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Abstract— A geometry-based analytic attitude estimation us-
ing a rate measurement and measurement of a single refer-
ence vector has been recently proposed. Because rigid body
attitude estimation is a fundamentally nonlinear problem, the
geometry-based method does not contain errors consequent to
linearization approximations. A critical source of residual error
in the geometric solution is on account of the noise and bias in
the vector and rate measurements. A methodical perturbation
analysis of the attitude estimate is performed in this paper
that reveals the effects of measurement noise and bias, and
provides means to compensate for, or filter out, such errors.
Application of the filter and compensation provides better
attitude estimation than a standard Extended Kalman filter
using an optimal Kalman gain. The geometric method is first
verified in experiments and then simulation results are provided
that validate the better performance of the geometric attitude
and bias estimator.

I. INTRODUCTION

Recent work by the authors [1] has introduced a geometry-
based analytic solution for the single vector measurement
attitude estimation problem. In contrast to existing work [2]–
[6], the geometric solution presents an instantaneous estimate
that is heedful of the nonlinearity of the attitude dynamics
in the absence of measurement errors. While the Extended
Kalman filter (EKF) solution in [2] is also a point-wise
estimator that returns atitude estimates with no latency, it is
associated with the errors consequent to the linearization of
the attitude dynamics and constraints associated with angular
velocity and vector measurements. On the other hand, filter-
based solutions (see [3]–[6]) all use negative feedback upon
an existing estimation error, and show latency in the attitude
estimation with respect to the measurements.

Given the advantages of the geometric method in the
absence of measurement errors, the issue in order is then to
analyze the effect of measurement errors on the attitude esti-
mation, and then to remedy the effect. One may distinguish
between two kinds of errors: (i) zero-mean Gaussian noise,
that is bandlimited to a frequency proportional to the sensor
sampling bandwidth, (ii) an Ornstein-Uhlenbeck process with
a non-zero mean, that has exponential autocorrelation. The
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former kind of error is associated with both the vector as well
as angular velocity measurements. The latter error is most
often associated with the angular velocity measurement, and
is commonly referred to as a gyroscopic bias error.

The band-limited Gaussian noise may be filtered at indi-
vidual time steps in order to obtain a minimum mean square
error (MMSE) attitude estimate. The filter gains are typically
functions of the state and the noise covariance matrices
and complementarily weigh the angular velocity and vector
measurements in order to provide an optimal estimate. It may
be noted that this noise is assumed to be band-limited in order
to prevent aliasing upon sampling the sensor in discrete time
measurements. Consequently, the root mean square noise is
proportional to the square root of the sampling frequency.

In contrast to the Gausian noise, the gyroscopic bias error
varies slowly with time. It may be estimated from the history
of attitude corrections over time that result from aligning
the integrated attitude estimates to the vector observations.
Since the bias is assumed to be exponentially autocorrelated
with a time constant much larger than the time-step between
measurements, this filter is cumulative with respect to the
corrections, and does not neglect past corrections. In fact,
consideration of past corrections is necessary, because the
attitude correction at a single time-step covers only the two-
dimensional subspace orthogonal to the vector observation
and this makes the three-dimensional bias unobservable.

The estimation of a constant or slowly varying gyroscopic
bias has been reported in [7]–[11]. Since these works were
based upon an observer-based attitude estimate, the gyro-
scopic bias is also estimated using an observer with a tuned
gain. In contrast, the geometric attitude estimator enables
the design of a bias estimator without gain tuning, with
the “gains” arising naturally out of the properties of the
measurement errors. Moreover, the observability condition
for the bias estimator can be expressed as a simple condition
on the vector measurements.

A brief outline of this paper is as follows. The next
section (section II) introduces various definitions, and no-
tation associated with the problem, and presents a precise
mathematical problem statement. Section III considers the
effects of the first kind of measurement noise (Gaussian
delta-autocorrelated) on the attitude estimate, and describes
how the noise may be filtered. Section IV considers effects
of the nonzero-mean, exponentially auto-correlated bias, and
describes a method to estimate and compensate for the bias.



