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Abstract— This paper considers the problem of compensating
for vehicular accelerations in an inertial sensor, in order to
obtain a sense of the gravitational field. The gravity sense can
then be used to estimate the relative attitude of the sensor
with respect to the field. However, the accelerometer in inertial
measurement units (IMUs) measures the sum of the inertial
acceleration and the gravitational field, and the measurement
cannot be directly decomposed into the two components. Sep-
arating the gravitational component out is therefore crucial
to the use of IMUs for attitude estimation or determination.
The separation has typically been accomplished by making a
steady turn assumption in unmanned aerial vehicles (UAVs).
This paper introduces a new assumption that the aerodynamic
forces are nearly constant in the body frame. This assumption
leads to significant improvement in estimator performance
during perturbations from a nominal motion, when restricted to
UAVs that possess inherently stable aerodynamics. The stability
properties of the compensator are analyzed to prove that
the compensator retains the property of asymptotic stability
under a steady turn assumption, and that it performs better
despite not being asymptotically stable when the assumption
is withdrawn. The resulting improvement in performance is
demonstrated both in simulations as well as experiments.

I. INTRODUCTION

It may be shown by a simple dimensional analysis [1] that
the time scale of vehicle dynamics varies as the inverse of the
square root of the length scale (T ∝ 1/

√
L) for fixed-wing

airplanes in incompressible flow under a constant external
gravitational field. Control of small unmanned aerial vehicles
(UAVs) therefore demands faster response times from the
state estimator. This provides the motivation for the design
of a low-cost, low-weight, low-latency attitude estimator.

Attitude estimation in many unmanned vehicle applica-
tions use micro electro-mechanical (MEMS) inertial sensors
such as gyroscopes and accelerometers. This is especially
true with small UAVs, which are severely constrained with
respect to payload mass and size and cannot afford the
heavier purely mechanical sensors or vision based sensors.
However, the smaller and lighter inertial measurement units
(IMUs) are associated with greater non-idealities such as
noise, bias, and crosstalk.
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With regards to inertial accelerometers, their usage as a
gravity sense is hampered by the fact that accelerometer
measurements contain not only information of the gravity
field, but also vehicular accelerations. It is well known that an
inertial sensor cannot distinguish between accelerations and
motion that differs from free-fall in gravity (the principle of
mass equivalence). The usage of the sensor to detect gravity
in attitude estimation is therefore always accompanied by the
associated problem of compensating for vehicular accelera-
tions.

With the development and proliferation of electronic IMUs
in recent years, acceleration compensation has been the focus
of active research. In [2], [3], the authors compensate for
centripetal acceleration, and also include a dynamic model
for the angle of attack in order to obtain body-referred
components of the airspeed to compute the centripetal ac-
celeration. The dynamic model for the angle of attack is
assumed to be obtained from wind-tunnel tests, or flight tests.
Moreover, perturbations from the nominal motion on account
of highly dynamic motion, or external disturbances, are not
considered. In [4], and [5] the accelerometer measurement
is progressively ignored when the measured magnitude of
acceleration is different from the expected constant accelera-
tion due to gravity of 9.81m/s2. In [6], the authors propose a
Kalman filter for estimating the acceleration and a switching
method depending upon the magnitude of the accelerometer
measurement. In [7], GPS sensors are used to compute
translational acceleration which can then be subtracted from
the accelerometer measurement in order to obtain gravity
sense. However, this method is not attractive for small
UAVs because of the weight and power overheads, besides
the avoidable dependency upon an external man-made GPS
satellite infrastructure. In [8], vision based sensors are used to
supplement IMU based attitude estimation. The solution has
applications currently limited to large vehicles on account of
size and weight considerations, but with advances in vision
and imaging technologies, vision aided attitude estimation
may soon become practically feasible even in small UAVs.

