̂n ) sin(kn · x+ ωnt)
]

(26)

where Nk is the number of modes in turbulent simulation dic-
tating the complexity of the resulting flow field. It is constrained
to have a Kolmogorov-like energy spectrum

E(k) =
{
αkε

2/3k−5/3 , for kc ≤ k ≤ kη
0, for otherwise

(27)

where k represents the wave number, αk = 1.5 is the Kol-
mogorov constant [58], [59], and ε is the rate of dissipation
of kinetic energy per unit mass. Two boundary values for the
wave number are the cutoff wave number kc and the maximum
simulated wave number kη . Given a flow velocity variance of
the large-scale component 〈u2

ls〉, the rate of kinetic energy dis-
sipation can be calculated as

ε =

⎡

⎣ 〈u2
ls〉
αk

(
1

k
2/3
c

− 1

k
2/3
η

)−1
⎤

⎦

3/2

. (28)

We generated the wave number series based on a geomet-
ric distribution such that kn = kc(L/η)(n−1)/(Nk −1) , where
L = 2π/kc was chosen as the correlation length scale and η =
2π/kη . Therefore, the frequency series can be computed based
on the desired energy spectrum as ωn =

√
(k3
n/αk )E(kn ).

Finally, random vectors an , bn , and kn are determined
based on mutually uncorrelated random angles φn such that
an = an (cosφn ,− sinφn ), bn = bn (− cosφn , sinφn ), kn =
kn (sinφn , cosφn ), where a2

n = b2n = E(kn )Δkn , and k̂n =
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Fig. 4. Turbulent flow field generated with KS: streamlines (left); velocity field
(right). Arrows indicate the direction of the flow and their length is proportional
to the flow speed.

Fig. 5. Double-gyre flow field with KS turbulence at t = 0. Arrows indicate
the direction of the flow and their length is proportional to the flow speed.

kn/kn . Fig. 4 shows an example flow region generated us-
ing this method with parameters L = 200 m, η = 0.001 m, and
Nk = 100.

C. Double-Gyre Flow Field

In the first test case, we considered the navigation problem in
a time-dependent double-gyre flow field. The double-gyre flow
represents a typical large-scale ocean circulation phenomenon
often observed in the northern midlatitude ocean basins. It is
quite dominant and persistent in oceans and consists of a subpo-
lar and a subtropical gyres. The flow velocity of a double-gyre
flow field is defined by the stream function

φ(x, y, t) = A ∗ sin(πf(x, t)) sin(πy) (29)

where the time dependence is introduced by

f(x, t) = a(t)x2 + b(t)x

a(t) = ε sin(ωt) and b(t) = 1 − 2ε sin(ωt)

over a nondimensionalized domain of [0, 2] × [0, 1]. Here, ε
dictates the magnitude of oscillation in the x-direction, ω is
the oscillation period, and A controls the velocity magnitude.
The resulting velocity field can be calculated based on [u =
−∂φ/∂y, v = ∂φ/∂x]. We choseA = 1.5/π, ε = 0.3, and ω =
2π and applied a length scale of L = 10 km to create a flow
field filling the domain [0, 20] × [−5, 5] km with a maximum
current speed of 1.5 m/s. The resulting flow field superposed
with random turbulent components at t = 0 is shown in Fig. 5.

Fig. 6 compares the navigation results under different estima-
tion schemes against the actual vehicle path from one simulation
run in the turbulent double-gyre flow field. The dead-reckoning
scheme simply integrates noisy INS samples generated in
Section III-A. Such an estimate severely deviates from the true
path as expected. The current-aided EKF scheme is based on

Fig. 6. Comparison between real and estimated vehicle paths in a turbulent
double-gyre flow field.

an accurately known initial vehicle state. The EKF was only
applied to xKF and the vehicle’s position propagates determin-
istically using the estimated vehicle velocity. Such an estimator
can be considered as a degenerated MPF estimator with a single
particle. Although knowledge of the general ocean circulation
helps reduce the dead-reckoning error, it can be observed that
this fully parametric estimator will still suffer from large diverg-
ing drifting error. On the other hand, the proposed current-aided
MPF results in more consistent estimation, where a total number
of 100 particles were initialized with EKF states

v
[i]
0 ∼ N (vtrue

0 , 10−6I2×1) m/s, ψ
[i]
0 ∼ N (ψtrue

0 , 10−8)