II. NOTATION, DEFINITIONS, AND PROBLEM STATEMENT

We shall use unit quaternions p̌, q̌, . . . to denote rigid
body attitude with respect to a reference coordinate system
[12]. Quaternion multiplication signifying the composition of
active body rotations p̌, and subsequently q̌, shall be written
as q̌⊗ p̌ in the reference coordinate system, and p̌⊗ q̌ in the
body-fixed coordinate system.

Pertinent to the work in this paper is the problem of
sequentially estimating the attitude quaternion q̌ using a
sequence of vector and angular velocity measurements, b̂
and ω̂, starting from a known initial attitude (without loss
of generality, the identity quaternion 1̌).

The kinematic equation in terms of the angular velocity
ω provides an equation for the incremental change in the
attitude with respect to the estimate at a previous time-step,
in order to derive a kinematic estimate p̌:

p̌i+1 = q̌i +
T

2
q̌i ⊗ ω̌, (1)

where T is a small integration time-step, ω̌ = [0 ωT ]T is the
quaternion corresponding to the angular velocity 3-vector ω.
If there were no errors in the angular velocity measurement,
q̌i+1 would be equal to p̌i+1, and an integration of equation
(1) would yield the attitude estimate q̌ at any desired time-
step. Since there is no ambiguity, we shall drop the usage of
subscripts i, . . . to denote the time-step until the latter portion
of section III.

The angular velocity of the body is measured to have
components ω̂ = [ω̂1 ω̂2 ω̂3]T in the body coordinate
system. This is the typical scenario in most applications,
where the gyroscope is part of an Inertial Measurement Unit
(IMU) that is fixed with respect to the body. However, the
measured angular velocity ω̂ has an error with respect to the
true quantity ω. The angular velocity measurement error is
assumed to be an Ornstein-Uhlenbeck process, with mean ω,
time-constant τ , and random-walk increments ω̃:

ω̂ = ω + ω + ω̃. (2)

A reference vector h is any given direction of unit mag-
nitude in the reference coordinate system. Its components,
h = [h1 h2 h3]T in the reference coordinate system, and
b = [b1 b2 b3]T in the body-fixed coordinate system, are
related by the rotational transformation corresponding to the
body’s attitude:

q̌ ⊗ b̌ = ȟ⊗ q̌, (3)

where ȟ = [0 hT ]T and b̌ = [0 bT ]T are the quaternions
corresponding to the 3-vectors h and b. This provides a
second equation for the attitude, q̌, constraining it to lie on
a single-dimensional “feasibility cone”, Qb [1].

Again, the measurement b̂ of b is expected to have an error.
In the case of the vector measurement, the error b̃ is assumed
to be a zero-mean Gaussian process.

b̂ = b+ b̃. (4)

Since the sensor noise does not preserve the vector’s unit
norm, we shall assume that b̂ is explicitly normalized before
being passed on to the estimator, so that, for small b̃, bT b̃ = 0.

The problem we pose is then to estimate the bias ω+ ω̃ in
the angular velocity measurement ω̂, and filter the residual
Gaussian noise in ω̃ and b̃, in order to obtain an optimal
estimate q̌ for the rigid body attitude using a time-sequence
of angular velocity measurements ω̂ and reference vector
measurements b̂.

III. EFFECT OF SMALL SIGNAL MEASUREMENT NOISE

We first analyze the effect of unbiased (zero-mean), Gaus-
sian noise in the angular velocity measurement ω̂ and vector
measurement b̂ on the estimated attitude q̌. In particular,
we shall assume that there is no random-walk or constant
nonzero bias error in ω̂. Further, we shall make the rea-
sonable assumption that the Gaussian noise is small enough
relative to the norms of the quantities to consider them as
perturbations, and therefore add the effects of individual
noise sources to obtain the cumulative effect.

