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This paper investigates the use of inviscid flow theory accompanied by surfaces of
discontinuity as a means of representing viscous effects. The problem studied is that of
starting flow separation past a sharp wedge. We use the vortex-entrainment sheet model
of DeVoria & Mohseni (J. Fluid Mech., vol. 866, 2019, pp. 660–688) to augment the set
of self-similar solutions with zero entrainment as calculated by Pullin (J. Fluid Mech.,
vol. 88, 1978, pp. 401–430). Even under the constraints of similarity, the inclusion of
entrainment allows for several new degrees of freedom, which correspond to different
classes of boundary conditions, and thus solutions, that are excluded by classical potential
models. Some computed examples are presented and compared to a previous experimental
study. The results offer encouraging evidence that viscous or finite Reynolds number
effects can, in an integrated sense, be captured by an inviscid model with singularity
distributions. A normal boundary condition that contains the information pertaining
to the entrainment must be supplied and represents the trade-off in surrendering the
Navier–Stokes equations for the lower-order inviscid model.

Key words: vortex dynamics

1. Introduction

Inviscid models are useful tools for prediction as well as cheaper alternatives to fully
resolved simulations. Recently, the authors developed an inviscid model for viscous shear
and boundary layers termed a vortex-entrainment sheet (DeVoria & Mohseni 2019). This
irregular surface is the superposition of a conventional vortex sheet having a discontinuity
in the tangential velocity (i.e. harmonic potential) with an entrainment sheet having
a discontinuity in the normal velocity (i.e. streamfunction). The former accounts for
the vorticity in the real layer, while the latter accounts for its mass/momentum. It was
proposed that the inclusion of entrainment in a model of this type could capture integral
viscous-fluid phenomena, e.g. resistive drag, that are notably absent from conventional
potential flow models.

In this paper, we further advocate and demonstrate the ability to represent viscous
effects within our inviscid vortex-entrainment sheet model. For this express purpose we
augment the set of self-similar solutions computed by Pullin (1978) for the roll-up of
conventional vortex sheets shedding from a sharp wedge. Pullin’s seminal work has been

† Email address for correspondence: mohseni@ufl.edu

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f F

lo
ri

da
, o

n 
22

 N
ov

 2
02

0 
at

 2
0:

19
:5

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

66
3

https://orcid.org/0000-0001-5615-0807
https://orcid.org/0000-0002-1382-221X
mailto:mohseni@ufl.edu
https://crossmark.crossref.org/dialog?doi=10.1017/jfm.2020.663&domain=pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.663


903 A24-2 A. C. DeVoria and K. Mohseni

highly influential in subsequent investigations that have marked continued advancements
in the study of unsteady vortex dynamics. His paper will be liberally cited here and so it
will henceforth be referred to simply as ‘Pullin’.

The forfeiture of the Navier–Stokes equations in favour of the inviscid model with
an infinitely thin sheet bypasses the computational expense of resolving the detailed
distributions of the velocity and vorticity across the viscous layer. However, we must
inevitably incur this cost elsewhere, in part at least, if the viscous effects are to be
captured in some integrated or even global sense. In short, we must supplement the inviscid
model with boundary conditions that ideally contain the same level of information as
those accompanying the Navier–Stokes equations. For example, the higher-order viscous
equation allows one to impose the full velocity vector on the boundaries (with some mass
conservation constraint for incompressible flows), which is not generally possible for the
lower-order inviscid equation. One way of conveying more of this information to the
inviscid model is to specify the normal velocity at the boundaries. In effect, this condition
provides the zero-thickness sheet with the entrainment associated with the viscous layer
that it replaces. The conventional vortex sheet is technically a special case of this, for
which the entrainment is specified to be zero on all boundaries.

The vortex-entrainment sheet has a complex/vector strength and we introduce ν = q/γ
as the ‘strength ratio’ of the entrainment sheet strength q to the vortex sheet strength γ .
The entrainment is signed relative to the flow inside the sheet. Namely, q > 0 means a
net amount of mass/fluid enters the sheet, whereas q < 0 means fluid emanates from the
sheet. Pullin’s solutions correspond to ν = 0 on all boundaries. In two dimensions, the
velocity induced by the sheet at an arbitrary point z in an otherwise unbounded domain
can be expressed by the following generalized Birkhoff–Rott equation, i.e. Cauchy-type
integral (DeVoria & Mohseni 2019):

1
2πi

∫ b(t)

a(t)

γ (s, t) − iq(s, t)
z − zs(s, t)

ds. (1.1)

The integration is over the sheet whose position at time t is zs(s, t) with s ∈ [a, b] as
the arclength coordinate. In general, the dynamics of the sheet is governed by ‘surface
equations’ resembling the Euler equations with a sheet density ρs (mass per unit area) and
with additional source terms representing the entrainment/flux of mass and momentum.
Once the normal velocity boundary condition is specified, the outer potential flow problem
can be solved and the mass flow into the vortex-entrainment sheets calculated. For the case
of a solid body geometry, the sheet fixed to its surface represents the boundary layers and
their entrainment. Here, the additional momentum terms include the stress jump across
the sheet. As such, the stress on the surface side can be evaluated and integrated to give an
estimate of the force on the body, which includes a viscous effect owing to the entrainment.
For more details, the interested reader is referred to DeVoria & Mohseni (2019).

Since our aim here is to obtain self-similar solutions to the outer problem, we bypass
the surface equations by searching for solutions that are governed by (1.1) when z → zs.
Dynamically, this means the pressure jump across the sheet (supported by ρs /= 0) is such
that the sheet moves with the average of the discontinuous velocities on each side of the
sheet, namely the principal value. Of course, when the sheet contains no mass and has zero
entrainment, the equation of motion reduces to the conventional kinematic Birkhoff–Rott
equation for a massless vortex sheet.

The Lagrangian formulation used by Rott (1956) and Birkhoff (1962) substitutes the
arclength s (or some scalar parameter) for the amount of circulation Γ (s, t), as measured
from a reference point on the sheet, via the relationship γ = ∂Γ/∂s. This approach has
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Inviscid modelling of starting flow separation 903 A24-3

been used by many authors in the study of vortex sheet dynamics (e.g. Moore 1979; Krasny
1987; Jones 2003) as it has several utilities stemming from the transformal invariance of
the circulation. Analytically, this requires that Γ is a monotonic function of the Lagrangian
parameter with an injective inverse. Physically, this represents the continual generation of
vorticity of one sign, which here leads to a power-law growth (a functionality typical to
similarity solutions) of total circulation in the sheet.

For the vortex-entrainment sheet we now employ the strength ratio ν(s, t) in order to use
the Lagrangian formulation. As such, (1.1) becomes

1
2πi

∫ Γs(t)

0

1 − iν(Γ ′, t)
z − zs(Γ ′, t)

dΓ ′, (1.2)

with Γs(t) as the total amount of circulation in the sheet at time t. In § 2 we apply the
above framework to a generalized problem for the case of starting flow over an infinite
wedge with separation, which is then simplified to a self-similar problem in § 3. Several
sets of numerical solutions are presented and discussed in §§ 4 and 5, with comparison
to experiment in § 4.3. The novel objective of the paper is to draw plausible physical
connections between entrainment in the inviscid sheet model and viscous effects.