b
[i]
a,0 = 02×1 , b

[i]
r,0 = 0, b

[i]
z,0 = 02×1 , u

[i]
c,0 = 02×1

and at random locations of p[i]
0 ∼ N (ptrue

0 , 106I2×1) m.
The performance of the current-aided MPF can be further

evaluated in detail from Figs. 7 and 8. The root-mean-square
error (RMSE) of vehicle position and velocity estimates was
evaluated based on 50 Monte Carlo simulations with random
KS turbulent components. The 2–σ estimation bound was com-
pared against the parametric CRLB described in Section II-D. It
can be observed that the proposed current-aided MPF converges
toward the CRLB asymptotically for both position and velocity
estimates, indicating that near optimal estimation performance
is achieved. It should also be mentioned that the current-aided
MPF seems to become overconfident as the RMSE occasion-
ally exceeds the 2–σ bound. This is mostly due to the particle
approximation error of the confidence region. This issue can be
remedied by increasing the PF’s sample size when computa-
tional resources permit.
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Fig. 7. Position RMSE and parametric CRLB for a vehicle navigating in a
turbulent double-gyre flow field. Results were averaged based on 50 Monte
Carlo simulations with random particle initialization and random KS turbulent
flow components.

Fig. 8. Vehicle velocity RMSE and parametric CRLB for a vehicle navigating
in turbulent double-gyre flow field.

D. Meandering Jet Flow Field

To further evaluate the performance of the current-aided nav-
igation method, the MPF estimator was tested in a flow field
based on a meandering jet model. We consider it to be more
of a challenging flow field for the proposed current-aided INS.
In contrast to the double-gyre flow field, strong currents are
concentrated at a small fraction of the domain in a meander-
ing jet model. A large portion of the flow field has zero flow
velocity, resulting in a much lower signal-to-noise ratio (SNR)
when unmodeled turbulent components are considered. In ad-
dition, it contains more repetitive flow features compared to the
previous case, which can easily lead to multiple high-likelihood
hypotheses.

A striking pattern of vertical- and cross-stream flow motions
was first observed in the Gulf Stream by Bower and Rossby,
who claimed that these motions were closely related to the me-
andering jet [60], [61]. Since then, a large body of literature has
emerged inspired by their work [62]. Caruso et al. introduced a
meandering current mobility model with a series of investiga-
tions on drifters’ Lagrangian mobility under the impact of the
meandering jet [30]. The recent prevalence of the meandering

Fig. 9. Meandering jet flow field with KS turbulence. Arrows indicate the
direction of the flow and their length is proportional to the flow speed.

Fig. 10. Comparison between real and estimated vehicle paths in a turbulent
meandering jet flow field.

jet in underwater sensor network and oceanography studies is
mainly resulted from the fact that it includes both major ocean
circulation patterns, i.e., currents and large-scale vortices.

The nondimensional stream function of the meandering jet
model [60] can be expressed as

φ(x, y, t) = 1 − tanh

[
y −B(t) sin(k(x− c t))

√
1 + k2B2(t) cos2(k(x− c t))

]

(30)
whereB(t) = A+ ε cos(ωt), c denotes the downstream current
phase speed, k determines the number of meanders in a unit
length,A is the average meander length scale, ε is the magnitude
of the meanders, and ω is the meander frequency. We chose the
nondimensional parameters as follows:

A = 1.2, c = 0.12, k = 2π/7.5, ω = 0.4, ε = 0.3.

With the length scale being L = 1 km and the time scale being
T = 0.03 day, the meanders are 7.5 km in size and the maxi-
mum flow speed in the meandering jet is approximately 1.5 m/s.
The resulting velocity field with the aforementioned parameters
superposed with KS turbulence is shown in Fig. 9.

The path estimates under difference schemes in one simu-
lation with the turbulent meandering jet are shown in Fig. 10.
Although the current-aided MPF is still able to provide salient
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Fig. 11. Position RMSE and parametric CRLB for a vehicle navigating in a
turbulent meandering jet flow field. Estimation results were averaged based on
50 Monte Carlo simulations with random particle initial locations and random
KS turbulent flow components.

Fig. 12. Vehicle velocity RMSE and parametric CRLB for a vehicle navigating
in a turbulent meandering jet flow field.

improvement in navigation performance compared to both dead-
reckoning and current-aided EKF, the overall estimation perfor-
mance degenerates compared to the case in the double-gyre flow
field. This is more obvious in Figs. 11 and 12 where the RMSE
of position and velocity estimates was evaluated based on 50
Monte Carlo runs. Generally, larger 2–σ bounds were achieved.
The fact that the CRLB for this case seems to be smaller than
the previous case with the double-gyre flow field is considered
to be due to the low SNR in the turbulent meandering jet since
the CRLB analysis did not include the turbulent effect.