We shall introduce some new notation, to avoid lengthy
expressions. When the reference z-axis is aligned along the
vector h, the quaternion attitude estimate is given by [1]:

√
2(α2 + β2)(1 + b3) q̌ =


α(1 + b3)
αb2 + βb1
−αb1 + βb2
β(1 + b3)

 = αǔ+ βv̌ ,

(5)

where ǔ = [(1 + b3) b2 −b1 0]T and v̌ = [0 b1 b2 (1 +
b3)]T are an orthogonal basis for the feasibility cone Qb

corresponding to the vector measurement b̂, α = p0(1+b3)+
p1b2 − p2b1 = p̌T ǔ, β = p1b1 + p2b2 + p3(1 + b3) = p̌T v̌,
and p̌ = [p0 p1 p2 p3]T is the integrated attitude estimate
obtained using equation (1) on the best estimate of the
previous time-step.

The effect on q̌ of a perturbation δp̌ in the integrated
estimate p̌ is shown in [1] to be given by:

δq̌ = ǒǒT δp̌ , (6)

where ǒ ∈ Qb, and ǒ = (−βǔ+αv̌)/‖−βǔ+αv̌‖ = ȟ⊗ q̌.
Thus, in the absence of any other errors, a perturbation error
δp̌ in the integrated attitude estimate p̌ leads to a perturbation
in the vector-aligned attitude estimate q̌ (equation (5)) equal
to the projection of δp̌ onto the feasibility cone orthogonal
to q̌.

A similar but tedious derivation yields the following result
for noise in the vector measurement b̂:

δq̌ = −1

2
q̌ ⊗ b̌⊗ δb̌ = −1

2
ǒ⊗ δb̌ , (7)

where ǒ = ȟ⊗q̌ = [(−q3) (−q2) q1 q0]T = q̌⊗b̌, and q̌⊗b̌ is
already orthogonal to q̌. In the absence of any other errors, a
perturbation error δb̌ in the vector measurement b̌ thus leads
to a perturbation in the vector-aligned attitude estimate q̌
(equation (5)) equal to a rotation through the angle −b× δb,
which is the smallest angle rotation that takes b to b+ δb.



Equations (1, 6, 7) can be used to derive an equation for
the evolution of noise in the integrated and vector-aligned
estimates:

δp̌i+1 = δq̌i ⊗
(

1̌ +
ω̌iT

2

)
+ q̌i ⊗

δω̌iT

2
= Pi+1

[
δq̌i
δωi

]
,

⇒ δq̌i+1 = ǒi+1ǒ
T
i+1

[
δq̌i ⊗

(
1̌ +

ω̌iT

2

)
+ q̌i ⊗

δω̌iT

2

]

− 1

2
ǒi+1 ⊗ δb̌i+1 = Qi+1

 δq̌i
δωi

δbi+1

 , (8)

where δq̌i is the noise in the attitude estimate at the previous
time-step. Equation (8) can be used to derive expressions for
the covariance matrices corresponding to p̌ and q̌, say Π and
Ξ:

Πi+1 = Pi+1

[
Ξi

Wi

]
PT
i+1,

Ξi+1 = Qi+1

Ξi

Wi

Bi+1

QT
i+1, (9)

where Ξ, W , and B are the covariance matrices correspond-
ing to the attitude estimate q̌, measurement noise δω, and δb
respectively.

It may be noted at this point that the errors in p̌ and q̌
are not completely independent. The common portion of the
errors arises on account of equation (6), which shows that
the projection of δp̌ on ǒ, ǒǒT δp̌, also appears in δq̌, and
cannot be filtered out. Another way to see this is by noting
that the vector observation b̂ provided no information for
the attitude estimate within its feasibility cone Qb, and the
feasibility cone is accessed from q̌ along ǒ. This common
error ǒǒT δp̌, the orthogonal complement of δp̌ with respect to
ǒ, (1−ǒǒT )δp̌, and the error in q̌ on account of δb, −ǒ⊗δb̌/2,
are three independent errors in the two attitude estimates,
p̌ and q̌. Of these, the latter two may be complementarily
filtered in order to obtain an unbiased filtered estimate q̌f :

q̌f,i+1 = (Σ−1
i+1 +B−1

i+1)−1(Σ−1
i+1p̌i+1 +B−1

i+1q̌i+1), (10)

where, Σ = (1 − ǒǒT )Π(1 − ǒǒT ) is the covariance matrix
of (1− ǒǒT )p̌.