2. General problem formulation

The attached flow around the wedge is given by a known complex potential Wo(z, t).
This flow is singular at the wedge apex and is regularized by allowing separation at
the sharp edge to form the free sheet. Formally, the potential Wo(z, t) is obtained as
a transformation from a virtual domain with complex variable ζ , where Wo(ζ, t) =∑∞

k=−∞ Ak(t)ζ k is a Laurent series expansion about ζ = 0 and, in general, the coefficients
are complex: Ak(t) ∈ C (e.g. see Batchelor 1967, pp. 128, 410). The series that is
convergent near |ζ | = 0 has Ak = 0 for k < 0. For the wedge of internal angle βπ(0 <
β < 1) and bisector along the real axis in the physical domain, the transformation ζ = zn

with n = 1/(2 − β) maps the wedge faces to the imaginary axis ζ = iy∗ (see figure 1).
We then have

Wo(z, t) = A0(t) + A1(t)zn + A2(t)z2n + · · · + Ak(t)zkn + · · · . (2.1)

Since 1
2 < n < 1, then in the limit z → 0 the dominating, singular term in the velocity

expression, dWo/dz, of this attached flow is the k = 1 term. However, we note that
retention of other terms in the series (including k < 0 ones) offers a more generalized
description of the flow and allows more topologically rich features to occur. Such
possibilities are beyond the scope of the current paper, however, and are reserved for future
work. Moving on, we may also take A0 = 0 or, equivalently, define W ′

o = Wo − A0 without
affecting the velocity. Hence, for |z| � 1 the complex potential is taken as Wo = A1(t)zn

and represents the mapping of an instantaneously uniform flow in the virtual domain to
the physical domain. Pullin considered the vertical component of this uniform flow so that
A1(t) was purely imaginary. Here, we consider an arbitrarily oriented stream and write

A1(t) = Un(t) − iUt(t) → dWo

dz
= nzn−1{Un − iUt}. (2.2)

Going forward, Ut and Un will be referred to as ‘virtual velocities’ having dimensions
[L]2−n · [T]−1, which when multiplied by the mapping derivative dζ/dz = nzn−1 yield a
physical velocity.
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(b)(a)

dWo

dz
dWo
dζ

S

S

Sw

Sw
Sw

Ut

Un

C∞
C∞

βπ

FIGURE 1. Problem geometry and definitions used in this paper. The wedge angle is βπ. The
analytic fluid domain is given by the simply connected region bounded by the freely shed sheet
S, the wedge surface sheet Sw and the arc C∞ at infinity. Mass entrainment may occur on
the vortex-entrainment sheets S and Sw, whereas C∞ is an ordinary curve across which fluid
simply passes. (a) Physical z-plane with dWo/dz as the attached driving flow. (b) Virtual ζ -plane
defined by the mapping ζ = zn with dWo/dζ = Un − iUt as the uniform virtual velocity whose
components are tangential and normal to the mapped wedge boundary.

By superposition, the external flow is combined with the contribution from the free
sheet, S, and the sheet representing the wedge surface, Sw, to give the total velocity dW/dz.
To have a well-posed problem with a unique solution, we must specify the normal velocity
un on all boundaries, which includes a contour C∞ at infinity that intersects the wedge
surfaces there (recall figure 1). Stated differently, we must give the entrainment into or
flux across each of these boundaries. Note that C∞ is an ordinary curve with no dynamical
significance and is not the location of a discontinuity.

For the free sheet it suffices to give its strength ratio ν. For the wedge surface the
boundary condition is typically assumed to be one of no through flow. However, the Sw
sheet represents the boundary layers on the wedge and thus any entrainment associated
with those layers is given by a non-zero normal velocity. The Cauchy integral for the
velocity field is a boundary integral formulation of the solution to the Laplace equation
(with kernel appropriate to the geometry) and so the flow at infinity is automatically
ensured to have the correct behaviour.

Our end goal of obtaining self-similar solutions is eased if we can eliminate the
specification of as many functions and parameters as possible. Our approach to this
problem is the method of images. This reduces the degree of freedom from a doubly
infinite set to a singly infinite one by providing a relation for the velocity contribution
from the wall sheet in terms of the parameters defining the free sheet. In other words,
specifying either un on the wall or ν on the free sheet will, in principle, determine the
other.

The image system is not unique, however. The parameters defining a given sheet are its
position and strength, both of which are complex quantities. To allow for some generality,
we define the image system with four degrees of freedom as follows. The position in the
virtual domain, zn

i , is taken to be a scaling and rotation of the standard ‘mirror image’: zn
i =

−Anzn
s , where A = M eiΘ is to be given; an overbar denotes the complex conjugate. Next,

we write the strength of the image sheet as −(cγ γ − icqq), where cγ and cq are two real
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Inviscid modelling of starting flow separation 903 A24-5

constants also to be given; cγ = 1 corresponds to the negative of the vortex sheet strength
as is usually used. For convenience we define χ = (1 − iν) and χi = −(cγ − icqν), and
so the expression for the velocity field becomes

dW
dz

= nzn−1

{
(Un − iUt) + 1

2πi

∫ Γs

0

[
χ ′

zn − z′n
s

+ χ ′
i

zn − z′n
i

]
dΓ ′

}
, (2.3)

where χ ′ = χ(Γ ′) and so on, and explicit time dependence has been dropped for clarity. If
ut and un are the tangential and normal physical velocity components on the wedge faces,
where arg{zn} = nθ = ±π/2, then the velocity/boundary condition there becomes

ut − iun = ±nrn−1{(Ut + u∗
t ) + i(Un + u∗

n)}, (2.4)

where u∗
t and u∗

n are the corresponding tangential and normal virtual velocities (i.e. having
units [L]2−n · [T]−1) on the wedge. The removal of the singularity in each physical velocity
component at r = |z| = 0 requires that

0 + i0 = (Ut + iUn) − 1
2π

∫ Γs

0

[
χ

zn
s

+ χi

zn
i

]
dΓ. (2.5)

This is a complex/vector Kutta condition so that we have an additional condition to impose
(the imaginary part) as compared to the baseline case of zero entrainment everywhere that
was treated by Pullin. Physically, these conditions determine the total circulation Γs and
net entrainment rate Qs in the free sheet.

One usually thinks of specifying the normal velocity un on the wedge surface as the
boundary condition, which will close the problem. However, this leads to an inverse
problem for ν(Γ, t) that is ill conditioned in the same way as Fredholm integrals of the first
kind. Alternatively, if ν is known, then the problem becomes well posed and the solution
unique. We need only give a ‘normalized’ distribution of ν since the imaginary part of the
vector Kutta condition is sufficient to determine Qs = ∫

ν dΓ , which is a scalar quantity.
We note that the conventional vortex sheet is a special case of this approach, whereby one
imposes the strength ratio to be identically zero on the sheet.

In summary, since we are prescribing the (normalized) strength ratio ν of the free sheet,
then for the general case we have a seven-parameter solution family: n for the wedge
geometry, Ut and Un specifying the driving flow, and cγ , cq, M and Θ defining the wall
normal boundary condition (i.e. the image system). The unknowns to be obtained from the
solution are the sheet position zs, its total circulation Γs, and its net entrainment rate Qs.

