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ABSTRACT
The factors determining the degree of dynamic wetting, which is characterized by the microscopic dynamic contact angle, have been the
subject of much discussion. In this manuscript, it is analytically determined that the microscopic dynamic contact angle is dependent on the
rate of surface dilatation in addition to the thermodynamic surface tension. It is argued that, in the vicinity of a moving contact line, this rate
of surface dilatation results in a disparity between the thermodynamic and mechanical surface tensions, which are almost always assumed to
be equal. It is also found that, in the case of forced wetting, the difference between the receding and advancing contact angles is primarily
due to the rate of surface compression at the receding contact line and the rate of surface expansion at the advancing contact line. These
findings, which are validated using molecular dynamics simulations, demonstrate that surface dilatation is an important factor responsible
for the deviation of the microscopic dynamic contact angle from its static equilibrium value.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125231., s

I. INTRODUCTION
The phenomena of wetting play an important role in many

industrial and natural processes, such as oil recovery,1,2 lubrica-
tion,3,4 electrowetting,5 microfluidics,6–9 biosurfaces,10 and emulsi-
fications.11,12 The extent to which a fluid wets a solid surface is
commonly characterized by the contact angle (angle formed by the
fluid-fluid interface with the solid). For the case of a static droplet,
Young13 determined the contact angle by balancing the forces acting
at the contact line as

γAB cos θs =γAW − γBW ,

where θs is the static contact angle and the subscripts AB, AW, and
BW denote the interface between fluid A-fluid B, fluid A-Wall, and
fluid B-Wall, respectively. This relation has also been derived by
minimizing the total free energy of the system,14 validated using
statistical mechanics,15,16 and recently shown to be valid in the
microscopic scale17 as well.

In comparison, for the dynamic case, there are several compet-
ing dynamic contact angle models in the literature that are based

on a diverse set of physical mechanisms with applicability to length
scales ranging from macroscale to molecular scale. The three com-
mon theories that dynamic contact angle models are based on are
the hydrodynamic theory, the molecular kinetic theory (MKT), and
the interface formation theory (IFT). Most dynamic contact angle
models fall under the hydrodynamic theory,18–22 which is based on
classical continuum fluid mechanics, where the singularity of the
moving contact line is alleviated by relaxing the no-slip boundary
condition22–25 or by artificially truncating the solution at a molecu-
lar length scale where the solution breaks down.19 Usually in these
models, the contact angle is observed at the macroscale, with the vis-
cous bending of the interface occurring at the mesoscale, while at
the microscale it is assumed that the contact angle is the same as its
static equilibrium value. However, in contrast, recent findings26,27

have shown the dependence of the microscopic contact angle on the
contact line velocity.

In the case of models based on the molecular kinetic theory,28

the dynamic contact angle is attributed to the local frictional force
acting at the contact line. Here, the motion of the contact line is
based on the adsorption-desorption of the fluid molecules on to the
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surface within the three-phase zone. In this case, there is no viscous
bending and the observed angle is the microscopic dynamic contact
angle, which is velocity dependent.

Finally, in the interface formation theory proposed by
Shikhmurzaev,29 the contact line advances by a rolling type motion.
This results in the transport of fluid particles from the fluid-fluid
interface to the fluid-wall interface, through the contact line and vice
versa. Since the properties of the two interfaces are not the same,
there is a transition region in the vicinity of the contact line, where
a surface tension gradient exists. The gradient results in a local sur-
face tension value different from that of the equilibrium value. This
is described by a constitutive equation proposed by Shikhmurzaev,
in which surface tension is related to the surface (interface) density.
Assuming that Young’s equation is still valid, IFT suggests that the
gradient in surface tension results in a change in dynamic contact
angle.

Here, we listed only some of the dynamic contact angle mod-
els and the theories on which they are based; for a more detailed
list, the reader is referred to the review articles by Snoeijer and
Andreotti,30 Chau,31 and Blake.32,33 All these dynamic contact angle
models, some of which are based on competing mechanisms, show
reasonable agreement with experiments.34–36 This makes it diffi-
cult to ascertain the underlying mechanism governing the dynamic
contact angle, especially the microscopic dynamic contact angle. In
this manuscript, we aim to resolve this issue by using interfacial
hydrodynamics to analytically derive a model for the microscopic
dynamic contact angle and validate it using molecular dynamics
(MD) simulations.

To this end, we find the functionality of the microscopic
dynamic contact angle by writing the force balance at the contact
line by considering Gibbs’ representation of the interface as a divid-
ing surface and the contact line as the intersection of these divid-
ing surfaces. Gibbs’ representation has the benefit of maintaining
the modeling simplicity of continuum mechanics seen in hydrody-
namic contact angle models, while obtaining the microscopic res-
olution of the MKT and IFT models, discussed above. The force
balance is given by the balance of surface stress of the respective
interfaces, which is usually assumed to be equal to the thermody-
namic surface tension. Here, we shall show that this is true only
in the static case or far from the moving contact line, where slip
velocity is a constant. In the dynamic case, the surface stress at
the moving contact line is a function of both the rate of surface
dilatation and the thermodynamic surface tension. Hence, from
the force balance, it follows that the microscopic dynamic contact
angle is dependent on the one-dimensional rate of surface dilata-
tion [∂u(s)/∂s] in addition to the thermodynamic surface tension,
namely,

(γ + (κs + μs)
∂u(s)

∂s
)

AB
cos θd =(γ + (κs + μs)

∂u(s)

∂s
)

AW

−(γ + (κs + μs)
∂u(s)

∂s
)

BW
. (1)

Here, u(s) is the tangential component of surface fluid velocity, ∂s
is in the direction tangent to the interface, θd is the microscopic
dynamic contact angle, μs is the surface shear viscosity, and κs is
the surface dilatation viscosity. In addition, we shall show that one

of the key factors responsible for the difference in contact angle
at the advancing and receding edges is the rate of surface dilata-
tion. We argue that the rate of surface dilatation results from vary-
ing slip velocity in the vicinity of the moving contact line23 and
is inseparable from it. Stated differently, we cannot have varying
slip velocity without having a rate of surface dilatation and vice
versa.

We also demonstrate that mechanical surface tension is related
to thermodynamic surface tension by the rate of surface dilatation as
γ̄ =γ + κs∇(s) ⋅v(s), which is obtained using the constitutive equa-
tion, commonly referred to as the Boussinesq surface fluid model.
This is similar to the relation between thermodynamic and mechan-
ical pressure in fluid dynamics.37,38 The above relation shows that
in the vicinity of the moving contact line, where the rate of surface
dilations is not negligible,23,39–41 the mechanical and thermodynamic
surface tension cannot be assumed to be equal, as is almost always
the case.42 Based on a phenomenological explanation, IFT suggested
the existence of a thermodynamic surface tension gradient, but here
we can show analytically that it is only the mechanical surface ten-
sion that has a gradient, while the thermodynamic surface tension
still remains constant, despite having assumed no surface mass flux
at the moving contact line.

Hence, in our work, we discover that the rate of surface dilata-
tion is the fundamental mechanism governing the microscopic
dynamic contact angle besides the thermodynamic surface tension.
We reiterate that only the mechanical surface tension has a gradient
in the vicinity of the contact line as a result of this surface dilata-
tion, while the thermodynamic surface tension remains constant.
Also, it is found that the difference in the sign of surface dilatation
(expansion and compression) in the vicinity of the advancing and
receding contact lines is one of the primary causes for the differ-
ence in advancing and receding contact angles in the case of forced
wetting.