In this paper, we compensate for the centripetal accelera-
tion as done in [2], and additionally impose the assumption
that the aerodynamic forces are smooth functions of the
aerodynamic state, which is specified relative to the body-
fixed frame. Since the UAV’s aerodynamic state varies con-
tinuously in time, so do the forces, and thus the body-frame
acceleration is nearly constant across small time steps. More-
over if the UAV’s natural dynamics are stable (resp. title!),



then the changes in the aerodynamic state are small and
the deviations in the body-frame acceleration are primarly
in order to revert to the stable nominal motion. This new
assumption is useful when a UAV experiences significant
stabilizing accelerations, which could be a consequence of
tracking a desired motion trajectory that is highly dynamic,
or a consequence of external disturbances such as wind gusts.

An obvious limitation of the proposed method is that
it is not applicable when the aerodynamic forces are dis-
continuous with respect to state, and hence with respect to
time. This may occur, for example, if the change in state
is associated with a change in the aerodynamical regime,
leading to separation, stall, or other such pathological con-
ditions. For typical flight conditions, the occurence of such
phenomena is rare. In particular, it may be noted that this
assumption on the flight regime is strictly weaker than the
assumption that the airplane is executing a steady turn, which
imposes not just inequality constraints on the aerodynamic
state variables, but rather equality constraints on them. The
proposed compensator would therefore be a forward step
in designing effective acceleration compensation for inertial
attitude estimation.

A brief outline of this paper is as follows: we briefly
establish the notation and terminology, and present a concise
mathematical statement of the problem of acceleration com-
pensation in the next section. Section III then describes the
proposed solution to the problem, whose stability properties
are also analyzed in the next section IV. Finally, we verify
the compensator’s performance in simulations in section V,
and also by way of experiments in section VI.

II. NOTATION, DEFINITIONS, AND PROBLEM STATEMENT

We consider the output of a typical IMU, such as the
MPU9250 [9], which contains three-axis accelerometer and
three-axis gyroscope readings. The IMU is assumed to be
strapped down rigidly to the vehicle whose attitude is to
be estimated. The body’s attitude, and hence the IMU’s
attitude, with respect to a ground-fixed North-East-Down
(NED) frame may be represented using an orthogonal matrix
C. The NED frame shall be considered to be inertial, which is
a reasonable approximation for the dynamics of small UAVs.
Then the body-frame components g of the gravitational
acceleration are given in terms of the NED-frame (assumed
inertial) components gN by the transformation equation:

g = CT gN . (1)

Let f be the vector sum of all the forces acting at the
boundary of the body, which, for a UAV, would be the total
aerodynamic force, divided by the mass. This specific force
would be balanced by the vehicle’s acceleration a, and the
gravity g according to the equation

a = f + g.

In terms of the body-frame components a of a and f of f ,
and using (1), we have

a = f + g = f + CT gN . (2)

Let us further decompose a as a = ω×V+ r, where ω, V,
and r are the angular velocity, translational velocity, and the
non-centripetal acceleration of the body respectively. This
decomposition is motivated by the assumption that the UAV
reverts to a stable steady turn in the absence of control inputs
and external disturbances. Let the vectors r, ω, and V have
components r, ω, and V along the body-fixed axes. The force
balance equation (2) for the vehicle’s translational dynamics
may then be written as:

r + ω × V = f + CT gN . (3)

In the above equation, gN is a known constant, and it is
possible to inertially sense ω, and f . We shall also assume
that V is measured using an airspeed sensor. Then, the
remaining unknowns in the above equation are the non-
centripetal acceleration r and the attitude matrix C. When
the UAV is executing a steady turn or steady level flight
(which is a degenerate steady turn), r is also zero, and (3)
reduces to

ω × V = f + CT gN (when r = 0). (4)

Since C is orthogonal, (4) has a scalar degree of redundancy,
and we can deduce two degrees of freedom of the attitude
using (4). Together with the attitude matrix dynamics

Ċ = CΩ, (5)

where Ω = [ω×] is the angular velocity cross product matrix,
we have the system set up for complementarily filtering and
estimating C as Ĉ. This is the most frequent method adopted
for acceleration compensation in inertial attitude estimation
(the “uncompensated” equation is f/‖f‖+ CT gN/‖gN‖ =
0).