2.1. The boundary condition at infinity
The expansion in (2.1) was introduced in the context of a convergent series near the
apex, r → 0. However, the domain in our mathematical problem is radially infinite and
we may consider the behaviour at infinity through a similar series, although it need not be
convergent insofar as W(z) is concerned. This multi-pole expansion combines fundamental
solutions of the two-dimensional Laplace equation (known as circular harmonics) and
generally contains a logarithmic term. From the r → ∞ limit on (2.3) it can be shown
that this logarithmic term corresponds to the contribution Ws from the free sheet
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903 A24-6 A. C. DeVoria and K. Mohseni

(and its image). Specifically, the total complex potential approaches

W = Wo + Ws = zn(Un − iUt) + 1
2πi

[(1 − cγ )Γs − i(1 − cq)Qs] log zn. (2.6)

The velocity induced by the sheet at infinity is therefore equivalent to that of a point
singularity of strength n[(1 − cγ )Γs − i(1 − cq)Qs] located at the apex. However, this
velocity decays faster than the driving flow: z−1 vs. z−(1−n). Hence, by (2.4) the normal
velocity on the wedge surfaces at infinity must approach un = ∓nrn−1Un .

The total circulation around and the total mass flux across all boundaries must be
zero; these requirements are sometimes called compatibility conditions. Since Wo is
itself a solution to the Laplace equation, then it independently satisfies these constraints.
Therefore, we may reduce the compatibility conditions as applied to just the flow induced
by the sheet and its image

Γs + Γw = Γ∞, Qs + Qw = Q∞, (2.7a,b)

where Q∞ is the net flux across C∞ due to the sheet-induced flow there and likewise for
Qw as the net entrainment associated with the wedge Sw; similar definitions apply to Γ∞
and Γw as the corresponding circulations on these boundaries. Integrating the expression
for dWs/dz along the arc C∞ we obtain the following additional relations:

Γ∞ = 1
2(1 − cγ )Γs, Q∞ = 1

2(1 − cq)Qs. (2.8a,b)

We immediately see how the choices of cγ and cq affect the flow at infinity. By substitution
into (2.7a,b), there are similar consequences for the wall quantities Γw and Qw.

Before continuing, we will find the following quantity useful in non-dimensionalizing
the problem. For any sheet, segment of sheet, or arc we define

Γ − iQ = Γ (1 − iν̃), (2.9)

so that ν̃ = Q/Γ is the ratio of the flux to the circulation associated with the curve. For
a vortex-entrainment sheet with Γ − iQ = ∫

(1 − iν) dΓ , then ν̃ is the average of ν(Γ )
on the curve, e.g. ν̃s = Qs/Γs for the free sheet. For an arc that is not the location of a
discontinuity, then Γ − iQ = ∫

(ut + iun) dl as usual. In particular, the attached driving
flow, dWo/dz, defines ν̃o = Qo/Γo = −Un/Ut on the arc C∞ at infinity.

3. The self-similar problem

Here, we identify the restrictions that are required for a solution to be self-similar. First,
the similarity form and variable are defined as

zs(Γ, t) = L(t)ω(λ), λ = 1 − Γ

JG(t)
, (3.1)

where L(t) is a time-dependent physical length scale, ω(λ) = ξ(λ) + iη(λ) is the
self-similar shape function with similarity variable λ, and G(t) is the temporal growth
of Γ with J as a non-dimensional constant corresponding to the total circulation. Note
that Γ is defined as the circulation between a point zs(Γ, t) and the rolled-up tip of the
sheet where λ = 1. At the apex λ = 0 and so Γs = JG.
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Inviscid modelling of starting flow separation 903 A24-7

Writing Ut(t) = Ẏ(t) we first find that Co = (L1−nL̇)/Ẏ must be a non-dimensional
constant; recall that Ut = Ẏ has units [L]2−n · [T]−1. The next constraint for the solution to
be self-similar is

QP = Ġ/G
L̇/L

= n + (2 − n)
YŸ
Ẏ2

= const. (3.2)

The symbol QP is not to be confused with an entrainment rate; the subscript ‘P’ indicates
‘Pullin’ who used Q with no subscript for this term. Hence, the (logarithmic) growth
of the circulation must be proportional to that of the sheet size. The further constraint
YŸ ∝ Ẏ2 implies that the work required to move the wedge with ‘virtual velocity’ Ẏ
is proportional to its kinetic energy. The power-law form Ẏ(t) = a(t + b)m satisfies this
condition irrespective of the values a and b, and gives QP = (n + 2m)/(1 + m). The
exponential law Ẏ(t) = aebt is also valid and represents the m → ∞ limit of the algebraic
form. We adopt the former choice with b = 0 (as did Pullin), and the length scale then
becomes

L(t) = [C(atm)t]1/(2−n), (3.3)

with C = Co(2 − n)/(1 + m) as another non-dimensional constant. Next, the differential
circulation is

−dΓ

LnẎ
= JG(t) dλ

(L2/t)/C
, (3.4)

which gives G(t) = (L2/t)/C = (LL̇)/Co. Following Pullin, the constant Co is taken as
Co = (1 − n) and so (2.3) finally becomes the following integro-differential equation:

(1 − n)

[
ω̄ + QP(1 − λ)dω̄

dλ

]
= dΩ

dω
, (3.5a)

dΩ

dω
= nωn−1

{
−i(1 − iν̃o) + J

2πi

∫ 1

0

[
χ ′

ωn − ω′n + χ ′
i

ωn − ω′n
i

]
dλ′
}

, (3.5b)

where ωn
i = −Anωn is the image sheet, Ω(ω) is the non-dimensional complex potential

and again ν̃o = Qo/Γo = −Un/Ut. The vector Kutta condition in (2.5) takes the following
non-dimensional form:

0 = (1 − iν̃o) − J
2π

∫ 1

0

[
χ

ωn
+ χi

ωn
i

]
dλ. (3.6)

The quantity ν̃o may, in general, be a function of time. This is permissible because the
Laplace equation is elliptic and all other time dependency in (3.5) has been removed.
Hence, the spatial problem can be solved with the instantaneous value. In this way, a
separate implicit time dependence can exist in the solution as zs(t) = L(t)ω(λ; ν̃o(t)),
which allows the actual sheet shape to evolve in a more complex way. The same is also true
for the other input parameters in the problem (see figure 5 and corresponding discussion
in § 4.3).

For the non-dimensional, self-similar problem the driving flow is now specified by m
and ν̃o, while the parameters describing the wedge geometry and the image system remain
the same. The normal boundary condition on the wedge at infinity is un = ±nrn−1ν̃o.
The unknowns to be found are the sheet position ω, its total circulation J and its average
strength ratio ν̃s = Qs/Γs.
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903 A24-8 A. C. DeVoria and K. Mohseni

3.1. Approximation of the core region
Due to the tightly wound turns within the rolled-up spiral, it is not very sensible to fully
resolve (3.5) in this region. Instead, it is common to replace the core region with an isolated
point singularity that connects to the severed sheet via a branch cut. The motion of this
singular point is determined by imposing a ‘zero-net-force’ condition on the branch cut
system, representing the conservation of linear momentum. We adopt the usual model
that balances a pressure jump force acting on the cut with a Joukowski force acting on the
point (Brown & Michael 1954; Rott 1956). Here, the Joukowski force will have a conjugate
contribution from the entrainment constituent.

First, by (2.9) the complex strength of the singular core point is Γc(1 − iν̃c), where ν̃c is
the average of the strength ratio in the core region. In terms of the similarity variables the
non-dimensional strength is J(1 − λc)(1 − iν̃c) with λc as the value of λ where the cut has
been made. Likewise, the zero-force condition serving as the governing equation for the
point is

dΩ

dω

∣∣∣∣
ωc

= (1 − n)

[
ω̄c + QP

(
ω̄c − ω̄s

1 − iν̃c

)]
, (3.7)

where ωc and ωs are the locations of the singular core point and the end of the severed
sheet, respectively. The above was used by Pullin with ν̃c = 0, although he did not
explicitly give this equation.