This manuscript is organized as follows: In Sec. II, an expres-
sion for the microscopic dynamic contact angle model is derived
from the force balance at the moving contact line. Using Boussi-
nesq’s surface fluid model and the mass conservation at the inter-
face, the model is presented in three different forms, namely, sur-
face dilatation form, mechanical form, and surface mass flux form.
The numerical setup with details of molecular dynamics simulations
and methods of computation of respective variables are presented in
Sec. III. Finally, in the results Sec. IV, various findings are validated
and discussed in greater detail.

II. FORCE BALANCE AROUND THE MOVING
CONTACT LINE

Our objective here is to obtain the microscopic dynamic con-
tact angle by finding the correct matching condition for the force
at the moving contact line. First, we briefly outline the steps under-
taken to achieve this task. Following Gibbs’ interpretation, the con-
servation of momentum is written for a control volume encom-
passing the bulk media, the interface, and the contact line. This
is presented for a general multiphase system, which we then sim-
plify for the specific case of a contact line formed by two immisci-
ble fluids, steadily moving over a planar surface. The force balance
thus obtained at the moving contact line is expressed in terms of
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FIG. 1. (a) Schematic of an arbitrary control volume encom-
passing a bulk region R, with interface Σ and contact line c
within it. n̂ is the unit vector normal to the control surface,
n̂s is the unit vector normal to the interface, and n̂l is the
unit vector orthogonal to the contact line and tangent to the
interface. (b) Schematic showing the bulk, surface v(s ), and
line velocities v( l ). Here, Phase 1, 2, and 3 can either be a
solid, liquid, or gas.

surface stress, which in itself is not in a closed form and hence
of little use. Therefore, using a constitutive relation presented by
Boussinesq for a surface fluid and considering the surface mass bal-
ance at the interface, we find the microscopic dynamic contact angle
model. This model is presented in three different forms, each hav-
ing its own advantages. Throughout this manuscript, we refer to the
mass and force balance in the bulk media as bulk mass balance and
bulk force balance, respectively. Similarly, we refer to the balances
in the surface as surface mass and force balance, while the balances

in the contact line are referred to as line mass balance and line force
balance.

With the brief outline discussed, we now present the force bal-
ance for a general multiphase system,43 by considering a control
volume encapsulating the bulk media, the interfaces, and the con-
tact line as illustrated in Fig. 1. In the force balance, the terms are
grouped into volume, area, and line integrals, corresponding to the
bulk media, the interface, and the contact line, respectively; see the
following equation:44

force balance in the bulk media
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
R
(ρdv

dt
− ∇ ⋅T − ρb)dV +

force balance at the interface
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
Σ

⎛
⎝
ρ(s) d(s)v(s)

dt
− ∇(s) ⋅T(s) − ρ(s)b(s) + [[ρ(v − v(s))(v − v(s)) ⋅̂ns − T ⋅̂ns]]

⎞
⎠

dA

+

force balance at the contact line
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
c

⎛
⎝
ρ(l) d(l)v(l)

dt
− ∇(l) ⋅T(l) − ρ(l)b(l) + [[ρ(s)(v(s) − v(l))(v(s) − v(l)) ⋅̂nl − T(s) ⋅̂nl]]

⎞
⎠

dl =0. (2)

Here, ρ is the density, v is the velocity, T is the stress tensor, and
b is the body force. Terms without any subscript or superscript are
associated with bulk media, (⋅)(s) and (⋅)(s) are terms associated with
an interface, while (⋅)(l) and (⋅)(l) are associated with the contact
line. R is the region encompassed by the control volume, Σ is the
area formed by the interface, and c is the contact line (normal to
the plane of Fig. 1). The volume integral is the same as the com-
monly used momentum equation for a bulk medium. The surface
and line integrals are analogous to the bulk momentum equation,
except for the additional jump terms denoted by [[⋅]]. The first of the
jump terms accounts for the momentum associated with mass trans-
fer across the interface, [[ρ(v − v(s))(v − v(s)) ⋅̂ns]], and the contact

line, [[ρ(s)(v(s) − v(l))(v(s) − v(l)) ⋅̂nl]].45 The second jump term
accounts for the jump in bulk stress across the interface, [[T ⋅̂ns]],
and the jump in surface stress across the contact line, [[T(s) ⋅̂nl]].46

The importance of the jump terms lies in the fact that it is through
these jump terms that a higher dimension is connected and com-
municates with the lower dimension and vice versa. Hence, from

Eq. (2), we obtain the force balance at the moving contact line in
its most general form

⎛
⎝
ρ(l) d(l)v(l)

dt
− ∇(l) ⋅T(l) − ρ(l)b(l)

+ [[ρ(s)(v(s) − v(l))(v(s) − v(l)) ⋅̂nl − T(s) ⋅̂nl]]
⎞
⎠
=0. (3)

It must be noted that although Eq. (2) is discussed in the con-
text of a multiphase flow, the force balance itself is applicable to any
problem with a surface and line discontinuity. Xia and Mohseni47

had used a similar force balance to study the formation of vortex
sheets at the trailing edge of an airfoil. They applied conservation
laws to a “Y”-shaped control volume encompassing the two bound-
ary layers at the trailing edge that merge to create the free shear
layer. DeVoria and Mohseni48 also used similar equations to define
an inviscid model for boundary and shear layers, where the mass and
momentum in the layers were confined to a two dimensional surface.
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We now simplify this general force balance [Eq. (3)] for a mul-
tiphase system for the specific case of a steadily moving contact line
by employing the following assumptions:

1. The contact line is in dynamic equilibrium, d(l)v(l)/dt = 0.
2. The contact line is subject to no body force, b(l) = 0.
3. The contact line is a material boundary with no mass transfer

across it,

[[ρ(s)(v(s) − v(l))(v(s) − v(l)) ⋅̂nl]] =0.

4. There is no gradient in the line stress along the contact line
(normal to the plane of Fig. 1), ∇(l) ⋅T(l) = 0.

Using these assumptions, the force balance [Eq. (3)] reduces to

[[T(s) ⋅̂nl]] =0. (4)

The force balance in its current form is not closed, and there-
fore, a surface constitutive law presented by Boussinesq is used to
rewrite Eq. (4) in terms of surface tension (surface pressure) and sur-
face velocity. Thereafter, we present the above force balance in two
additional forms, each having its own advantages.

A. Surface dilatation form
The Boussinesq surface fluid model49,50 describes the surface

stress as T(s) = [γ + (κs − μs)∇(s) ⋅v(s)]P + 2μsD(s). Here, P =I − n̂n̂
is the surface projection tensor and D(s) = 1/2(P ⋅∇(s)v(s)

+ (∇(s)v(s))T
⋅P) is the rate of surface deformation tensor. Since

we assume a two-dimensional problem with the domain periodic
in the binormal direction, there is no surface shear and the surface
stress simplifies to T(s) = γP + (κs + μs)(du(s)/ds)P. Hence, substitut-
ing the surface stress, the force balance at the moving contact line is
written as

[[(γP + (κs + μs)
∂u(s)

∂s
P) ⋅̂nl]] =0. (5)

By expanding and projecting the force in the direction tangent to the
wall, we obtain

(γ + (κs + μs)
∂u(s)

∂s
)

AB
cos θd =(γ + (κs + μs)

∂u(s)

∂s
)

AW

−(γ + (κs + μs)
∂u(s)

∂s
)

BW
. (6)

Here, γ, κs, and μs are surface material properties that are known
a priori. The rate of surface dilatation [∂u(s)/∂s] can be computed
from the flow, leaving the microscopic dynamic contact angle as the
only unknown. In the field of surface rheology, a substantial effort
has been devoted to computing the surface shear and dilatation vis-
cosity,51–54 though this has been primarily focused on a fluid-fluid
interface rather than a fluid-wall interface. Hence, we demonstrate
that the microscopic dynamic contact angle, θd, is dependent on
the surface dilatation in addition to the thermodynamic surface ten-
sion. In order to eliminate one of the material properties, which

is required as an input, namely κs, we rewrite the force balance in
Eq. (6) by substituting the thermodynamic surface tension at the
respective interfaces with the mechanical surface tension as is shown
next.