We would like to now rectify the deficiency in approx-
imating (3) using (4). For an aerodynamically stable vehi-
cle, deviations from equation (4) would occur on account
of control input or external disturbances. While the non-
centripetal acceleration r in (3) may be small in magnitude in
comparison with gN during trimmed and undisturbed flight,
it can easily approach comparative orders of magnitude in
small UAVs, during entrance into or exit from a steady turn,
or on account of external disturbances. These deviations are
especially significant for aerobatic flight and at low airspeeds.
We shall therefore try to include r in equation (3) and hence
obtain an accurate estimate for C across a wider range of
flight conditions. Our problem may therefore be stated with
reference to (3) as estimating the body-frame components
of gravity g = CT gN in the presence of an unknown
acceleration a, in terms of body-frame measurements of
angular velocity ω, aerodynamic force per unit mass f , and
velocity V .

III. ACCELERATION COMPENSATION

The total acceleration a, and the gravity in the body-
frame CT gN , in (2), cannot be directly measured. There
are two approaches to designing estimators â and Ĉ for
the acceleration a and rotation matrix C: one in the inertial
reference frame, another in the body-fixed frame. Both these



approaches are equivalent and lead to the same stability
results and performance, though the latter approach is more
elegant and simple to follow. While the first approach is
theoretically equivalent to the second approach (to be dis-
cussed below), it is associated with the practical drawback
that the angular velocity needs to be estimated in the inertial
reference frame as Ω̂N = ĈΩĈT . This transformation is
inefficient since we would like to ultimately estimate the
body-frame components of the acceleration a. We therefore
formulate the solution in the body-frame so as to avoid the
inefficiency. The second approach incorporates the effects of
body rotation directly in the estimation of a, and leads to a
more elegant form of estimator dynamics.

The dynamics of â are inspired by those of the unknown
quantity a given by the following expression:

a = CT gN + f

⇒ ȧ = −ΩCT gN + ḟ

= Ω(f − a) + ḟ , (6)

where the expression on the right hand side may be approxi-
mated as Ω(f−a) if ḟ ≈ 0 during steady turn. Note that the
time derivative ḟ is well defined in the normal flight regime
of smooth variations in the aerodynamic state. We therefore
estimate a as â according to:

˙̂a = Ω(f − â) +W (ΩV − â) , (7)

where W is the rate at which the UAV dynamics revert
naturally to a steady turn. The first term on the right hand
side of (7) signifies the near constancy of the aerodynamic
force components f in the body-frame, while the second term
signifies the gradual reversion of the dynamics to the stable
nominal motion (stable nominal motion being a steady turn).
Ideally, the rate matrix W would satisfy the below equation:

ḟ = −Wr, (8)

which indicates that a non-zero value for the unsteady
acceleration r generates an opposing aerodynamic force that
tends to stabilize the translational motion of the vehicle.
This physical principle manifests as negative values for
stability derivatives such as CY,β = ∂f2/∂β, where f2 and
β are the sideforce and sideslip angle respectively. Similar
stabilizing principles hold for accelerations along the x and
z directions in the body-frame: the dominant effect of a
downward velocity is the generation of higher lift, and an
increasing forward velocity produces increasing drag.

In practical applications, it is not possible to know the
exact value of W , other than that it is positive definite for
stable translational dynamics. Furthermore, ḟ also depends
upon angular accelerations. For example, the time-derivative
of the sideforce ḟ2 depends upon CY,pṗ, where CY,p is
its stability derivative with respect to the roll rate p. The
aerodynamic coefficients, CY,β , CY,p etc, are themselves
functions of the aerodynamic state and uncertain. As we shall
see, such practical considerations limit the performance of
the compensator to bounded stability rather than asymptotic

stability. A more realistic description of ḟ would therefore
be:

ḟ = −Wr − v, (9)

where v is the residual term in ḟ after accounting for r.
Once we have an estimate â for the total acceleration a,

the attitude may subsequently be estimated from â using
a complementary filter [2] upon the redundant system of
equations:

˙̂
C = ĈΩ, (10)

ĈT gN = â− f. (11)

Equations (7), (10), and (11) present a coupled set of
equations to estimate the total vehicle acceleration a as â,
and the attitude matrix C as Ĉ (or equivalently, the attitude
quaternion ˆ̌q).