3.2. Asymptotic solution near the apex
By analytically enforcing the Kutta condition Pullin obtained the asymptotic solution for
ω(λ) very near the wedge apex (λ→ 0). He showed that the vortex sheet must shed
tangential to the windward wedge face, while the flow on the leeward face is consequently
stagnated at the apex and thus has no contribution to the free sheet. The details of the
analogous process for the vortex-entrainment sheet are provided in appendix A and here
we simply state the results. Also, we take Ut > 0 going forward.

The vortex-entrainment sheet has a continuously variable shedding angle θa at the apex.
Defining ca = cqνa/cγ where νa = ν(0) is the strength ratio at the apex, then θa is given
by

θa = 1
2

[
arccos

(
M cos βπ

cγ

√
1 + c2

a

)
+ arctan(ca) − Θ

]
. (3.8)

The limiting (non-dimensional) velocities on the leeward (+ superscript) and windward
(− superscript) sides of the sheet at the apex are

(u±
t,a − iu±

n,a) = JP
2|K|

[
1 ∓ (1 − iνa)

P

]
, (3.9)

with ut,a and un,a being the tangential and normal components relative to the sheet, and P
and K are functions of νa and β, as well as the parameters describing the image system
as defined in appendix A. The definitions of the vortex and entrainment sheet strengths
are γ = u−

t − u+
t and q = u−

n − u+
n , and it can be verified from (3.9) that the strength ratio

at the apex satisfies νa = qa/γa as required. Due to the entrainment the flow is no longer
stagnated on the leeward side, but instead interacts with that on the windward side to
contribute to the forming free sheet.
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Inviscid modelling of starting flow separation 903 A24-9

In the following two sections we will consider certain solutions to the problem outlined
above. In § 4, entrainment is limited to the wedge surfaces Sw whereas the free sheet S is a
conventional vortex sheet. In § 5, both Sw and S will have non-zero entrainment.

4. Wedge-surface entrainment

In this section we present solutions to (3.5) and (3.6). The numerical approach is
essentially the same as Pullin’s and inclusion of entrainment does not present any new
difficulties in this regard. Hence, the finite-difference forms of the equations have been
relegated to appendix B. The current study is limited to the impulsive start with m = 0.
Pullin showed that m > 0 results in a more compact core region with increased ellipticity
and a larger fraction of the total circulation in the outer turns of the sheet (i.e. increasingly
stronger vorticity is generated at the apex by the acceleration). Here, the presence of
entrainment will be limited to the wedge or wall surfaces; entrainment on the free sheet
will be discussed in § 5.

4.1. Validation and large wedge angle results
As validation, we first reproduced Pullin’s results for zero entrainment everywhere on
all boundaries: ν(λ) ≡ 0 and ν̃o = 0. This corresponds to an image system with cγ = 1,
M = 1 and Θ = 0 (cq is irrelevant since ν = 0). He was limited by computer storage
and thus had a coarser angular resolution of points on the sheet, most particularly near
the apex. Using similar spacing we were able to quantitatively obtain his results (his
figures 11–13). With the benefit of modern computing, a finer resolution showed that the
solutions converge to slightly different values, but which vary only by a few per cent. Some
relevant quantities from these latter results are shown in figure 2(a). Specifically, the total
circulation J and the vortex sheet strength at the apex γa are plotted as functions of the
wedge apex angle βa in degrees. The two quantities are related as γa = J/|K|, where K is
a complex proportionality constant in the asymptotic solution ω = Kλ near the apex (see
appendix A) and is also plotted.

Similar to Pullin, we also were not able to obtain converged solutions for βa > 160◦. This
is because the numerical method relies on specification of a unique angular coordinate ϑ

for each point on the sheet as measured from the datum line connecting the core point
and the wedge apex. The solution for βa = 160◦ is plotted in figure 2(b) and reveals that
the datum for ϑ is nearly in line with the tangent direction of the lower wedge face, along
which the sheet must shed. For larger wedge angles the ϑ of sheet positions near the apex
were no longer unique.

Nevertheless, we may infer the behaviour for βa → 180◦ (or β → 1) by utilizing the
asymptotic solution. In this limit the outer flow approaches a uniform flow. However, the
boundary condition at the apex (i.e. the Kutta condition) ensures that a non-zero amount
of circulation J will be shed. Rewriting the expressions for γa and |K| from appendix A in
terms of β, we obtain the following relations for large wedge angles:

γa = c
√

1 − β, J = c2(2 − β)

2QP
, |K| = c(2 − β)

2QP

1√
1 − β

. (4.1a–c)

Here, c ≈ 1.93 was determined by matching γa to the βa = 160◦ solution. These equations
are plotted in figure 2(a) as dashed lines. The approximations are quite good for γa and |K|,
appearing continuously differentiable. While there is a ‘kink’ in the trend for J, the values
are reasonable. As β → 1 the vortex sheet strength becomes very weak, with γa → 0 at
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γa = J/|K|
160°

FIGURE 2. Selected numerical results for the baseline case of zero entrainment. (a) Variation
of non-dimensional solution parameters with wedge angle βa. The vertical line marks βa = 160◦
above which numerical solutions were not converged; the dashed lines are approximations for
βa > 160◦ (see text). (b) The solution for βa = 160◦ with 36 resolved turns. The isolated core
point vortex (white square) contains 25 % of the total circulation.

the apex, and so the vorticity of total circulation J → 1.86 becomes more concentrated in
the spiral core.

Next, we investigate cases of non-zero entrainment. Our initial interest is in the
qualitative effects of entrainment for a given solution. Since the rolled-up spiral shape
is topologically similar for all wedge angles (see Pullin’s figure 9), we will henceforth
focus on the specific wedge angle of βa = 60◦ corresponding to n = 0.6.

4.2. Some new vortex sheet solutions
As discussed in § 2, a unique solution for a given ν̃o = Qo/Γo requires that we specify
the functional distribution of the strength ratio ν(λ) along the free sheet. This clearly
represents a considerable amount of freedom, in fact, an infinite amount. With this in
mind, we recall that the conventional vortex sheet, which has proven to be a valuable
model, is a special case having ν ≡ 0 on the sheet. For our current problem there are
actually additional vortex sheet solutions other than those found by Pullin and we now
consider these possibilities. There are two main physical implications, the first being the
usual inviscid fluid assumption such that vorticity is not diffused from the free sheet.
Consequently, any entrainment must occur on the wall-bound sheets and represents the
effect of the no-slip condition on the solid wedge surfaces in a viscous fluid. There is
no intuitive meaning to the image system other than when it satisfies a desired boundary
condition (e.g. the wedge is a streamline or zero entrainment at infinity). To this end, we
endeavour to stray as little as possible from Pullin’s situation by taking cγ = 1 and ν̃o = 0
(again cq is irrelevant here). Since ν ≡ 0, then we have technically imposed ν̃s = 0, or
Qs = 0 rather, and so a degree of freedom is lost. This means that for each M there is a
unique value of Θ , which is now to be found as part of the solution rather than given.

From (2.8a,b) we find that Γ∞ = 0 and Q∞ = 0, and subsequently from (2.7a,b) that
Γs = −Γw and Qw = 0. Recall that these circulations and entrainments are those due to
the velocity induced by just the free sheet (i.e. excluding the driving flow). Therefore, the
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FIGURE 3. Results for two solution sets with a conventional vortex sheet S in the fluid, but
non-zero local entrainment on Sw the wedge surfaces. ν̃o = 0 (solid lines); ν̃o /= 0 (dashed lines),
where ν̃o = Qo/Γo is the boundary condition at infinity. M is the scaling factor in the image
system. (a) Total circulation J, vortex sheet strength γa and shedding velocity ut,a at the apex.
(b) The shedding angle θa. The baseline case of Pullin is M = 1 with θa = βa/2 = 30◦.

circulation in the free sheet will be equal and opposite to that which it induces on the
wedge. While the net entrainment from the walls is zero, there is a non-zero local flux at
any given point; since ν̃o = 0 the driving flow, being everywhere tangent to the wedge, has
no contribution to this local entrainment.