B. Mechanical form
From the constitutive equation of a bulk fluid stress, it is known

that the mechanical pressure (p̄) is related to the thermodynamic
pressure (p) as p̄ =p + κ∇ ⋅v, where κ is the bulk dilatational vis-
cosity. Considering that the Boussinesq surface fluid model [T(s)

= [γ + (κs − μs)∇(s) ⋅v(s)]P + 2μsD(s)] is analogous to the constitutive
equation for the bulk fluid stress, it follows that the mechanical sur-
face tension is related to the thermodynamic surface tension in the
same way as the two forms of pressure,

γ̄=γ + κs∇(s) ⋅v(s). (7)

Here, the mechanical surface tension is defined as the average of the
diagonal terms of the surface stress tensor, in the same manner, the
mechanical pressure is defined as the average of the diagonal terms
of the bulk stress tensor. This definition for mechanical surface ten-
sion can be readily shown to be equivalent to the classical definition,
γ̄ =∫∞−∞(PT − PN)dn, where PT and PN are components of the bulk
pressure, tangential and normal to the interface. It must be noted
that surface tension could be interpreted as the surface pressure. By
rewriting the force balance at the contact line [Eq. (6)] in terms of the
mechanical surface tension, we show that the microscopic dynamic
contact angle model is

(γ̄ + μs
∂u(s)

∂s
)

AB
cos θd =(γ̄ + μs

∂u(s)

∂s
)

AW
− (γ̄ + μs

∂u(s)

∂s
)

BW
.

(8)

In the limit of a static case, the surface flow is surface divergence free
and T(s) =γP =γ̄P; hence, the above equation reduces to Young’s
equation for the static contact angle γAB cos θs = γAW − γBW . Next, we
show that, using the surface mass balance at the interface, the surface
dilatation term can be rewritten in terms of the mass flux of bulk
fluid into the interface, thereby eliminating the need of computing
the rate of surface dilatation.

C. Surface mass flux form
One of the challenges in the surface dilatation form of the force

balance is computing the rate of surface dilatation (∂u(s)/∂s) in the
macroscale. Hence, it is replaced using the surface mass balance at
the interface. The surface mass balance for a steady incompressible
surface flow is given as43

ρ(s)
∇(s) ⋅v(s) =−[[ρv]], (9)

where v is the component of bulk velocity normal to the inter-
face. Substituting in the dynamic contact angle model, Eq. (6) is
rewritten as

(γ − λs[[ρv]])AB cos θd =(γ − λs[[ρv]])AW − (γ − λs[[ρv]])BW , (10)

where λs =(κs + μs) 1
ρ(s) is called the total surface kinematic viscos-

ity. Therefore, in this form, the only surface quantities required to
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compute the microscopic dynamic contact angle model are surface
material properties, which are known a priori.

This model is further simplified by using Young’s relation for
static contact angle, θs, to eliminate thermodynamic surface tension
at the wall-fluid interfaces to obtain

γAB(cos θd − cos θs) =(λs,AW(ρv)A − λs,BW(ρv)B). (11)

Here, we assume that the mass flux into the fluid-wall interface is
only from the bulk fluid side, as the wall side has no relative velocity
normal to the interface. Hence, (ρv)A and (ρv)B correspond to the
mass flux into the interface from bulk fluid A and B, respectively. In
addition, we have also assumed the fluids to be immiscible; therefore,
there is no mass flux across the fluid-fluid interface. Hence, we infer
that the change in contact angle between the static and the dynamic
case is a result of the difference in mass flux at the two fluid-wall
interfaces in the vicinity of the moving contact line.

The findings are validated and discussed in Sec. IV. First,
however, the details of numerical setup and methods used for the
evaluation of surface quantities are presented in Sec. III.

III. NUMERICAL SETUP AND EVALUATION
OF SURFACE QUANTITIES

Here, we describe the problem geometry, provide details of the
numerical simulation, and describe the methods used to evaluate
various surface quantities from MD simulations.

A. Description of problem geometry
The moving contact line is simulated by modeling a two-phase

Couette flow for immiscible fluids, where the walls move in the
opposite directions with a constant speed U (see Fig. 2). Here, peri-
odic boundary conditions are imposed along the x and z directions.
The contact angle (θ) is defined as the angle formed by the wall and
fluid-fluid interface, as measured in fluid A. Due to the symmetric
nature of the problem, θ1 = θ4 and θ2 = θ3 are the leading and trailing
edge, respectively, in the frame of reference of the wall.

FIG. 2. (a) Schematic of the problem geometry and (b) snapshot of the simulation.

B. Details of MD simulation
As previously eluded to, one of the major difficulties faced in

studying the dynamic contact angle is that direct measurement is
limited by the ability of an experimental technique to resolve the
interface. With the aid of molecular dynamics simulations,55 we are
able to overcome this hurdle. The pairwise interaction of molecules,
separated by a distance r, is modeled by the Lennard-Jones (LJ)
potential

VLJ =4ϵ[(σ
r
)

12
− (σ

r
)

6
]. (12)

Here, ϵ and σ are the characteristic energy and length scales, respec-
tively. The potential is zero for r > rc, where rc is the cutoff radius,
which we set to rc = 2.5σ, unless otherwise specified.

Each wall is comprised of at least two layers of molecules ori-
ented along the (111) plane of a face centered cubic (fcc) lattice,
with the molecules fixed to their respective lattice sites. The fluid
molecules are initialized on a fcc lattice, whose spacing is chosen to
obtain the desired density, with initial velocities randomly assigned
so as to obtain the required temperature. The fluid in its equilibrium
state has a temperature T ≈ 1.1kB/ϵ and number density ρ ≈ 0.81σ−3.
The temperature is maintained using a Langevin thermostat with a
damping coefficient of Γ = 0.1τ−1, where τ =

√
mσ2/ϵ is the charac-

teristic time and m is the mass of the fluid molecule. The damping
term is only applied to the z direction to avoid biasing the flow. The
equation of motion of a fluid atom of mass m along the z component
is therefore given as follows:

mz̈i =∑
j≠i

∂Vij
∂zi

− mΓżi + ηi. (13)

Here,∑j≠i denotes the sum over all interactions and ηi is a Gaussian
distributed random force. The value of dynamic viscosity of the fluid
is μ ≈ 3.3ϵτσ−3 and the Reynolds number is Re ≈ 0.95, which corre-
sponds to the case with maximum wall velocity (U = ±0.075στ−1).
For all the cases considered, the numbers of fluid A and fluid B atoms
are 225 552 each and the numbers of top and bottom wall atoms are
354 56 each.

The LJ coefficients and relative number density (scaled by the
number density of the wall, ρw = 0.81σ−3) of the various cases
simulated are listed in Table I. The immiscibility of the two flu-
ids is modeled by choosing appropriate LJ interaction parame-
ters, such that the interatomic forces between them is predomi-
nantly repulsive. This is done by choosing a small value for epsilon

TABLE I. List of different test cases. Here, ϵ and σ are the characteristic energy and
length scales, respectively. ρ∗ is the relative number density, where it is scaled by the
number density of the wall, ρw = 0.81σ−3.