IV. STABILITY PROPERTIES OF THE COMPENSATOR

Let us now analyze the stability properties of the ac-
celeration compensator prescribed by (7), (10), and (11)
in the previous section. In order to do this, we define an
acceleration estimation error signal e = â − a. Using (3)
(a = ΩV + r = CT gN + f ), (6), (7), and (9), we obtain:

ė = ˙̂a− ȧ = Ω(f − â) +W (ΩV − â) + Ω(a− f)− ḟ
= Ω(a− â) +W (a− r − â)− ḟ

⇒
(
d

dt
+W + Ω

)
e = −Wr − ḟ . (12)

By referring to (8), we see that in the ideal case, the error
dynamics are asymptotically stable. This can be proven by
considering the following Lyapunov function:

VL =
1

2
eT e, (13)

⇒ V̇L = eT ė = eT
(
−(W + Ω)e−Wr − ḟ

)
= −eTWe (W exactly known), (14)

where we have used the facts that Ω is skew-symmetric, and
that ḟ + Wr = 0 for an ideal choice of W . In case of a
non-ideal (but still positive definite) description Ŵ of W ,
and a non-zero residual v in (9), we would have:

˙̂a = Ω(f − â) + Ŵ (ΩV − â),

⇒
(
d

dt
+ Ŵ + Ω

)
e = −Ŵ r − ḟ = −W̃ r + v,

V̇L = −eT Ŵe− eT W̃ r + eT v, (15)

where W̃ = Ŵ −W is the residual error in estimating W .
Under steady turn conditions, we have r = 0 and v = 0, thus
immediately yielding asymptotic stability, as in equations
(13) and (14), with Ŵ replacing W .

Since Ŵ in (15) is positive definite by choice, its sym-
metric part, (Ŵ + ŴT )/2, can be spectrally decomposed
as QΛ2QT , where Q is orthogonal, and Λ is an invertible
diagonal matrix. Let R denote the invertible matrix QΛ. This
allows us to complete the square and express (15) as

V̇L = −eTRRT e− eT W̃ r + eT v (16)



= −

∥∥∥∥∥RT e+
R−1(W̃ r − v)

2

∥∥∥∥∥
2

+
‖R−1(W̃ r − v)‖2

4
.

In the more general case with ḟ 6= 0, (16) shows that we
can only guarantee bounded stability that ‖e‖ ≤ (‖(W̃‖‖r‖+
‖v‖)/λmin, where we have assumed an appropriate induced
matrix norm for ‖W̃‖, and λmin is the smallest eigenvalue
of Ŵ .

It is tempting to attempt to adaptively, or otherwise,
estimate the elements in the matrix W and vector v. How-
ever, it must be borne in mind that the force balance
equation (3) introduces three scalar unknowns r in its three
scalar equations. Without an accurate description of the
translational kinetics (besides the kinematics), the system
is under-determined at each single time point. Even for a
time-sequence of measurements, the system still remains
under-determined as long as the elements of W and v
themselves are state-dependent and keep varying with time
in an unknown fashion. Thus, there are no asymptotically
stable solutions to acceleration compensation in the absence
of accurate knowledge of translational kinetics (the matrices
W and v).