By the requirements in appendix A, there is a finite range 0 < M < Mmax , which here is
limited by Mmax = 1/| cos βπ| = 2. In the numerical set-up we varied M within this range
and the scheme solved for the corresponding unique Θ value. For comparison, another
related set of solutions is obtained in a similar fashion. Namely, the effect of a non-zero
flux at infinity due to the driving flow is included by allowing Qo /= 0, this flow now
having a component normal to the wedge boundary. Equivalently, ν̃o /= 0 and its unique
value corresponding to a specified M is now the quantity to be obtained from the solution,
thus replacing Θ which is returned to the fixed value Θ = 0 of the baseline case. Both
solution sets will now be discussed.

Figure 3(a) plots J, γa, and the shedding velocity at the apex ut,a, each as a function
of M; above M ≈ 1.35 the system became very ‘stiff’ and solutions no longer converged.
The results are remarkably similar, despite different boundary conditions at infinity, being
essentially identical for M > 1 and only a slight diverging for M < 1. For the cases
with ν̃o /= 0, this quantity is also plotted and reveals that (M − 1) and ν̃o have the same
sign. This allows us to infer that the effect of the image system for the ν̃o = 0 cases is
to nearly preserve the plotted quantities. Moreover, recalling that ν̃o = −Un/Ut, we can
then interpret this quantity as a measure of a ‘streamwise’ flow component, with ν̃o < 0
meaning flow away from the wall and ν̃o > 0 toward the wall. The direction of the flow
relative to the apex then explains why the total circulation J decreases from the baseline
for all cases, as well as the simultaneous increase/decrease of γa with ν̃o. However, the
solutions display significant differences in the sheet position. For example, figure 3(b)
plots the shedding angle θa vs. M for the two sets. While θa increases/decreases away from
the wedge tangent (θa = βa/2 = 30◦) of the baseline case for both sets, the corresponding
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FIGURE 4. Sheet shapes for the two solution sets described in figure 3 with different boundary
conditions at infinity ν̃o as labelled. The dashed red line is the trajectory of the core point
as M, the image system scaling, is continuously varied. M = 1 is the baseline case of Pullin.
(a) ν̃o = Qo/Γo /= 0 and (b) ν̃o = Qo/Γo = 0.

rates are considerably different. The differences are best observed from the sheet positions
as shown in figure 4. Also shown is the trajectory of the isolated core point. When the
‘streamwise’ flow is away from the wall (ν̃o < 0) the core is convected downstream thus
elongating the arclength of the outermost turn that connects to the apex. Conversely, when
this flow is toward the wall (ν̃o > 0), the overall sheet size shrinks toward the apex with
the outer turns becoming much closer. When ν̃o = 0 the same features occur, but the
core trajectory encroaches further along the upper wedge surface, as expected from the
dominant tangential flow around the apex.

The amount of circulation contained in the sheet (not shown) was also the same between
the two solution sets. This amount changed significantly with M, however, decreasing from
about 90 % at M � 1 to almost 40 % at M = 1.3; for each case 20 turns were resolved.
Paired with the observed changes in the size/diameter of the unresolved core region,
this indicates that the vorticity distributions in the spiral correspondingly shift from very
compact to more diffused or spread. We will revisit this interpretation in more detail in
§ 5.1.

4.3. Comparison with experiment
Next, we compare some similarity solutions to the experiments of Pullin & Perry (1980).
For the case that we have investigated here (βa = 60◦ and m = 0), they report significant
deviations of the rolled-up core position as compared to the similarity theory of Pullin
(1978); see table 1. We first note that in the experiments the boundary condition at ‘infinity’
was a uniform flow rather than (2.6) as used here and in Pullin’s work; additionally the
wedge height was nearly half the water tunnel height. This most certainly affects the
development of the shedding shear layer, particularly at larger times, but at small times
Pullin & Perry (1980) claim the discrepancies are attributable to viscous or finite Reynolds
number effects. The implication is that at early times secondary effects are negligible
so that the tangential flow around the apex dominates and we assume that ν̃o = 0 is the
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FIGURE 5. Comparison with the dye visualization experiments of Pullin & Perry (1980);
images adapted from their figure 5. The similarity sheet shapes (red lines) were matched and
converted to the dimensional space by finding the value of M for which the experimental core
position aligned with that of the predicted trajectory. The value of M corresponds to a unique
value of the shedding angle θa as labelled.

t ≈ 0.5 s t ≈ 1.4 s t ≈ 3.0 s t ≈ 5.0 s

x-coord. error 190 % 170 % 150 % 140 %
y-coord. error 4.5 % 10 % 12 % 20 %

TABLE 1. Approximate errors between the similarity prediction of Pullin and the experiments
of Pullin & Perry (1980) for the x- and y-coordinates of the core position. Much larger errors in
the x-coordinate are due to the experimental measurement itself being a small quantity.

appropriate boundary condition at infinity. We recall from § 4.2 that this corresponds to
local entrainment on the wedge surfaces, which we interpret as the viscous entrainment
of the boundary layers in the experiment. The infinite wedge problem has no physical
length scale, but by dimensional analysis an implicit length scale can be defined. This was
used by Pullin & Perry (1980) to define the ‘scale Reynolds number’ Res, which can also
be interpreted as a non-dimensional time for the growth of the spiral structure. Figure 5
shows some of their dye visualization images at several different Res values. Note that
the apparent shedding angle is ‘kinked’ well past/above the wedge tangent direction. This
feature is shared by the similarity solutions presented in figure 4(b) with shedding angles
in figure 3(b). A non-tangential shedding angle requires non-zero entrainment at the apex.

To make comparison to the experiment using a solution from the current study, the
measurements of the core position from Pullin & Perry (1980) were converted to our
similarity space (we note the absorption of the constant C from (3.3) in their definition
of ω). The values were then compared to the core trajectory in figure 4(b). It was found
that one experimental case intersected the curve and the corresponding solution was
transformed to physical space by scaling to the core location. The result is shown in
figure 5(d) and exhibits fair agreement considering the somewhat crude assumptions made
above about the boundary condition at infinity. However, the experimental shedding angle
is still noticeably larger than the predicted one.
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FIGURE 6. More similarity results for the case in figure 5(d). The xw − yw axes are a
right-handed coordinate system on the surface; the scaling was arbitrarily chosen. (a) Overlaid
streamlines of inviscid flow (grey lines). (b) Non-dimensional velocities on the upper wall
surface: ut, tangent component (solid blue); un , normal component (dashed red).

Images of the flow development at three earlier times are shown in figure 5(a–c).
According to the similarity growth law, for constant parameters the core trajectory in
the physical domain follows a constant-angle ray as time increases. This behaviour
is clearly not obeyed in the early growth of the spiral. Hence, there must be
some other time-dependent effect present in the experiments. We now recall the
comments immediately following (3.6) about an implicit time scale that may occur if a
time-dependent value is prescribed for any of the input parameters defining the self-similar
problem. Figure 5 indicates that this implicit effect manifests as a time-dependent shedding
angle θa at the apex, which is noted as part of the boundary. By (3.8) we can affect
a time-dependent shedding angle through different values of the image system scaling
M(t) ↔ θa(t). Therefore, we can identify similarity solutions representative of other
experimental times by tracing the ray that passes through both the measurement point
and the trajectory curve, and again scaling to the core location. The results are overlaid in
figure 5(a–c) and also show fair agreement.