IV. OBSERVABILITY AND ESTIMATION OF GYROSCOPIC
BIAS

In this section, we consider the effects of gyroscopic bias
on the geometric attitude estimation. Since the gyroscopic
bias is exponentially autocorrelated with a time constant that
is much larger than the time-step between measurements,
this error manifests as a relatively low frequency source in
comparison to the Gaussian noise considered in the previous
section. The slow variation with time enables the design of an
observer that could estimate the noise as well as compensate
for it.

First, consider a bias error ω that is constant with time.
At each time-step, the estimate obtained by integrating
the angular velocity is projected onto the feasibility cone
corresponding to the vector measurement. The incremental

change from the integrated attitude quaternion estimate, p̌, to
the vector-aligned estimate, q̌, is essentially the correction to
the integrated error in the angular velocity measurement ω.
Denoting the increment by ř in the body-fixed coordinate
system (since ω̂ is available only in this system), for a
constant ω over a small integration time T , we must have
[1]:

p̌−1 ⊗ q̌ ≈ 1̌− T ω̌

2
= ř =

[
1

−ωT/2

]
ř =

[
1
δr

]
= p̌−1 ⊗ q̌ =

[
1

−ωT/2

]
+ δµb̌ , (11)

where δµ is an unknown infinitesimal rotation about b̂ in
the body system. We have assumed that we start on the
feasibility cone, and integrate the angular velocity mea-
surement over a small time, so ř is close to 1̌, and its
scalar portion is approximately 1. However, with a single
vector measurement, a correction is possible only in the
subspace orthogonal to the measured vector b̂. Therefore,
we have an unknown term proportional to b̌ in equation
(11). Projecting onto the subspace orthogonal to b̌, we obtain
(1 − b̂b̂T )ω = 2(b̂b̂T − 1)δr/T in the case of a correction
onto the feasibility cone of a single measurement b̂. Since b̂
and δr are known, this may be used to estimate the portion
of ω normal to b̂. With two or more linearly independent
measurements b̂j and corrections δrj at a constant ω, the
matrix

∑
j(1−b̂j b̂Tj ) becomes invertible, and we can actually

determine ω completely:∑
j

(1− b̂j b̂Tj )ω =
∑
j

2(b̂j b̂
T
j − 1)δrj/T . (12)

Thus, in the absence of any other measurement errors, a
fixed bias error in the angular velocity measurement can be
completely estimated using equation (12) on two linearly
independent vector measurements.

The condition for invertibility of
∑

j(1−b̂j b̂Tj ) is the same
as the full-rank condition in literature, and for sequential
measurements of a single vector, it is equivalent to the per-
sistently non-parallel and sufficient excitation conditions. The
condition can easily be checked by evaluating b̂Ti

∑i
j=1(1−

b̂j b̂
T
j ), since each of the terms in the summation is positive

semi definite, and the inner product of b̂i with the last term
returns zero. Therefore, the summation is invertible if and
only if its inner product with b̂i is non-zero.

Let us now allow variation in the bias error through the ω̃
term (equation (2)). If only measurements of a single con-
stant vector are available, the variation in ω̃ = ω̂−ω−ω can
cause the bias estimation of equation (12) to be inaccurate.
In this case of time-varying bias ω̃, we would be estimating
the weighted average of the error, ω + ω̃, during the time
over which the measurements were taken and the corrections
determined. For a uniformly distributed attitude, that would
just be the constant bias error ω in equation (12). Equation
(12) assigns equal weightage to all past measurements and
corrections. This suggests a mechanism for estimating a
slowly varying bias. Rather than weigh all past measurements



equally, their influence on the current bias estimation may
be progressively and gradually reduced (analogous to an
infinite impulse response filter). This simulates a low pass
filter on the attitude corrections whose bandwidth may be
determined by the time constant τ of the autocorrelation of
the bias error. For e.g., if τ/T = 100, then we could reduce
the influence of past measurements by 1 − 1/100 = 0.99
in each successive measurement. Increasing the attenuation
factor towards 1 reduces the bandwidth of the bias estimator
and lowers the noise in the estimation. Contrarily, reducing
the attenuation factor towards 0 increases the bandwidth of
the bias estimator, but at the cost of higher noise. Such an
estimator may be expressed in terms of the matrices Ai and
Bi, defined inductively, as shown below:

Ai+1 = (1− T/τ)Ai + (T/τ)(1− b̂ib̂Ti ),

Bi+1 = (1− T/τ)Bi + (b̂ib̂
T
i − 1)2δri/τ,

Ai+1(ω + ω̃i+1) = Bi+1, (13)

with the initial conditions A0 = 0, B0 = 0. Note that ω
is a constant across the time-steps, and is the output of the
estimator in the special limiting case when τ goes to infinity.

While equation (13) is sufficient to estimate the bias when
the persistency-of-excitation condition is met, it may fail
when the body stops rotating. The failure upon loss of
excitation occurs as b̂i approaches a limit, and the matrix Ai

gradually approaches the now constant 1 − b̂ib̂Ti over time,
thus becoming singular. Failure may be avoided under such
circumstances by updating only the components of Ai and Bi

that have additional information in the new measurements,
as done in the following estimator design:

Ai+1 = (b̂ib̂
T
i )Ai

+ (1− b̂ib̂Ti )((1− T/τ)Ai + (T/τ)),

Bi+1 = (b̂ib̂
T
i )Bi

+ (1− b̂ib̂Ti )((1− T/τ)Bi − 2δri/τ),

Ai+1(ω + ω̃i+1) = Bi+1, (14)

The estimator of equation (14) tracks a time-varying bias
equally as well as that in equation (13) under persistant
excitation. However, it does not fail when excitation is lost.
It provides the best estimate of the bias it could under
the circumstances: tracking the components of the bias
orthogonal to b̂i, while retaining the last best estimate for
the component of bias along b̂i. The first order filtering can
easily be extended to higher orders by including additional
terms on the right hand side of equation (14) that invoke
Ai−1, Bi−1 etc.

V. SIMULATION AND EXPERIMENTAL RESULTS

We first verify the geometric attitude estimator exper-
imentally by using a recently developed autopilot in our
group, which is equipped with an IMU, the MPU9250, and
is described in [13]. The autopilot is mounted on an inhouse
designed model positioning system (MPS) that can indepen-
dently prescribe roll, pitch, plunge and yaw manoeuvres on
a test module. The 4 degree-of-freedom MPS is described in

[14]. A key enabling feature of the MPS is that it provides
for both static and dynamic positioning of a mounted model,
which is required to generate and measure a non-zero angular
velocity.

Fig. 1: On the left, a schematic of the 4 Degree of freedom
Model Positioning System (MPS) described in [14]. The
MPU9250 mounted on the PCB (green in the picture on the
right) and being tested on the MPS.
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Fig. 2: Attitude estimation for a pure sinusoidal roll ma-
noeuvre on a real system. The solid red line is the true roll
angle returned by the encoder, and the dashed blue curve is
the estimated roll angle. The small residual estimation errors
can be mostly traced to alignment inaccuracies of the testbed.
The vector measurements, gy and gz , are also included to
show the instantaneous response from the measurement to
the estimation.

The roll and yaw motions are generated using stepper
motors which can be programmed to rotate the model
according to a prescribed trajectory. As the motors rotate,
real-time measurement is provided using 517 counts-per-
revolution differential encoders which provide feedback to
the motor controller and also a record of the actual position
of the tested model. Pitch and plunge motion are generated
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Fig. 3: Attitude estimation for a pure sinusoidal pitch ma-
noeuvre on a real system. The solid red line is the true pitch
angle returned by the encoder, and the dashed blue curve
is the estimated pitch angle. The small residual estimation
errors can be mostly traced to alignment inaccuracies of the
testbed. The vector measurement, gx, is also included to
show the instantaneous response from the measurement to
the estimation.

by actuating the pitch plunge rods using linear accelerators.
The output of the rods is again measured using encoders to
provide real-time feedback and a record of the actual position
of the model. During all the tests, the IMU is positioned on
the rotation axis so that there is no acceleration, and the
accelerometer is sensing only the gravitational field.