Another key observation is the emergence of estimation di-
vergence in both position and velocity estimates starting after
approximately 5 h. This is partially due to the low SNR and high
repetition in similar flow patterns in the turbulent meandering
jet flow field. These effects not only result in large belief bounds
at the early stage of the estimation, but they also lead to par-
ticle deprivation around the true vehicle location. Fortunately,
real-world ocean currents often contain irregularities in the mean
flow structure that may relieve these undesirable phenomena ob-
served in the simulation case with turbulent meandering jet flow
field. Other potential remedies include appropriately increasing

Fig. 13. Trajectory of the surface research vessel, NOAA Ship Ronald
H. Brown, during survey project GOMECC-2. The blue box indicates the seg-
ment used in this analysis.

the number of particles, dithering the particles intermittently,
and using more sophisticated resampling strategies. This topic
will be further investigated in more detail in a future study.

IV. EVALUATION WITH FIELD TEST DATA

To further evaluate the current-aided navigation scheme
under more realistic conditions, we constructed a simulated
experiment based on field test data from survey project Gulf
of Mexico and East Coast Carbon Cruise No. 2 (GOMECC-2)
conducted by NOAA/OAR/AOML/PhOD in Miami, FL, USA,
from July 21 to August 13 in 2012. During this project, a
surface research vessel, NOAA Ship Ronald H. Brown, cruised
along the coast of the Gulf of Mexico and the Atlantic coast
in support of the coastal monitoring and research objectives of
NOAA. The survey vessel was equipped with a Teledyne/RD
Instruments Ocean Surveyor 75 kHz ADCP and the average
interval between sequential measurements was approximately
5 min. We applied the current-aided navigation scheme to
this survey vessel to emulate an AUV performing mid-depth
navigation. The actual track of the vessel based on the recorded
way points is shown in Fig. 13, where the blue box indicates the
segment (Segment-3) selected for the following analysis. Data
used for constructing the following experiment were obtained
from the Joint Archive for Shipboard ADCP hosted by NOAA
and the University of Hawaii.

We accompanied the ADCP data from the GOMECC-
2 project with the ocean current estimates produced by
the HYCOM + NCODA Gulf of Mexico 1/25◦ Analysis
(GOMl0.04/expt_31.0) for the same period of time. The pub-
licly available Gulf of Mexico model has the spatial resolution of
approximately 3.5 km at midlatitudes and the temporal resolu-
tion of 1 h. Both the ADCP measurements and OGCM analysis
at the depth of 10 m were selected for this experiment. Fig. 14
shows a snapshot of the OGCM estimate of the current velocity
at z = 10 m in the selected region and the chosen segment of
the survey vessel track. The ship followed a zigzag trajectory
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Fig. 14. Snapshot of the OGCM estimate of current velocity at depth z = 10
m of the selected region and a segment of the survey vessel track traversing the
Gulf Stream. Arrows indicate the flow direction. OGCM data were obtained from
the HYCOM+NCODA Gulf of Mexico 1/25◦ Analysis (GOMl0.04/expt_31.0).

Fig. 15. Horizontal components of the current velocity along the trajectory of
the survey vessel. Shaded areas indicate the estimation discrepancy due to flow
phenomena unresolved by the OGCM.

while it traversed the Gulf Stream. Trilinear interpolation was
applied to obtain the current velocity estimated by the OGCM at
any given location and instant. Fig. 15 compares the horizontal
components of the current velocity between large-scale OGCM
analysis and in situ ADCP measurements along the track of the
survey vessel. Shaded areas indicate the estimation discrepancy
due to flow phenomena unresolved by the OGCM, which will
be tracked by û{n}

c,k in the system state vector.
Considering the fact that the selected vessel track has a time

span of approximately 25 h, a more accurate INS, VectorNav
VN-110, was selected for reference during sample generation.
Potential error effects due to sensor misalignment were taken
into consideration by augmenting the bias instability charac-
teristics of both the accelerometer and the gyroscope such that
σaug
b = σb + σ+

b . It is worth mentioning that the ADCP mea-
surement data acquired from the GOMECC-2 project had al-
ready been calibrated to represent the absolute current velocities.
Therefore, these measurements were first converted to relative
current velocities represented in the vehicle’s body frame us-
ing true vehicle velocity and heading, and were then corrupted
with artificial noise components following the aforementioned
method to generate the ADCP samples for the simulated exper-
iment. Sensor characteristics used in generating the sample data
are tabulated in Table II, where only the items with different
values from the previous test cases are shown.