The features of the flow (e.g. shedding angle, core location) are naturally dictated by
the boundary conditions. In the experiment, the actual time-dependence and functional
connection between these quantities is a more complicated state of affairs. For instance, it
is difficult to ascertain the effects, both quantitative and qualitative, of the finite tunnel
dimensions or the far-field flow without being given more detailed information. Two
physically impactful examples from the experiment are the appearance, near the apex,
of a secondary roll-up due to boundary layer separation on the upper wedge face and
a corresponding recirculating region, both of opposite sign to the primary separation.
Figure 6(a) reproduces the plot of figure 5(d), but with the streamlines of the inviscid
flow overlaid. The axes are rotated so that the leeward face is horizontal. The inviscid flow
emanates out from the wedge surface, qualitatively capturing the displacement effect of
the viscous boundary layer. Figure 6(b) plots the wall-tangential and wall-normal velocity
components along the wedge surface. By potential theory, the pressure minimum and
velocity maximum must each be located somewhere on the boundary. Moreover, in the
similarity space the flow appears steady so that ( p − po) ∼ −(u2

t + u2
n) and these two

points coincide. Hence, the separation is correctly placed between the predicted pressure
minimum and the apex, occurring almost immediately downstream of the former; see the
discussion in Pullin & Perry (1980) on page 248 for more. While these results support the
ability of the vortex-entrainment sheet model to capture viscous effects, it is noteworthy
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that the secondary separation bubble is a topological feature that is not possible with the
current problem set-up. We believe that proper modelling of this phenomenon ought to
involve boundary conditions other than those offered by (2.6) as used presently.

5. Entrainment on the free sheet

Having investigated entrainment solely on the wedge surfaces in § 4, we now present
solutions for which the strength ratio distribution on the free sheet is given by a simple
function ν(λ). The image system is defined by cγ = 1, cq = 1, M = 1, and Θ = 0, which
corresponds to the standard ‘mirror image’. From (2.8a,b) and (2.7a,b), we have Γs =
−Γw and Qs = −Qw. The problem is then closed upon specification of ν̃o and gives the
unique outputs J, ν̃s, and ω. From the results, we will infer some further plausible physical
connections between entrainment and viscous effects.

The convergence of the scheme was mostly dependent upon the number of turns
resolved in the sheet and thus the (fractional) amount of circulation λc contained in those
turns. However, global output parameters were remarkably insensitive to λc so long as
the first few turns are present. The computational purchase of resolving more turns is
the local structure of the sheet shape near the core region. As will be seen below, sheet
entrainment eventually brings a given number of turns much closer to the isolated core
point. For numerical stability ν̃o was treated as the unknown and ν̃s was specified instead
(see appendix B). Solutions were obtained by incrementing ν̃s, using the previous solution
as an initial condition. The step in ν̃s was throttled so that the corresponding change in λc
was approximately 1 % of the total circulation.

5.1. Core entrainment
Here, the form of the strength ratio on the sheet is designed so that the entrainment is
concentrated toward the spiral core of the sheet, namely

ν(λ) = aλp, (5.1)

and note that a = (1 + p)ν̃s, where the exponent p is a parameter that controls the size of
the region within which the entrainment is appreciable. Also, since νa = ν(0) = 0 at the
apex, then by (3.8) the shedding angle remains tangential to the lower wedge face.

Figure 7(a) plots ν̃s against ν̃o for p = 1, 2, and 5. This plot may essentially be
interpreted as a measure of the net sheet entrainment vs. the flux at infinity. For ν̃s < 0
the relationship is almost perfectly linear with slope approximately equal to ν̃s/ν̃o ≈ 3/2,
independent of p. For ν̃s > 0 the slope gradually approaches a constant, but which depends
on p. Below it is shown that as ν̃s > 0 increases, the amount of circulation in the isolated
core also increases (or that in the sheet decreases). Moreover, approximately 50 % of this
circulation resides within a very small radius around the core. By approximating this
portion of the sheet with the single core point, the relationship ν̃s/ν̃o ∼ (1 + p)−1 can
be inferred from the Kutta conditions in (3.6).

Next, we recall that ν̃s < 0 corresponds to flow exiting the sheet, while ν̃s > 0 represents
flow entering the sheet. Hence, for this problem set-up, there is a respective efflux and
influx of fluid across the boundary C∞ at infinity since ν̃o shares the same sign. A
similar phenomenon occurs for Falkner–Skan boundary layers, whereby the vertical flow
at infinity changes from an efflux to an influx as the outer flow acceleration is increased,
which competes with the displacement of the layer growth due to diffusion (see DeVoria &
Mohseni 2019). Motivated by this, we label ν̃s < 0 as ‘diffusion-dominated entrainment’
(DDE) and ν̃s > 0 as ‘inertia-dominated entrainment’ (IDE). To give credence to these
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FIGURE 7. The average strength ratio on the sheet ν̃s = Qs/Γs vs. the boundary condition at
infinity ν̃o = Qo/Γo. (a) Core entrainment with the ν(λ) distribution given by (5.1). (b) Apex
entrainment with the ν(λ) distribution given by (5.2). The inset plots the shedding angle θa vs.
the strength ratio at the apex νa = ν(0); the line is the asymptotic theory while symbols are
directly measured from the numerical solutions.

assignations, figure 8(a–f ) plots several examples for each entrainment type with p = 1 as
the exponent in (5.1); the baseline case of ν̃s = 0 is shown in figure 8(d). For DDE the outer
turns of the spiral gradually spread outward, while the inner most turns concentrate much
closer toward the isolated core point. Moreover, as indicated in each panel, the circulation
contained in the resolved sheet λc rapidly increases, reaching 99.9 % at ν̃s = −0.035;
all cases maintained 20 turns. As such, the effect of the core point is negligible as its
circulation has been almost entirely redistributed or spread out along the sheet. The total
circulation J increased/decreased with ν̃s by less than 1 % over the range shown in the
figure. The IDE cases have an opposing trend with circulation being transported from
the sheet to the core point with fractional circulation (1 − λc). Consequently, the spiral
is drawn closer to the core point owing to its sink-like entrainment. However, the turns
maintain their tightly wound spacing and also become more circular with any ellipticity
practically vanishing. In general, while there is a significant change in the spacing of the
turns, the large-scale dimensions and position of the core point are essentially unaffected
for all cases.

The features in figure 8 may be readily interpreted through a relevant aerodynamic
application, namely the spanwise flow often observed in leading-edge vortices. This
phenomenon has been thought to be a stabilizing mechanism in rotating wing lift
generation (e.g. Ellington et al. 1996). Here, this flow would be out-of-plane and IDE
would correspond to removal of in-plane fluid (stabilizing), while DDE injects fluid into
the plane due to a decelerating spanwise flow causing growth of the vortex.