Wall-fluid A Wall-fluid B Fluid A-fluid B

Case ϵwf /ϵ σwf /σ ρ∗ ϵwf /ϵ σwf /σ ρ∗ ϵff /ϵ σff /σ ρ∗

1 0.4 0.95 0.95 0.6 0.95 0.95 0.2 3.0 0.95
2 0.2 0.95 0.95 0.6 0.95 0.95 0.2 3.0 0.95
3 0.1 0.95 0.95 1.0 0.95 0.95 0.2 3.0 0.95
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(which represents the depth of the potential well). For the results
presented here, the LJ parameters for interactions between fluid A
and fluid B are ϵff = 0.2ϵ, σff = 3.0σ. Since σff = 3.0σ, a cut-off radius
of rc = 5.0σ is used for the fluid A-fluid B interactions. For simplic-
ity, the two fluids are assigned identical fluid properties and only
the properties of the fluid-wall interactions are changed. The fluid
channel measures 153.0σ × 27.4σ × 144.0σ. The channel height is
determined such that the individual moving contact lines are iso-
lated from each other. This is ensured by choosing a channel height
such that the fluid-fluid surface tension reaches its equilibrium value
along the interface, before it is affected by the MCL on the opposite
wall.

The equations of motion were integrated using the Verlet algo-
rithm56,57 with a time step Δt = 0.002τ. The equilibration time is
determined by the time it takes for the fluid-fluid surface tension
to reach a steady value, which is 60 000τ (supplementary material).
The simulation is initially run until the flow equilibrates, after which
spatial averaging is performed by dividing the fluid domain into
rectangular bins of size ∼0.52σ × 0.54σ along the x–y plane, and
extending through the entire width of the channel. In addition to
spatial averaging, time averaging is done for a duration of 20 000τ
for the moving contact line problem.

Studies by Priezjev58 and Pahlavan and Freund59 have shown
that the stiffness of thermal walls affects the slip length and its depen-
dence on the shear rate. It is also well known that the property of the
secondary fluid in a two-phase flow governs the contact angle, which
in turn could affect the local stresses in the vicinity of the contact line
in the primary fluid. In this paper, for simplicity and in order to iso-
late these effects, the test cases are modeled with wall molecules fixed
to the lattice site.

1. Calculation of microscopic contact angle
and surface quantities from MD

In order to validate the contact angle model, we need to evalu-
ate the respective surface quantities and determine the microscopic
contact angle from MD simulations. We start by describing how the
microscopic contact angle is evaluated, for which the shape of the
interface needs to be defined first.

a. Determining the microscopic contact angle from simulation.
The distribution of number density of fluids A and B, along the
length of the channel (x direction), is presented in Fig. 3(a). It is
observed that the number densities of both fluids A and B drop
sharply and the profiles intersect within the interface region. Hence,

the fluid-fluid interface is defined as the loci of these intersections
(ρA = ρB) along the height of the channel, see Fig. 3(b). By fitting a
cubic polynomial function through these discrete points, a contin-
uous interface curve is obtained. Now, that the function describing
the shape of the interface is determined, the contact angle is evalu-
ated by computing the slope of this function relative to the wall at the
edge of the contact line region (CLR). Next, we define the interface
and contact line region.

b. Defining the interface region and the contact line region.
The width of the interface region is determined by locating its two
boundaries. The boundary of an interface region is defined as the
location where the local number density deviates by 1% of its bulk
value. This is defined based on Gibb’s definition of an interface,
where he defines an interface as a hypothetical dividing surface sep-
arating two homogeneous media. Hence, the interface region and in
turn the interface boundary are defined as where the fluid properties
deviate from its bulk value by 1%. In the case of the wall-fluid inter-
face region, the location of the boundary on the fluid side is given by
the height at which density layering in the fluid begins, depicted in
schematic shown in Fig. 4. On the other hand, the boundary on the
wall side is defined at a distance of 0.25σ away from the wall lattice
site. Similarly, the two boundaries of the fluid-fluid interface region
are determined by the location where the density decreases by 1%
of its bulk value. Now, the contact line region (or three phase zone)
can be defined as the intersection of these three interface regions.
The surface tension forces and the force due to surface dilatation are
evaluated at the edge of this contact line region.

c. Evaluating the surface quantities. Before we describe how
the individual surface quantities are evaluated we refer back to
Gibbs’ definition of a dividing surface (interface). Gibbs describes
the interface as a hypothetical dividing surface that separates two
homogeneous phases. In the homogeneous phase, all variables, such
as density, viscosity, and stress, have uniform values and the con-
stitutive equations apply uniformly. Any excess properties or fluxes
not accounted by the homogeneous phase are assigned to the divid-
ing surface. This analogy can be directly extended to the contact line,
formed by the intersection of two or more dividing surfaces. Here,
any excess surface quantities are assigned to the common line.

In order to compute the surface tension, the components
of stress tensor need to be evaluated first. The stress tensor is
computed by accounting for the forces acting on the fluid ele-
ment.60–62 The fluid element corresponds to the rectangular bins

FIG. 3. (a) Density profile of fluids A and B across the middle
of the channel. (b) The polynomial fit to the location of all
intersection points formed by the number density profiles of
fluids A and B. These results correspond to case 1.
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FIG. 4. Schematic showing how the boundaries of the inter-
face region and the contact line region (CLR) are deter-
mined. Here, an example of the density profile for a given
x and y locations is presented for both fluids A and B. The
two boundaries of the fluid-fluid interface region are deter-
mined by the location where the density decreases by 1% of
its bulk value. In the case of the wall-fluid interface region,
the location of the boundary on the fluid side is given by the
height at which density layering in the fluid begins, while
the boundary on the wall side is defined at a distance of
0.25σ away from the wall lattice site. Finally, the contact
line region (CLR) can be defined as the intersection of these
three interface regions.

FIG. 5. The components of linear stress in the x and y direc-
tions are plotted for (a) the fluid-fluid interface at the middle
of the channel (y = H/2) and (b) the wall-fluid interface at the
middle of fluid A (x = L/2, where L is the length of droplet A).
The results are for the static case corresponding to case 1.

formed by dividing the fluid domain. By spatially averaging the
stress, we obtain the average stress tensor in each bin. In Fig. 5, we
plot the stress components (σxx and σyy) across the fluid-fluid and at
the fluid-wall interfaces, where the anisotropy of stress around the
interface is observed. Knowing the components of the stress tensor,
we now calculate the surface tension as given by its mechanical def-
inition, γ =∫L2

L1
[PN − PT]dl.63 Here, PN and PT are the normal and

tangential components of the local stress tensor with respect to the
interface and dl is in a direction normal to the interface. The limits
of integration are chosen such that at l = L1 and l = L2 the stress is
isotropic (PN = PT). In order to evaluate the surface tension for the
fluid-fluid interface, the limits L1 = −5σ and L2 = 5σ are used. Since
we use inert walls,64 the wall-fluid interface surface tension can be
computed using the same mechanical definition as given above. The
limits of integration for the wall-fluid interface extend from the wall
to the middle of the channel. Next, we detail the steps involved in
evaluating the surface density and surface velocity.

Similar to surface tension, the surface density [ρ(s)] is evaluated
by integrating the bulk density of the bulk fluid across the width of
the interface region. Surface velocity [v(s)] on the other hand is eval-
uated by first computing the surface momentum by integrating the
bulk momentum across the width of the interface region and then
dividing it by the surface density. Finally, we present the steps used
to compute the surface viscosities.