TABLE II
PARAMETERS FOR SENSOR SAMPLE GENERATION USED IN THE

SIMULATION BASED ON FIELD TEST DATA

INS VectorNav VN-110/210

Accel. bandwidth 240 Hz
Accel. white noise SD (σa ) 0.04 mg/

√
Hz

Accel. in-run bias stability (σba ) 10 μg
Gyro. bandwidth 240 Hz
Gyro. white noise SD (σr ) 3.24 ◦/hr/

√
Hz

Gyro. in-run bias stability (σbr ) 1 ◦/hr
Accel. misalignment (σ+

ba
) 0.03999 g

Gyro. misalignment (σ+
br

) 59 ◦/hr

ADCP RDI 75 kHz

Measurement uncertainty (σz) 0.005 m/s
Update rate used ∼5 min

Fig. 16. Navigation error estimated by both dead reckoning and the current-
aided scheme. SD of the particle swarm from its weighted average is represented
by the shaded area to show changes in particle distribution. The current-aided
navigation scheme resulted in positioning error within 8% UDT, nearly 76%
reduction compared to the dead-reckoning performance with only INS.

Performance of the current-aided navigation scheme for rel-
atively short-term navigation (∼6 h), similar to the previous
testing cases, was first evaluated. A total number of 50 particles
were initialized with EKF states

v
[i]
0 ∼ N (vtrue

0 , 10−6I2×1) m/s, ψ
[i]
0 ∼ N (ψtrue

0 , 10−8)

b
[i]
a,0 = 02×1 , b

[i]
r,0 = 0, b

[i]
z,0 = 02×1

u
[i]
c,0 ∼ N (utrue

c,0 , 10−4I2×1) m/s

and at random locations of p[i]
0 ∼ N (ptrue

0 , 106I2×1) m in UTM
coordinates of zone 17R. Fig. 16 shows the navigation uncer-
tainty for 6 h estimated by both dead reckoning and the current-
aided scheme. SD of the particle swarm from its weighted
average is represented by the shaded area to show changes in
particle distribution. At an early stage of the mission, the state
estimator was heavily weighted toward the dead-reckoning re-
sult due to strong confidence in the initial states of the vehicle
and higher accuracy in the INS than the background flow ref-
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Fig. 17. Vehicle trajectories based on actual way points, dead-reckoning es-
timates using only noisy INS samples, dead-reckoning estimates with direct
heading measurements, and estimates from the current-aided navigation scheme
when provided direct heading measurements.

erence. The current-aided effect started to become evident after
about 2 h. The proposed approach resulted in vehicle position
with under approximately 8% uncertainty per distance traveled
(UDT), nearly 76% reduction compared to the dead-reckoning
performance with only the INS. This performance is consistent
with the result obtained from the previous simulations in the
meandering jet flow field (< 7.3% UDT). The performance de-
generation compared to the artificial test case in the double-gyre
flow field (< 3% UDT) was likely due to the lack of variation in
background current velocities along the chosen segment of the
vessel’s trajectory.

We then extended the mission time to approximately 24 h by
considering the entire segment of the vessel’s track shown in
Fig. 14. For navigation missions with such a long time span, it
is valid to assume that the vehicle is also equipped with an accu-
rate heading reference sensor such that ψk can be independently
measured. To alleviate the “particle deprivation” issue that po-
tentially occurs during long-term state estimation, a “mutation”
step was introduced to dither the locations and the EKF states
of the particles when the SD of particle locations drops below
a certain threshold. Comparison between the estimated vehicle
trajectories is shown in Fig. 17. Fig. 18 shows the positioning
errors and the changes in particle distribution. When provided
independent heading measurements, the current-aided naviga-
tion scheme resulted in vehicle position estimate with under
approximately 25% UDT, which is about 83% smaller than the
dead-reckoning performance with heading measurements. Ben-
efits of particle mutation can be noted as intermittent jumps
in the particle distribution accompanied by slight decreases in
positioning error.