5.2. Apex entrainment
In this section we give a similar analysis for a strength ratio that concentrates the
entrainment near the apex, namely

ν(λ) = a(1 − λ)p. (5.2)
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FIGURE 8. Self-similar sheet shapes with entrainment concentrated near the core region. The
strength ratio is given by (5.1) with p = 1. (a–c) Diffusion-dominated entrainment: ν̃s < 0. (d–f )
Inertia-dominated entrainment: ν̃s ≥ 0; (d) is the baseline case. Each case has 20 resolved turns
and λc is the fraction of the total circulation contained in these turns. (a) ν̃s = −0.013, λc =
0.952, (b) ν̃s = −0.022, λc = 0.991, (c) ν̃s = −0.035, λc = 0.999, (d) ν̃s = 0, λc = 0.752,
(e) ν̃s = 0.005, λc = 0.650 and ( f ) ν̃s = 0.010, λc = 0.562.

Again we have a = (1 + p)ν̃s and this is also equal to the strength ratio at the apex νa.
Figure 7(b) plots the corresponding ν̃s vs. ν̃o for different values of p. Some solutions for
small positive values of ν̃o were obtained, but the iterative solver soon became extremely
slow to converge. Moreover, it was evident that the sheet shape at the apex did not
agree with the shedding angle given by (3.8). We concluded, then, that the boundary
conditions for this particular self-similar problem do not admit solutions for ν̃o > 0 when
the entrainment is non-zero at the apex.

For ν̃o < 0 we again see a linear relationship to ν̃s and with a slope that depends on p.
Since the entrainment is concentrated at the apex, the inner structure of the spiral remains
relatively unchanged, whereas the orientation of the spiral and the core point location are
drastically altered. For instance, the variable shedding angle is plotted vs. the strength ratio
at the apex as the inset of figure 7(b). Both direct measurements of θa from the sheet shape
and (3.8) are shown, thus further validating the asymptotic theory. Again adopting the
label DDE for ν̃s < 0, we see that the ‘diffusion’ near the apex results in θa approaching the
wedge bisector. The larger magnitudes of ν̃o = −Un/Ut compared to § 5.1 occur because,
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FIGURE 9. (a,b) Examples of the airfoil analogy with trailing-edge separation. The motion is
a leftward surge at angle of attack α = π/2 + arctan(ν̃o) measured from the horizontal to the
wedge bisector (i.e. chord line). The wedge angle is βa = 15◦. (c) The total circulation in the
sheet (solid blue) and the isolated vortex circulation (dashed red) as functions of α.

below a certain value, the core structure essentially convects downstream while remaining
connected to the apex by a long ‘umbilical’. Although the physical flow at infinity is not
uniform, we may draw a qualitative analogy with the angle of attack of an airfoil. For our
chosen orientation of the wedge geometry, the Ut component represents a vertical plunge,
while Un represents a streamwise component. Therefore, we can rotate our reference to
define an angle of attack as α = π/2 + arctan(ν̃o) so that the motion corresponds to a
leftward surge of the ‘airfoil’ at angle of attack α relative to the horizontal.

To illustrate this concept, we computed solutions for a βa = 15◦ wedge representing a
thin, but finite-angled trailing edge. The exponent value p = 5 was chosen so that the sheet
entrainment was restricted to the apex region. Figure 9(a,b) plot a series of such solutions,
where again the angle of attack α is measured from the horizontal to the wedge bisector or
chord line. As α decreases, the size of the rolled-up core appears to decrease. Figure 9(c)
plots the total circulation in the sheet J along with the circulation contained in the isolated
core vortex J(1 − λc). The latter quantity depends on the number of resolved turns,
however, this was the same for each case (five turns). The vortex circulation decreases
with α, indicating a weaker starting vortex at lower angles of attack. Conversely, the total
circulation increases as α decreases, but this corresponds to the longer arclength of the
shed sheet. For α → 0, these results indicate that the umbilical sheet is infinitely long and
the starting vortex core is at infinity, which agrees with Prandtl’s classical aerodynamics
description of steady lift. However, the vorticity of infinite total circulation (J → ∞) is
distributed along the sheet with a vanishingly weak starting vortex, which is similar to
Wagner’s lift development.

6. Conclusion

Building off previous work by the authors, this paper explored the potential to capture
viscous flow effects using an inviscid model with singular sheets of discontinuity taking
the place of the actual viscous layers. The case study used was starting flow separation
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over a sharp wedge. Specifically, the self-similar solutions originally computed by Pullin
(1978) were significantly augmented by including entrainment. This was accomplished by
consideration of a broader class of boundary conditions for the problem. The specification
of these conditions is tantamount to supplying the entrainment. This is a consequence
associated with foregoing a fluid description whose governing equation is able to
accommodate more independent boundary conditions.

Mass flux into the boundaries, represented as vortex-entrainment sheets, is allowed by
relaxing the usual, yet axiomatically assumed normal boundary condition of no through
flow. This mass entrainment offers a more thorough dynamical inviscid model which,
in particular, is argued to represent viscous effects. For example, global quantities, such
as the total circulation, as well as local quantities, such as the shedding angle, sheet
strength and velocity at the apex, may all be manipulated through the entrainment.
Several computed solutions were presented and showed favourable agreement with an
existing experimental work. Moreover, some phenomena in the experiment attributed
to viscous effects were captured, qualitatively at the very least, by the inviscid model.
When the entrainment was specified on the freely shed sheet, some familiar features
commonly encountered in aerodynamic applications were observed. It was argued that the
displacement effect/velocity of a thickening layer is represented by ‘diffusion-dominated
entrainment’, for which mass/fluid emanates out of the sheet. In a similar manner, a
sink-like flow into the sheet corresponds to ‘inertia-dominated entrainment’, for which
large accelerations or fast velocities generate strong vorticity. Consequently, the vorticity
becomes increasingly concentrated within a tightly wound spiral core.

As a whole, we interpret the model features to be the representation of a finite Reynolds
number. Of course, the fidelity of the inviscid results depends on the level of information
contained in the entrainment boundary condition. Ideally, the local entrainment function
would correspond to that of the actual boundary layers. However, we likely will not be
given this detailed distribution a priori, but instead will have certain global quantities
that must be satisfied on physical grounds for a certain problem, such as a net force,
the rate of mass consumption or energy dissipation. In turn, these quantities could be
used to determine some of the free parameters in the present model, such as the averaged
strength ratio for a given sheet. This is an ideal task for future work. Other relevant studies
may focus on practical applications, such as flow control devices for manipulation of
fluid–structure interactions. Here, entrainment from solid surfaces can be directly imposed
through mechanisms injecting/suctioning mass into/from the fluid.
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Appendix A. Asymptotic solution near the apex

In this appendix the asymptotic solution for ω(λ) → 0 (with λ→ 0) is given. This
analytically determines the shedding angle of the free sheet as well as the strengths of
the vortex and entrainment sheets at the apex: γa and qa. The results are not specific to
the assumed forms of ν(λ) used above and thus are applicable to arbitrary strength ratios.
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Moreover, while we use the non-dimensional self-similar equations in § 3 to proceed here,
the same basic analysis is valid on the general equations of § 2.