The surface dilatational viscosity is evaluated by using the
relation between thermodynamic and mechanical surface tension

presented in Eq. (7), γ̄ =γ + κs∇(s) ⋅v(s). The thermodynamic
surface tension (γ) is found by evaluating the mechanical surface
tension (γ̄) far away from the contact line, where ∇(s) ⋅v(s) = 0 and
γ =γ̄. Then, the surface dilatational viscosity (κs) is found by fitting
the data of γ̄ − γ to κs∇(s) ⋅v(s), along the vicinity of the receding
contact line. The surface shear viscosity is computed by using the
momentum balance at the interface, Eq. (2). From looking at the MD
results, it is found that inertia and the jump in momentum due to
mass flux terms are negligible in comparison to the surface stress and
the jump in bulk stress terms. Hence, the surface momentum bal-
ance reduces to ∇(s) ⋅([̄γ − μs∇(s) ⋅v(s)]P + 2μsD(s))+[[T ⋅̂ns]] =0.
Using this relation, we can compute the surface shear viscosity (μs)
as it is the only unknown. Here, the surface dilatational and shear

TABLE II. List of surface dilatation (κs) and shear (μs) viscosities, corresponding to
different cases of wall-fluid properties. The units of surface viscosities are ϵτσ−3.

Wall-fluid A Wall-fluid B

Case κs μs κs μs

1 311 252 350 414
2 323 271 367 408
3 288 193 431 425
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viscosities are assumed to be a constant for a given interface. They
are computed for the top wall in the vicinity of the contact line and
for a wall velocity of u = 0.05στ−1. The list of surface dilatation and
surface shear viscosities corresponding to various wall-fluid inter-
faces is tabulated in Table II. The surface viscosities are not com-
puted for the fluid-fluid interface as the rate of surface dilatation is
found to be negligible as a result of the fluids being immiscible.

IV. RESULTS AND DISCUSSION
So far in this manuscript, we have presented the force bal-

ance at the moving contact line and in turn presented a model for
microscopic dynamic contact angle. This is presented in three dif-
ferent forms. In the first form, it is shown that the microscopic
dynamic contact angle is a function of the rate of surface dilata-
tion and the thermodynamic surface tension, using the Boussinesq
surface fluid model. Next, in the mechanical form, the thermody-
namic surface tension and the rate of surface dilatation are replaced
by the mechanical surface tension using the Boussinesq surface fluid
model. Finally, in the surface mass flux form, surface mass balance
is used to replace the rate of surface dilatation with mass flux of bulk
fluid into the interface. In this section, we validate these findings
and the microscopic dynamic contact angle by performing an MD
simulation of multiphase Couette flow problem with different veloc-
ities and different wetting properties. Based on the results from MD,
these findings are discussed in greater detail.

A. Surface mass balance at the interface
We start by validating the surface mass balance, presented in

Eq. (9). From the surface mass conservation, it is found that the rate
of surface dilatation is balanced by the mass flux of the bulk fluid
into (and out of) the interface. For a two-dimensional problem, the
rate of surface dilatation term becomes ∂u(s)/∂s and the equation for
mass conservation reduces to

ρ(s) ∂u(s)

∂s
=[[ρv]]. (14)

Here, s is in the direction tangent to the interface. Unlike the bulk
fluid, where the bulk mass balance under the assumption of incom-
pressibility (constant density) guarantees a divergence free flow or
no bulk dilatation, in the interface, the surface mass balance under
the assumption of incompressibility (constant surface density) does

not ensure zero surface dilatation. In fact, the rate of surface dilata-
tion is rather predicated on whether there is a bulk mass flux into
(or out of) the interface or not. In Fig. 6, we present the distribution
of bulk mass flux and the rate of surface dilatation along the wall,
in the vicinity of the advancing and receding contact lines. The data
presented are for interfacial properties corresponding to case 3 and
for three different cases of wall velocities (u = 0.025στ−1, 0.050στ−1,
and 0.075στ−1). The results show good agreement between the terms
corresponding to the convection of surface fluid and the mass flux
of bulk fluid into the interface. It is observed that, near the receding
contact line, the deceleration of the surface fluid results in a mass
flux out of the wall-fluid interface and into the bulk fluid. In contrast,
the acceleration of the surface fluid, in the vicinity of the advancing
contact line, leads to the bulk fluid flowing into the interface.

The rate of surface dilatation can be interpreted as a spatial
acceleration or linear strain rate, which is nonzero only in the vicin-
ity of a moving contact line. This is because the streamline on
approaching the contact line is forced to turn and hence decelerate
along the direction parallel to the interface. The presence of linear
strain rate is in line with previous numerical22,23,39,40 and experimen-
tal41 findings, where a sharp reduction in the magnitude of tangential
component of fluid velocity, in the vicinity of the moving contact
line, is observed. Here, the velocity magnitude reduces from a value
corresponding to no-slip (or finite slip), far away from the contact
line, to that corresponding to perfect slip, at the moving contact line.
This variation in slip is inseparable from the rate of surface dilata-
tion, in that we cannot have varying slip velocity without having a
rate of surface dilatation and vice versa. The importance of this lin-
ear strain rate (or spatial acceleration) in accurately defining the slip
boundary condition for a moving contact line problem has been dis-
cussed by Thalakkottor and Mohseni23 and Qian et al.40 Although
surface dilatation is not often discussed in the context of wetting,
this has been well established in the context of foam, emulsions, and
thin films.51

B. Mechanical and thermodynamic surface tension
As previously discussed, in the vicinity of the contact line,

the surface flow is not divergence free; hence, the mechanical sur-
face tension does not equal the thermodynamic surface tension in
this region. This is different from the usual assumption of them
being equal.42 As presented in Eq. (7), the mechanical surface ten-
sion equals the sum of thermodynamic surface tension and surface

FIG. 6. Verifying the mass balance along the fluid-wall inter-
face, in the vicinity of (a) the receding contact line and (b)
the advancing contact line. The results are for the case
corresponding to case 3.
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FIG. 7. Verifying the relation between mechanical and ther-
modynamic surface tension in the vicinity of (a) the receding
contact line and (b) the advancing contact line. The distri-
bution of mechanical surface tension is compared with the
sum of thermodynamic surface tension and surface dilata-
tion term. The results are for the case corresponding to
case 3.

dilatation. In Fig. 7, the distribution of mechanical surface tension
along the wall is compared to the sum of thermodynamic surface
tension and the rate of surface dilatation. It is compared for interfa-
cial properties corresponding to case 3 and for three different cases
of wall velocities (u = 0.025στ−1, 0.050στ−1, and 0.075στ−1). The
results show good agreement, thereby validating the relation pre-
sented in Eq. (7). Here, the thermodynamic surface tension is eval-
uated by computing the mechanical surface tension far away from
the contact line, where ∇(s) ⋅v(s) = 0 and γ =γ̄. The surface dilata-
tion viscosity (κs) is tabulated in Table II. In addition, by comparing
the distribution of surface tension in the vicinity of the contact line,
for a static and a dynamic case (Fig. 8), it is clearly seen that as
we approach the moving contact line, the magnitude of mechan-
ical surface tension for the dynamic cases begins to deviate more
from that of the static case and hence the existence of mechanical
surface tension gradient is demonstrated. From Eq. (7), it can be
concluded that the cause of this deviation between the mechanical
and thermodynamic surface tension is a result of the increased rate
of surface dilatation observed in the vicinity of the moving contact
line.

C. Validation of microscopic dynamic contact angle
model

The microscopic contact angle model is validated by comparing
the contact angles from several different cases of wall-fluid proper-
ties and for the varying wall velocities listed in Table III. The local
mechanical surface tension values and the rate of surface dilatation
are directly computed at the contact line (edge of the contact line
region) and substituted in Eq. (8) (the mechanical form) to obtain the

contact angle. The surface shear viscosity is tabulated in Table II. The
prediction made by the microscopic dynamic contact angle model
agrees well with the results of the MD simulations. For most cases,
the error is under 5%. For the limiting case of a stationary wall (U
= 0), the angle θ1 ≈ θ2 as dictated by Young’s equation for static con-
tact angle. This shows the consistency of both the MD simulation
setup and the methodology used to evaluate the local surface tension
force for the respective interfaces. Here, even though the results are
only presented for fluid A, the model is also validated for fluid B as
they share the same interface. The contact angle for fluid B is 180 − θ,
where θ is the contact angle for fluid A. The local mechanical sur-
face tension values at the contact line for respective interfaces are
tabulated for various test cases in Table IV.