The error dynamics in (12) may be compared to those
obtained by not accounting for the residual acceleration r,
but just using the steady turn assumption:

â = ΩV,

⇒ e = â− a = ΩV − a = −r. (17)

It may be seen at once by comparing (12) and (17) that (17)
is the limit of (12) when Ŵ → ∞, i.e., when the estimator
tries to quickly revert â to ΩV . At the other extreme, when
Ŵ → 0, we see that ė = −Ωe − ḟ ≈ −Ωe, and for a
skew-symmetric matrix, that implies that the magnitude of
the error remains constant. For values of Ŵ in between these
two extremes, it is possible to obtain a value that approaches
W and leads to optimum estimator performance.

V. SIMULATION RESULTS

In this section, the acceleration compensator of the pre-
vious section is evaluated in Matlab simulations for a tuned
rate matrix Ŵ . The elements of Ŵ may also be derived
analytically in terms of the stability derivatives, but we shall
not assume that the UAV’s aerodynamic model is exactly
known and only use approximate values for the model
parameters. The elements of Ŵ are therefore derived by
tuning for optimum performance. In practice, this may in-
volve experimental trial and error using system identification
tools. For our simulations, we choose a diagonal matrix
Ŵ = diag [1 1 10].

In the following simulations, we use a model for a
fixed-wing UAV [10] flying at an airspeed of 10m/s while
executing waypoint navigation. In a first set of simulations
(figures 1, 2, and 3), we demonstrate the improvement in
estimator performance when the UAV goes through unsteady
accelerations while entering or exiting a turn. In the second
set of simulations (figures 4, 5, and 6), we demonstrate

the performance improvement in the presence of external
disturbances in the form of sinusoidal wind.
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Fig. 1: Ground track of a UAV performing waypoint naviga-
tion. The UAV is flying at 10m/s, first to a waypoint at (-50,
100), and subsequently to (150, 200). The waypoint switch
occurs at time t = 45s.

0 50 100
time (s)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

N
on

-c
en

tr
ip

et
al

 a
cc

el
 e

st
im

at
io

n
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ây ! ay
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Fig. 2: Estimation of UAV total acceleration a in equa-
tion (3). Left: Estimation error by assuming a steady turn
â = ΩV . Right: Estimation error by assuming constancy of
aerodynamic force f in body-frame using equation (7), and
gradual approach to steady motion.

0 50 100
time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
tt 

es
tim

 e
rr

or

e?
e3

0 50 100
time (s)

-0.05

0

0.05

0.1

0.15

A
tt 

es
tim

 e
rr

or

e?
e3

Fig. 3: Estimation of UAV attitude using equations (10) and
(11). The attitude matrix has been expressed in terms of
the roll and pitch angles for ease of interpretation. Left:
Estimation error by assuming a steady turn â = ΩV . Right:
Estimation error by assuming constancy of aerodynamic
force f in body-frame using equation (7), and gradual
approach to steady motion.

The test scenario for the first set of simulations is designed
to demonstrate the superior acceleration compensation when
the UAV executes unsteady manoeuvres. It consists of the
UAV flying to two different waypoints as shown in the
ground-track in figure 1. The airspeed of the UAV is 10m/s,
the initial position is at x = y = 0, and there is no ambient
wind. In this scenario, the UAV is mostly in steady motion,



except when it begins the approach towards the first waypoint
at t = 0, reaches the waypoint at t ≈ 15s, switches to a
new waypoint at t = 45s, and reaches the second waypoint
at t ≈ 70s. It may be seen in figures 2, and 3 that the
proposed compensator is asymptotically stable during the
steady phases of motion, while it results in better acceleration
estimation and consequently better attitude estimation during
the unsteady phases. The estimation error of â improves
four-fold, while the attitude estimation error improves nearly
eight-fold.
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Fig. 4: Ground track of a UAV performing waypoint naviga-
tion. The UAV is flying at 10m/s to a waypoint at (-50, 100).
Once it reaches the waypoint at t ≈ 15s, it loiters around
it by executing turns. All the while, the UAV experiences
a sinusoidal wind with peak-to-peak amplitude of 2m/s. It
may be noted that the frequency, phase, and amplitude of
the disturbance are not relevant to the simulation: they are
chosen arbitrarily to demonstrate the relative superiority of
the proposed acceleration compensation.
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Fig. 5: Estimation of UAV total acceleration a in equa-
tion (3). Left: Estimation error by assuming a steady turn
â = ΩV . Right: Estimation error by assuming constancy of
aerodynamic force f in body-frame using equation (7), and
gradual approach to steady motion.