So far, we have been focusing on maintaining satisfactory
navigation accuracy throughout the entire mission. This was
targeted at long-term sampling missions where the positioning
accuracy plays a key role in georeferencing the collected
environmental data along the vehicle’s trajectory. There are
situations where terminal positioning accuracy is a higher

Fig. 18. Positioning errors and changes in particle distribution. The vehi-
cle’s position was estimated based on the weighted average of all particles.
With independent heading measurements, the current-aided navigation scheme
resulted in vehicle position estimates with under approximately 25% UDT, ap-
proximately 83% smaller than the performance of dead reckoning with heading
measurements. Intermittent increases in the particle distribution were the result
of particle mutation, which leads to slight decreases in positioning error under
the current-aided navigation scheme.

Fig. 19. Positioning errors and changes in the particle distribution when using
a larger SD for the particle distribution. The vehicle’s position was estimated
based on the particle with the largest weight. With independent heading mea-
surements, the current-aided navigation scheme resulted in positioning estimates
within approximately 16% UDT, which is about 89% smaller than the perfor-
mance of dead reckoning with heading measurements.

priority. To accommodate these demands, we investigated the
performance of our proposed approach using particle distribu-
tions with a larger SD. This was motivated by the observation
of Fig. 18 that the positioning error exceeds the 3–σ bound
of the particle distribution after about 10 h. In this test case,
the vehicle’s position was estimated based on the particle with
the largest weight. The particles were initialized at locations
of p[i]

0 ∼ N (ptrue
0 , 108I2×1) m. When the SD of the particle

swarm drops below 10 km, we allowed the particles to “mutate”
to p[i], m

k ∼ N (p[i]
k , 108I2×1) m. As can be observed in Fig. 19,

the terminal positioning performance achieved by the current-
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aided scheme is around 16% UDT, which is approximately
89% smaller than the result of dead reckoning with independent
heading measurements. This was achieved at the cost of higher
positioning uncertainty at an early stage of the mission.

It is worth noting that although the ocean flow estimation
error can be huge (see Fig. 15), the current-aided navigation
scheme has shown to still be able to provide performance
improvement over long-term missions. There are three major
factors that enable such robustness of the ocean-aided navi-
gation scheme over the erroneous ocean model. First, when
performing current aiding, the ocean flow velocity estimate is
utilized in combination with the turbulence component estimate
[û{n},−

c,k+1 in (9)], which is included in the system state vector to
track the flow estimation error by the ocean model. Especially
when u{n}

c is initialized with the true value, the effect of ocean
model estimation inaccuracy toward the overall navigation
performance is reduced. However, the long-term effect of ocean
model estimation inaccuracy can become significant, which
can be observed from the comparison between the navigation
performance for the first 6 h (8% UDT) and the entire 24 h
(25% UDT). Second, information fusion between INS-based
inference and current-aiding feedback is handled through the
EKFs, which weigh the state estimator’s “confidence” between
dead reckoning and the ocean model by proper selection of val-
ues forQ in (14) andR in (16). This prevents the state estimator
from becoming overconfident in ocean model estimate before
the dead-reckoning uncertainty increases to the level of ocean
model inaccuracy. Finally, by tracking the ocean flow estimation
error, the current-aided navigation scheme embeds an effect
similar to water tracking since u{n}

c is modeled as a slow-
varying process coupled with the vehicle’s motion. This further
improves the estimator’s robustness over high-frequency INS
noise components. It is among our current interests to system-
atically identify the relation between state estimation error and
ocean model uncertainty with a more generalized formulation,
the details of which will be discussed in a future publication.

We should point out that although designed based on field
test results, the experiment conditions considered in this perfor-
mance analysis bear some differences from an actual mid-depth
navigation mission. First, since project GOMECC-2 was con-
ducted by a surface research vessel, the ADCP measurements
and the OGCM estimates used in this test case were of the ocean
current velocities in the uppermost layer or the epipelagic zone.
OGCMs may have superior accuracy in estimating surface cur-
rents than mid-depth currents due to relatively more frequent
(both spatially and temporally) data assimilation, thanks to re-
mote sensing and several forms of in situ measurements. The
current-aided navigation approach respects the accuracy issue
of ocean models and tracks the error in current velocity estima-
tion online along with the other system states. As this testing
case suggests, even with large errors in current velocity esti-
mation, the benefit of current aiding to an INS is still rather
significant for long-term navigation. Given the recent progress
in ocean modeling and technologies for in situ oceanographic
data collection [63]–[65], it is reasonable to believe that the ac-
curacy of ocean current estimate will further improve over time.