Using the vector Kutta condition in (3.6), we can rewrite (3.5) as

(1 − n)

[
ω̄ + QP(1 − λ)dω̄

dλ

]
= nJω2n−1G(ω), (A 1)

where the function G(ω) is defined similar to that in Pullin as

G(ω) = 1
2πi

∫ 1

0

[
1 − iν(λ′)

ω′n(ωn − ω′n)
+ cγ − icqν(λ′)

Anω′n(ωn + Anω′n)

]
dλ′. (A 2)

Next, take ω = Kλμ where K = |K| eiθa and θa is the argument of an infinitesimal length
of the sheet at the apex measured anticlockwise positive from the wedge bisector and thus
is the shedding angle. With this form of ω(λ) the behaviour of the G(ω) integral as ω → 0
can be obtained from Muskhelishvili (1946). Upon substitution into (A 1) it can be shown
that μ = 1 to match leading orders of λ, and subsequently that

|K|2 = J
2(1 − n)QP

{
Ā(1 − iνa) cos βπ − (cγ − icqνa) ei2θa

−iĀ sin βπ

}
, (A 3)

where νa = ν(0) is the value of the strength ratio at the apex. The term in curly brackets,
say P, must then be purely real, which determines the shedding angle as

θa = ±1
2

[
arccos

(
M cos βπ

cγ

√
1 + c2

a

)
+ arctan(ca) − Θ

]
, (A 4)

where (±) = sgn(Ut), ca = cqνa/cγ and recall that A = M eiΘ . Then P ∈ R is given by

P =
νa cos βπ + cγ

√
(1 + c2

a)/M2 − (cos2 βπ)/c2
γ

sin βπ
. (A 5)

That P remains real and strictly positive gives obvious restrictions on the parameters
involved. In particular, 0 < M < Mmax where M2

max = (c2
γ + c2

qν
2
a)/ cos2 βπ. Next, we have

G(ω) = ω1−2nP
2nK

+ G∗(ω), |K| =
[

JP
2(1 − n)QP

]1/2

, (A 6a,b)

where ω2n−1G∗(ω) → 0 as ω → 0. The Plemelj formulae give the complex velocities on
the leeward (+) and windward (−) sides of the sheet at the apex for Ut > 0 as

dΩ

dω

±∣∣∣∣
ω=0

= (u±
t,a − iu±

n,a) = JP
2|K|

[
1 ∓ 1 − iνa

P

]
, (A 7)

where ut,a and un,a are, respectively, the tangential and normal components relative to the
sheet. By definition, the strengths of the vortex and entrainment sheets are

γa = u−
t,a − u+

t,a = J
|K| , qa = u−

n,a − u+
n,a = νa

J
|K| , (A 8a,b)
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and thus qa/γa = νa as required. Likewise, the sheet velocities (i.e. principal value) are

ut,a = 1
2
(u+

t,a + u−
t,a) = JP

2|K| , un,a = 1
2(u

+
n,a + u−

n,a) = 0. (A 9a,b)

For Ut < 0 the (∓) in (A 7) is simply inverted to (±), which changes the signs of θa and
γa = u−

t,a − u+
t,a from positive to negative, while the entrainment qa = u−

n,a − u+
n,a takes a

sign in accordance with qa = νaγa.

Appendix B. Numerical scheme

Here, we detail the method used by Pullin along with the modifications required to
include entrainment. The reader is referred to his paper for additional information.

The sheet is represented by k = 1, . . . , N planar segments with circulation λk−1 <
λ ≤ λk and with endpoints ωk−1 and ωk. The isolated point singularity is located at
ωN+1 = ωc = rc eiθc with net strength J(1 − λN)(1 − iν̃c) where λN = λc and ωN = ωs.
Finite difference versions of (3.5) are solved at the midpoints defined as

ωk−1,k = 1
2(ωk−1 + ωk), λk−1,k = 1

2(λk−1 + λk) {k = 1, . . . , N}. (B 1a,b)

The derivative dω̄/dλ is computed with a central difference and all integration is
performed with the trapezoidal rule. As such, the system (3.5)–(3.7) can be written as

0 = (1 − n)

[
ω̄k−1,k + QP(1 − λk−1,k)

(
ω̄k − ω̄k−1

λk − λk−1

)]

+ in(ωk−1,k)
n−1

⎧⎨⎩(1 − iν̃o) + J
2π

N+1∑
j=0

Fj(ωk−1,k)Aj

⎫⎬⎭ ,

0 =
⎧⎨⎩(1 − iν̃o) − J

2π

N+1∑
j=0

(
Hγ

j Bj − iHq
j Cj
)⎫⎬⎭ ,

0 = (1 − n)

[
ω̄N+1 + QP

(
ω̄N+1 − ω̄N

1 − iνN+1

)]
+ in(ωN+1)

n−1

⎧⎨⎩(1 − iν̃o) + J
2π

N+1∑
j=0

GjAj

⎫⎬⎭ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 2)

with QP = (n + 2m)/(1 + m) and

Fj(ωk−1,k) =
[

1 − iνj

ωn
k−1,k − ωn

j
+ −(cγ − icqνj)

ωn
k−1,k + Anωn

j

]
,

νj = ν(λj), νN+1 = ν̃c = 1
1 − λN

∫ 1

λN

ν(λ) dλ,

Gj = Fj(ωN+1), GN+1 =
[

−(cγ − icqνN+1)

ωn
N+1 + Anωn

N+1

+ (n − 1)(1 − iνN+1)

2nωn
N+1

]
,

Hγ

0 = Hγ

1 , Hq
0 = Hq

1, Hγ

j = Anωn
j + cγ ωn

j

An|ωn
j |2

, Hq
j = Anωn

j + cqω
n
j

An|ωn
j |2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 3)
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where the two terms in GN+1 are the velocities due to the image of the isolated point
singularity and the Routh correction ( f ′′/2( f ′)2 where f (z) = zn), respectively, and

A0 = 1
2(λ1 − λ0), AN = 1

2(λN − λN−1), AN+1 = 1 − λN,

Aj = 1
2(λj+1 − λj−1) { j = 1, . . . , N − 1},

B0 = λ1

1 − n
, B1 = 1

2(λ2 − λ1), Bj = Aj { j = 2, . . . , N + 1},

C0 = λn
1

∫ λ1

0

ν(λ)

λn
dλ, Cj = Bjνj { j = 1, . . . , N + 1}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 4)

The C0 term and the average νN+1 = ν̃c each depend on the strength ratio distribution ν(λ).
For the two cases of (5.1) and (5.2) studied in this paper

Eqn. (5.1): ν̃c = a

[
1 − λ1+p

N

(1 + p)(1 − λN)

]
, C0 = a

[
λ

1+p
1

1 + p − n

]
, (B 5a,b)

Eqn. (5.2): ν̃c = a

[
p∑

k=0

(
p
k

)
(−1)k(1 − λ1+k

N )

(1 + k)(1 − λN)

]
, C0 = a

[
p∑

k=0

(
p
k

)
(−1)kλ1+k

1

1 + k − n

]
.

(B 6a,b)

For each case, a = (1 + p)ν̃s. The actual scheme used makes the following transformation:

ωj = ωN+1 − ρj ei(ϑj+θc), (B 7)

and recalling that ωN+1 = rc eiθc , the ϑj are then measured anticlockwise positive from the
line connecting ωN+1 and the origin, and the ρj are the corresponding radii measured from
ωN+1 to each ωj. The angles ϑj are held constant and the values of λj are unknowns to be
determined. Treating ν̃s as unknown results in poor convergence as it quantifies the normal
boundary condition on the sheet. Therefore, we instead take ν̃o as unknown and specify
ν̃s. By locating the wedge apex at ω0 = 0 + i0 and since λ0 = 0, we then have a 2N + 4
system of equations expressed by

f (x) = 0, x = (ρ1, ρ2, . . . , ρN, λ1, λ2, . . . , λN, rc, θc, J, ν̃o). (B 8)

For the cases with ν̃o = 0 and variable M in § 4.2, the former was replaced with Θ as the
unknown to be obtained. The system is iteratively solved with the fsolve function in Matlab
until the Euclidean vector norm of f (x) is less than ε = 10−10.
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