In the next set of simulations, the test scenario is a small
UAV flying to a waypoint as shown in the ground-track in
figure 4 while experiencing ambient wind that has a peak-
to-peak amplitude equal to 20% of the UAV’s airspeed. The
airspeed of the UAV is 10m/s and the ambient wind therefore
has a peak-to-peak amplitude of 2m/s. In this scenario,
the UAV is almost always in unsteady motion on account
of the unsteady disturbance. Moreover, the non-centripetal
acceleration reaches magnitudes equal to 50% of gN even
at the small external wind amplitude. As the UAV turns
around the waypoint, the constant direction of the wind in
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Fig. 6: Estimation of UAV attitude using equations (10) and
(11). The attitude matrix has been expressed in terms of
the roll and pitch angles for ease of interpretation. Left:
Estimation error by assuming a steady turn â = ΩV . Right:
Estimation error by assuming constancy of aerodynamic
force f in body-frame using equation (7), and gradual
approach to steady motion.

the inertial reference frame becomes time-varying in the
body-frame. It may be seen in figures 5, and 6 that the
proposed compensator leads to better acceleration estimation
and consequently better attitude estimation. The estimation
error of â improves five-fold, while the attitude estimation
error improves nearly four-fold.

Thus, we see that the proposed acceleration compensation
improves estimator performance both in the presence and
absence of external disturbances. Moreover, the compensator
does not need a precise knowledge of the vehicle’s aerody-
namic model, or the rate matrix W in (8). The compensator
can only provide bounded performance, but the bounds are
an order better than those obtainable using compensators
reported previously.

VI. EXPERIMENTAL VERIFICATION

We finally verify the compensator and attitude estimator
performance on a real UAV. The UAV is a 0.94m span fixed-
delta-wing airplane. While the fuselage was commercially
purchased, the hardware and avionics were assembled in-
house including the design and development of the autopilot
[11]. The autopilot has the MPU9250 installed to provide
the inertial measurements of the angular velocity Ω and
aerodynamic acceleration f . A nominal aerodynamic model
of the UAV has also been reported in [10] for trimmed flight.

Figure 7 shows a comparison of the UAV attitude as
obtained using the compensator presented in this paper
against that presented in [2]. It can be seen that the estima-
tor presented in this paper yields smoother results without
smaller discontinuities (e.g., at time t ≈ 40s). Moreover,
the assumption that the total acceleration is the same as that
due to a steady turn results in significantly larger errors in
comparison with the compensator presented in this paper.

VII. CONCLUSION

We have thus presented a new technique for acceleration
compensation that improves the transient performance of
an inertial sensor measuring the gravity. The technique
incoporates the near continuity of aerodynamic forces as it
rotates to change its attitude. This new information leads
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Fig. 7: Roll and pitch estimation using the accelerometer as
a gravity sensor on a real IMU, the MPU9250, mounted on
a UAV. In both plots, the solid magenta curve is obtained
by assuming that the only acceleration is due to a steady
turn, while the dashed blue curve includes the transport term
assuming aerodynamic forces rotate with body. Top: Roll
angle estimation. Bottom: Pitch angle estimation.

to better compensation of acceleration, and hence a more
accurate sense of gravity, which in turn leads to better attitude
estimation. The stability properties of the compensator have
been analyzed and the performance improvement has been
demonstrated in simulations as well as experiments.

A focus for future research involves deriving a reasonably
accurate estimation of the rate matrix W in (7). The elements
of this matrix are expected to be functions of the aerody-
namic coefficients of the UAV. Another ongoing experiment
is to compare the compensator presented in this paper against
a “gold standard” benchmark estimator such as a vision based
estimator.
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