Our findings appear to be contrary to the recent claim that
Young’s equation can describe the microscopic dynamic contact
angle,26,66 particularly the microscopic dynamic contact angle com-
puted at the edge of the contact line region at the molecular scales.
The reason for this apparent discrepancy is because in the work by
Fernandez et al. for a two fluid system, they computed the cumula-
tive tangential force exerted by the wall on the fluid within the three
phase zone (contact line region), instead of decomposing the forces
into respective force contributions from thermodynamic surface
tension and the rate of surface dilatation.

D. Mechanical surface tension gradient’s role
in determining the advancing and receding
contact angles

The gradient of mechanical surface tension, apart from making
an important contribution in determining the microscopic dynamic

FIG. 8. Comparison of gradient of mechanical surface ten-
sion for a static and dynamic case along the (a) wall and
(b) fluid-fluid interface. In (a), the results are shown for fluid
B, whose interface happens to coincide with the start of the
channel for this case. It can be observed that the gradient
exists over a distance of 20σ in the bulk liquid and its magni-
tude at the edge of the moving contact line almost doubles
that of the static equilibrium value. In (b), the oscillations
near the wall are a result of the layering phenomenon.65

These results correspond to case 2.
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TABLE III. The contact angle obtained from the MD simulation (Sim) is compared with that predicted by the microscopic
contact angle model (Mod) for different test cases. Here, the contact angles are measured with respect to fluid A and the
absolute relative error is presented. Here, θ1 and θ2 correspond to the advancing and receding contact angles as shown in
Fig. 2.

θ1 θ2

Case U (στ−1) Sim (deg) Mod (deg) Err (%) Sim (deg) Mod (deg) Err (%)

1 0.050 104.3 108 3.55 81.3 80.6 0.86

2 0.000 94.8 94.9 0.10 95.5 95.0 0.60
0.050 105.6 109.4 3.60 87.4 82.3 5.84

3 0.000 104.3 107.8 3.30 103.6 108.3 4.60
0.025 110.8 109.0 1.62 96.2 95.4 0.83
0.050 118.9 114.1 4.04 87.4 90.8 3.89
0.075 130.9 118.0 9.85 80.9 86.2 6.55

contact angle, also provides an explanation for the difference in con-
tact angle at the advancing and receding edges of a steadily trans-
lating droplet. This difference in the contact angles is verified in the
results presented in Table III, which also include the limiting case of
zero wall velocity so that θ1 ≈ θ2, which is in agreement with Young’s
equation. This is also consistent with the literature as the wall mod-
eled here is homogeneous and has no macroscopic roughness.67–69

Physically, the difference in contact angles is explained by referring
back to Fig. 8(a) and Table IV, from which it can be seen that the
mechanical surface tension along the wall-fluid interface decreases at
the receding edge, while it increases at the advancing edge, resulting

TABLE IV. Force contribution at the contact line due to mechanical surface tension
(Fγ̄) is presented. Here, θ1 and θ2 correspond to the advancing and receding contact
angles as shown in Fig. 2. Here, it can be seen that the deviation of surface tension
value in the dynamic case relative to the static case is significant. Here, the contact
angle is measured with respect to fluid A. As the domain is periodic in the z direction,
we assume the simulation to be two dimensional. Hence, the force presented is in
units of force per unit length (ϵσ−2) and the velocity has units of στ−1. The relative
change in surface tension value between the dynamic and static cases is negligible
for the fluid-fluid interface as compared to the fluid-wall interfaces.

Case U FBW
γ̄ FAW

γ̄ FAB
γ̄

1 0.050 θ1 2.80 ± 0.03 4.83 ± 0.02 11.37 ± 0.10
θ2 3.94 ± 0.03 3.37 ± 0.02 10.95 ± 0.10

2 0.000 θ1 3.32 ± 0.03 4.36 ± 0.03 14.56 ± 0.35
θ2 3.15 ± 0.03 4.32 ± 0.03 14.97 ± 0.35

0.050 θ1 2.64 ± 0.07 4.93 ± 0.03 10.73 ± 0.10
θ2 34.13 ± 0.07 3.78 ± 0.03 10.25 ± 0.10

3 0.000 θ1 2.12 ± 0.03 4.28 ± 0.03 9.55 ± 0.35
θ2 1.94 ± 0.03 4.46 ± 0.03 9.31 ± 0.35

0.025 θ1 1.26 ± 0.03 4.58 ± 0.03 11.14 ± 0.15
θ2 2.10 ± 0.03 3.99 ± 0.03 10.66 ± 0.15

0.050 θ1 0.90 ± 0.02 4.70 ± 0.03 12.20 ± 0.41
θ2 2.40 ± 0.02 3.70 ± 0.03 9.74 ± 0.41

0.075 θ1 0.47 ± 0.04 4.68 ± 0.04 11.61 ± 0.25
θ2 2.67 ± 0.04 3.60 ± 0.04 8.66 ± 0.25

in a momentum imbalance. Smaller values of the mechanical surface
tension at the receding edge indicate an increased local wettability
and hence the fluid-fluid interface tends to form a smaller contact
angle. In the same way, at the advancing edge, there is a larger value
of the mechanical surface tension, which results in a larger contact
angle. As previously discussed, this is directly attributed to the spa-
tial acceleration of the flow along the interface of the wall towards
the moving contact line.

V. SUMMARY AND CONCLUSION
In this manuscript, following Gibbs’ interpretation of an inter-

face, we found the force balance at the moving contact line and in
turn presented a model for the microscopic dynamic contact angle.
The model states that in the dynamic case the microscopic con-
tact angle is dependent on the rate of surface dilatation in addition
to thermodynamic surface tension of respective interfaces. We also
found that as a result of this rate of surface dilatation there is a dis-
parity between the mechanical and thermodynamic surface tension,
and they cannot be assumed to be equal in the vicinity of the moving
contact line. In addition to finding and interpreting the correct force
balance at the contact line, we demonstrated that in the case of forced
wetting one of the key factors responsible for the difference in con-
tact angle at the advancing and receding edges is the rate of surface
dilatation. We showed that in the vicinity of the moving contact line
the rate of surface dilatation is a result of varying slip velocity and as
such inseparable from it, that is, we cannot have varying slip velocity
without having a rate of surface dilatation and vice versa. All of these
findings were validated using molecular dynamics simulations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the time evolution of sur-
face tension of the fluid-fluid interface.

ACKNOWLEDGMENTS
This research was partially supported by the Office of Naval

Research and the National Science Foundation. The authors thank
Dr. A. C. DeVoria and Dr. P. Zhang for their help.