The autopilot is then separately subjected to oscillatory
roll and pitch motions. The roll motion has an amplitude of
5π/6 and a period of 4s. The pitch motion has the same
period, and an amplitude of 4π/9. The estimated roll and
pitch angles are plotted along with the true values in figures
2 and 3. The residual errors in estimating the roll and pitch
angles can be attributed to experimental errors. Also shown
in the zoomed insets is the zero latency tracking from the
vector measurements to the attitude estimation.

We next verify the filtered estimate of equation (9) using
Matlab simulations. For the simulations, the body is pre-
scribed a sinusoidal pitch manoeuvre of amplitude 4π/9 rad
and period 4 s. The angular velocity and vector measure-
ments are associated with a zero-mean Gaussian noise of
0.04 rad/s and 0.01 respectively. The attitude of the body is
then estimated using an optimally tuned extended Kalman
filter (figure 4) and by equation (9) (figure 5). It can be
seen that for large attitude increments between time-steps, the
linearized estimation using an EKF leads to loss of accuracy,
and the geometric attitude etimator presents nearly three-fold
lesser noise in the root-mean-square sense.

We finally verify the gyroscopic bias estimation using
equation (13). The body is prescribed the same oscillatory
roll motion as previous. However, the angular velocity mea-
surement is now associated with a nonzero mean, random
walk noise (an Ornstein-Uhlenbeck process, to be precise).
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Fig. 4: Filtered estimation using an optimally tuned extended
Kalman Filter (EKF). It can be seen that the EKF estimate
φ̂K , θ̂K , and ψ̂K has higher residual noise in comparison
with figure 5, which can be traced to the linearization of the
nonlinear attitude dynamics.
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Fig. 5: Filtered estimation using equation (9). It can be seen
that the proposed estimator yields more accurate estimates,
φ̂f , θ̂f , and ψ̂f , than the optimally tuned EKF (cf figure 4).
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Fig. 6: Filtered attitude estimation in the presence of time-
varying gyroscopic bias. Estimates φ̂f , θ̂f , and ψ̂f of φ, θ,
and ψ are obtained using equation (14) and used for bias
estimation (figure 7). Notice the steady yaw-drift with bias.
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Fig. 7: Fail safe estimation of time-varying gyroscopic bias.
A filtered attitude estimate is obtained using equation (14) (cf
figure 6). The attitude correction from the integrated attitude
estimate to the filtered estimate is inverted to obtain the bias
error under persistent excitation (top). The filtered attitude
is then corrected further to obtain compensated estimate, φ̂c,
θ̂c, and ψ̂c, that gets rid of the low frequency errors in the
bias (bottom).

An attitude is first estimated (φ̂f , θ̂f , ψ̂f ) by filtering the
high-frequency noise in the measurements (figure 6). This
attitude is then used to derive the applied attitude correction
from the integrated estimate of equation (1) to the filtered
estimate in equation (5). The attitude correction over a suffi-
ciently excited motion is then inverted to obtain an estimate
ê of the low frequency bias e in the gyroscope measurements
(figure 7 top). The bias can then be compensated in the
filtered estimate to obtain an asymptotically zero yaw drift
(figure 7 bottom).

VI. CONCLUSION

Presented in this paper are an analysis of the effect of
typical errors in vector and angular velocity measurements
on attitude estimation, and methods to estimate, and com-
pensate for, some of the errors. Specifically, constant or

slowly varying bias in the angular velocity measurement
can be estimated and compensated for, while high frequency
Gaussian noise may be suitably filtered out. Of special note
is the absence of adhoc gain tuning in the filter or estimator.
The filter and estimator designs arise naturally out of the
properties of the measurement errors. After validating the
attitude estimator using experiments, simulations are used to
verify the noise filter and bias estimator.
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