As a result, larger improvements in navigation performance can
be expected using the proposed approach as OGCMs further
develop in the near future.

Second, OGCM data used in this analysis were the nowcast
results after data assimilation for the period of GOMECC-2
project. However, forecast results may have inferior accuracy
that decreases as the forecast lead time increases. It should
be noted that even after data assimilation, as indicated by the
nowcast results used in this analysis, discrepancy between the
estimated current velocity and in situ measurements, as large as
1.5 m/s in magnitude in this case, may still be nontrivial due to
model-unresolved flow phenomena. Tracking this discrepancy
as a system state allows the current-aided navigation scheme to
benefit from useful information in large-scale circulation with
certain robustness. Recent studies on the validity of the Global
Ocean Forecast System have reported current forecast RMSE
under 0.35 m/s for the Gulf Stream [66], which is well below the
uncertainty level under which our approach has been evaluated.
More rigorous, theoretical analysis of the accuracy of ocean
model predictions is an active research topic in oceanography.
Interested readers are referred to a recent study by Wei et al. [67]
and the references therein for more details.

Meanwhile, the current-aided navigation scheme can be fur-
ther extended to potentially improve its performance even with
the state-of-the-art OGCM products. One of our on-going efforts
is the extension to a multivehicle scenario where information ex-
change among a team of AUVs allows each vehicle to reference
the current velocity maps on a larger scale [68]. Local flow ve-
locity estimates by a navigating vehicle can also be utilized for
on-board small-scale data assimilation to maintain or even im-
prove the accuracy of the preloaded current velocity maps. We
will explore these extensions in detail in a future publication.

V. CONCLUDING REMARKS

In this paper, we proposed the concept of an aided naviga-
tion system utilizing the dynamics of a continuous flow field.
An ocean current-aided INS was presented for an AUV in a
long-term mid-depth navigation where only dead reckoning is
available. It aims at improving the inertial navigation perfor-
mance through estimating ambient flow velocities and refer-
encing preloaded background flow velocity maps predicted by
OGCMs. A recursive Bayesian structure was formulated for
the current-aided state estimator. The vehicle’s states, includ-
ing sensor bias and unmodeled, small-scale turbulence, were
tracked based on the knowledge of the vehicle’s motion prop-
agation model, the relative flow velocity measurement model,
and the preloaded velocity maps of large-scale ocean currents.
We implemented this Bayesian structure as a semiparametric
state estimator based on a marginalized sequential Monte Carlo
framework, i.e., an MPF, to circumvent linearizing a nonanalyt-
ical measurement model based on digital flow maps.

The performance of the current-aided MPF was first care-
fully evaluated with noisy sensor samples generated based on
the characteristics of an automotive-grade INS, and two turbu-
lent flow fields that were considered to resemble the behavior
of ocean currents: a double-gyre flow field and a meandering
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jet flow field. Unmodeled, small-scale flow perturbations with
Kolmogorov energy spectrum were added to the mean flow
component. The proposed navigation scheme has been demon-
strated to provide significant performance improvement over the
dead-reckoning method in both cases. With a large mean-flow
gradient along the path of the vehicle, the current-aided MPF
has been shown to achieve near-optimal filtering performance
asymptotically when compared to the parametric CRLB. We
found that a larger spatial variation in flow velocities tends to
result in a smaller variance in localization error. This analysis
can also be used for predicting the theoretical navigation perfor-
mance given a series of general circulation maps, a prescribed
vehicle path, and the accuracy of sensor measurements. Through
a more realistic simulated experiment based on field test data and
actual ocean modeling results, the feasibility and performance
of our proposed method were further demonstrated.

To the best of our knowledge, this is the first effort to in-
vestigate and demonstrate the feasibility and limitations of an
underwater navigation system using ocean current forecast as
localization reference. This approach can also be implemented
in conjunction with existing current-aided navigation schemes
aiming at more accurate vehicle velocity tracking (e.g., [33]
or [37]) to further improve the navigation performance of an
AUV. In long-distance mid-depth AUV missions where neither
frequent surfacing nor constant bottom tracking is available, the
proposed current-aided navigation concept can be applied to im-
prove the inertial navigation performance. With the progress of
high-definition ocean modeling and forecasting, the proposed
approach may be adopted as one of the primary navigation
schemes for underwater vehicles.
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