Phys. Fluids 32, 012111 (2020); doi: 10.1063/1.5125231 32, 012111-10

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/1.5125231#suppl


Physics of Fluids ARTICLE scitation.org/journal/phf

REFERENCES
1H. Joshi and L. Dai, “Quantitative predication of residual wetting film gener-
ated in mobilizing a two-phase liquid in a capillary model,” Petroleum 1, 342–348
(2015).
2E. J. Garcia, P. Boulet, R. Denoyel, J. Anquetil, G. Borda, and B. Kuchta, “Sim-
ulation of liquid-liquid interfaces in porous media,” Colloids Surf., A 496, 28–38
(2016).
3K. N. Prabhu, P. Fernades, and G. Kumar, “Effect of substrate surface roughness
on wetting behaviour of vegetable oils,” Mater. Des. 30, 297–305 (2009).
4M. Sakai, T. Yanagisawa, A. Nakajima, Y. Kameshima, and K. Okada, “Effect
of surface structure on the sustainability of an air layer on superhydrophobic
coatings in a water-ethanol mixture,” Langmuir 25, 13–16 (2009).
5E. Baird, P. Young, and K. Mohseni, “Electrostatic force calculation for an
EWOD-actuated droplet,” Microfluid. Nanofluid. 3, 635–644 (2007).
6Y. Son, C. Kim, D. H. Yang, and D. J. Ahn, “Spreading of an inkjet droplet
on a solid surface with a controlled contact angle at low Weber and Reynolds
numbers,” Langmuir 24, 2900–2907 (2008).
7M. K. D. Yang, C. Priest, and J. Ralston, “Dynamics of capillary-driven liquid-
liquid displacement in open microchannels,” Phys. Chem. Chem. Phys. 16,
24473–24478 (2014).
8H. Huang and X. He, “Fluid displacement during droplet formation at microflu-
idic flow-focusing junctions,” Lab Chip 15, 4197–4205 (2015).
9J. G. Kralj, H. R. Sahoo, and K. F. Jensen, “Integrated continuous microfluidic
liquid-liquid extraction,” Lab Chip 7, 256–263 (2007).
10H. G. Dobereiner, B. Dubin-Thaler, G. Giannnone, H. S. Xenias, and M. P.
Sheetz, “Dynamic phase transitions in cell spreading,” Phys. Rev. Lett. 93, 108105
(2004).
11D. Kumar and S. K. Biswas, “Effect of surfactant dispersed in oil on interaction
force between an oil film and a steel substrate in water,” Colloids Surf., A 377,
195–204 (2011).
12A. Cambiella, J. M. Benito, C. Pazos, and J. Coca, “Interfacial properties of oil-
in-water emulsions designed to be used as metalworking fluids,” Colloids Surf., A
305, 112–119 (2007).
13T. Young, “An essay on the cohesion of fluids,” Philos. Trans. R. Soc. London
95, 65–87 (1805).
14J. W. Gibbs, Collected Works, 1st ed. (Longmans, New York, 1928).
15J. Coninck and F. Dunlop, “Partial to complete wetting: A microscopic deriva-
tion of the young relation,” J. Stat. Phys. 47, 827–849 (1987).
16J. Coninck, F. Dunlop, and V. Rivasseau, “On the microscopic validity of the
Wulff construction and of the generalized Young equation,” Commun. Math.
Phys. 121, 401–419 (1989).
17J. C. Fernandez-Toledano, T. D. Blake, P. Lambert, and J. De Conninck, “On
the cohesion of fluids and their adhesion to solids: Young’s equation at the atomic
scale,” Adv. Colloid Interface Sci. 245, 102–107 (2017).
18R. G. Cox, “The dynamics of the spreading of liquids on a solid surface. Part 1.
Viscous flow,” J. Fluid Mech. 168, 169–194 (1997).
19O. V. Voinov, “Hydrodynamics of wetting,” Fluid Dyn. 11, 714–721 (1976).
20L. M. Hocking and A. D. Rivers, “The spreading of a drop by capillary action,”
J. Fluid Mech. 121, 425–442 (1982).
21R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi, “Mesoscopic mod-
eling of a two-phase flow in the presence of boundaries: The contact angle,” Phys.
Rev. E 74, 021509 (2006).
22T. Qian, X.-P. Wang, and P. Sheng, “A variational approach to moving contact
line hydrodynamics,” J. Fluid Mech. 564, 333–360 (2006).
23J. J. Thalakkottor and K. Mohseni, “Universal slip boundary condition for fluid
flows,” Phys. Rev. E 94, 023113 (2016).
24E. B. Dussan, “On the spreading of liquids on solid surfaces: Static and dynamic
contact lines,” Annu. Rev. Fluid Mech. 11, 371–400 (1979).
25C. Huh and L. E. Scriven, “Hydrodynamic model of steady movement of a
solid/liquid/fluid contact line,” J. Colloid Interface Sci. 35, 85–101 (1971).
26J. C. Fernandez-Toledano, T. D. Blake, and J. De Conninck, “Young’s equa-
tion for a two-liquid system on the nanometer scale,” Langmuir 33, 2929–2938
(2017).

27P. Zhang and K. Mohseni, “Theoretical model of a finite force at the moving
contact line,” Int. J. Multiphase Flow (unpublished); arXiv:1711.05653.
28T. D. Blake and M. Y. D. Shikhmurzaev, “Experimental evidence of nonlocal
hydrodynamic influence on the dynamic contact angle,” Phys. Fluids 11, 1995
(1999).
29Y. D. Shikhmurzaev, “Moving contact lines in liquid/liquid/solid systems,”
J. Fluid Mech. 334, 211–249 (1997).
30J. H. Snoeijer and B. Andreotti, “Moving contact lines: Scales, regimes, and
dynamical transitions,” Annu. Rev. Fluid Mech. 45, 269–292 (2013).
31T. T. Chau, “A review of techniques for measurement of contact angles and their
applicability on mineral surfaces,” Miner. Eng. 22, 213–219 (2009).
32J. Coninck and T. D. Blake, “Wetting and molecular dynamics simulations of
simple liquids,” Annu. Rev. Mater. Res. 38, 1–22 (2008).
33T. D. Blake, “The physics of moving wetting lines,” J. Colloid Interface Sci. 299,
1–13 (2006).
34D. Seveno, A. Vaillant, R. Rioboo, H. Adao, J. Conti, and J. De Conninck,
“Dynamics of wetting revisited,” Langmuir 25, 13034–13044 (2009).
35V. D. Sobolev, N. V. Churaev, M. G. Verlade, and Z. M. Zorin, “Surface tension
and dynamic contact angle of water in thin quartz capillaries,” J. Colloid Interface
Sci. 222, 51–54 (2000).
36H. P. Kavehpour, J.-H. Kim, and J. P. Rothstein, “Dynamic contact angle
measurements on superhydrophobic surfaces,” Phys. Fluids 27, 032107 (2015).
37G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University
Press, Cambridge, UK, 1953).
38H. Lamb, Hydrodynamics (Dover, Mineola, NY, USA, 1945).
39C. Denniston and M. O. Robbins, “Molecular and continuum boundary con-
ditions for a miscible binary fluid,” Phys. Rev. Lett. 87, 178302-1–178302-4
(2001).
40T. Qian, X.-P. Wang, and P. Sheng, “Molecular scale contact line hydrodynam-
ics of immiscible flows,” Phys. Rev. E 68, 016306-1–016306-15 (2003).
41B. Qian, J. Park, and K. S. Breuer, “Large apparent slip at moving contact line,”
Phys. Fluids 27, 091703 (2015).
42C. Vega and E. de Miguel, “Surface tension of the most popular models of water
by using the test-area simulation method,” J. Chem. Phys. 126, 154707 (2007).
43J. C. Slattery, L. Sagis, and E. S. Oh, Interfacial Transport Phenomena, 2nd ed.
(Springer, US, 2007).
44Consider the regions R1, R2, and R3 correspond to phases 1, 2, and 3, respec-
tively. Then, if the total bulk region is defined as R = R1 + R2 + R3, such that the
interfaces dividing them are not a part of either of the regions, then we can write
the bulk and surface force balance as independent equations. In a similar fashion,
this can be extended to force balance at the surface and contact line.
45Examples of these are evaporation at an interface and flow of surfactants
through the interface and the contact line.
46Examples of these are jump in pressure across a curved interface.
47X. Xia and K. Mohseni, “Unsteady aerodynamics and vortex-sheet formation of
a two-dimensional airfoil,” J. Fluid Mech. 830, 439–478 (2017).
48A. C. DeVoria and K. Mohseni, “The vortex-entrainment sheet in an inviscid
fluid: Theory and separation at a sharp edge,” J. Fluid Mech. 866, 660–688 (2019).
49J. Boussinesq, “Sur l’ existence d’une viscosite superficielle, dans la mince couche
de transition separant un liquide d’un autre fluide contigu,” C. R. Seances Acad.
Sci. 156, 983 (1913), available at https://gallica.bnf.fr/ark:/12148/bpt6k3109m.
image.f983.langFR.
50L. E. Scriven, “Dynamics of a fluid interface: Equation of motion for Newtonian
surface fluids,” Chem. Eng. Sci. 12, 98–108 (1960).
51L. M. C. Sagis, “Dynamic properties of interfaces in soft matter: Experiments
and theory,” Rev. Mod. Phys. 83, 1367 (2011).
52L. Y. Wei, W. Schmidt, and J. C. Slattery, “Measurement of surface dilatational
viscosity,” J. Colloid Interface Sci. 48, 1–9 (1974).
53D. O. Johnson and K. J. Stebe, “Oscillating bubble tensiometry: A method for
measuring the surfactant adsorptive-desorptive kinetics and the surface dilata-
tional viscosity,” J. Colloid Interface Sci. 168, 21–31 (1994).
54Y. Tian, R. G. Holt, and E. Apfel, “Investigations of liquid surface rheology of
surfactant solutions by droplet shape oscillations: Theory,” Phys. Fluids 7, 2938
(1995).

Phys. Fluids 32, 012111 (2020); doi: 10.1063/1.5125231 32, 012111-11

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1016/j.petlm.2015.10.005
https://doi.org/10.1016/j.colsurfa.2015.10.047
https://doi.org/10.1016/j.matdes.2008.04.067
https://doi.org/10.1021/la802763h
https://doi.org/10.1007/s10404-006-0147-y
https://doi.org/10.1021/la702504v
https://doi.org/10.1039/c4cp03910f
https://doi.org/10.1039/c5lc00730e
https://doi.org/10.1039/b610888a
https://doi.org/10.1103/physrevlett.93.108105
https://doi.org/10.1016/j.colsurfa.2010.12.049
https://doi.org/10.1016/j.colsurfa.2007.04.049
https://doi.org/10.1098/rstl.1805.0005
https://doi.org/10.1007/bf01206160
https://doi.org/10.1007/bf01217731
https://doi.org/10.1007/bf01217731
https://doi.org/10.1016/j.cis.2017.03.006
https://doi.org/10.1017/s0022112086000332
https://doi.org/10.1007/bf01012963
https://doi.org/10.1017/s0022112082001979
https://doi.org/10.1103/physreve.74.021509
https://doi.org/10.1103/physreve.74.021509
https://doi.org/10.1017/s0022112006001935
https://doi.org/10.1103/physreve.94.023113
https://doi.org/10.1146/annurev.fl.11.010179.002103
https://doi.org/10.1016/0021-9797(71)90188-3
https://doi.org/10.1021/acs.langmuir.7b00267
https://arxiv.org/abs/1711.05653
https://doi.org/10.1063/1.870063
https://doi.org/10.1017/s0022112096004569
https://doi.org/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1016/j.mineng.2008.07.009
https://doi.org/10.1146/annurev.matsci.38.060407.130339
https://doi.org/10.1016/j.jcis.2006.03.051
https://doi.org/10.1021/la901125a
https://doi.org/10.1006/jcis.1999.6597
https://doi.org/10.1006/jcis.1999.6597
https://doi.org/10.1063/1.4915112
https://doi.org/10.1103/physrevlett.87.178302
https://doi.org/10.1103/physreve.68.016306
https://doi.org/10.1063/1.4931915
https://doi.org/10.1063/1.2715577
https://doi.org/10.1017/jfm.2017.513
https://doi.org/10.1017/jfm.2019.134
https://gallica.bnf.fr/ark:/12148/bpt6k3109m.image.f983.langFR
https://gallica.bnf.fr/ark:/12148/bpt6k3109m.image.f983.langFR
https://doi.org/10.1016/0009-2509(60)87003-0
https://doi.org/10.1103/revmodphys.83.1367
https://doi.org/10.1016/0021-9797(74)90323-3
https://doi.org/10.1006/jcis.1994.1389
https://doi.org/10.1063/1.868671


Physics of Fluids ARTICLE scitation.org/journal/phf

55S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,”
J. Comput. Phys. 117, 1–19 (1995).
56L. Verlet, “Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules,” Phys. Rev. 159, 98–103 (2015).
57M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 1st ed.
(Clarendon Press, Oxford, England, 1987).
58N. Priezjev, “Effect of surface roughness on rate-dependent slip in simple
fluids,” J. Chem. Phys. 127, 144708-1–144708-6 (2007).
59A. Pahlavan and J. B. Freund, “Effect of solid properties on slip at a fluid-solid
interface,” Phys. Rev. E 83, 021602-1–021602-7 (2011).
60D. M. Heyes, “Pressure tensor of partial-charge and point-dipole lattice with
bulk and surface geometries,” Phys. Rev. B 49, 755–764 (1994).
61A. P. Thompson, S. J. Plimpton, and W. Mattson, “General formulation of
pressure and stress tensor for arbitrary many-body interaction potentials under
periodic boundary conditions,” J. Chem. Phys. 131, 154107 (2009).
62T. W. Sirk, S. Moore, and E. F. Brown, “Characteristics of thermal conductivity
in classical water models,” J. Chem. Phys. 138, 064505 (2013).

63J. G. Kirkwood and F. P. Buff, “The statistical mechanical theory of surface
tension,” J. Chem. Phys. 17, 338–343 (1948).
64M. J. P. Nijmeijer, C. Bruin, A. F. Bakker, and J. M. J. van Leeuwen, “Wetting
and drying of an inert wall by a fluid in a molecular-dynamics simulation,” Phys.
Rev. A 42, 6052–6059 (1990).
65P. A. Thompson and M. O. Robbins, “Shear flow near solids: Epitax-
ial order and flow boundary conditions,” Phys. Rev. A 41, 6830–6837
(1990).
66A. V. Lukyanov and A. E. Likhtman, “Dynamic contact angle at the nanoscale:
A unified view,” ACS Nano 10, 6045–6053 (2016).
67L. Gao and T. J. McCarthy, “Contact angle hysteresis explained,” Langmuir 22,
6234–6237 (2006).
68J. W. Krumpfer and T. J. McCarthy, “Contact angle hysteresis: A different view
and a trivial recipe for low hysteresis hydrophobic surfaces,” Faraday Discuss. 146,
103–111 (2010).
69Y. Yuan and T. R. Lee, Contact Angle and Wetting Properties, 51st ed. (Springer,
Berlin Heidelberg, 2013).

Phys. Fluids 32, 012111 (2020); doi: 10.1063/1.5125231 32, 012111-12

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/physrev.159.98
https://doi.org/10.1063/1.2796172
https://doi.org/10.1103/physreve.83.021602
https://doi.org/10.1103/physrevb.49.755
https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.4789961
https://doi.org/10.1063/1.1747248
https://doi.org/10.1103/physreva.42.6052
https://doi.org/10.1103/physreva.42.6052
https://doi.org/10.1103/physreva.41.6830
https://doi.org/10.1021/acsnano.6b01630
https://doi.org/10.1021/la060254j
https://doi.org/10.1039/b925045j

