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Hydrodynamic Force Decoupling Using a
Distributed Sensory System

Kevin Nelson and Kamran Mohseni , Senior Member, IEEE

Abstract—In this letter, we present a distributed pressure sensory
system, inspired by the lateral line found in fish, for estimating
hydrodynamic forces acting on an autonomous underwater vehicle.
By canceling these forces using the vehicle control system, the
dynamics of the vehicle can be decoupled from the state of the
surrounding fluid. We discuss a control scheme which combines
the measured hydrodynamic forces with a feedback controller
that is robust to disturbances and measurement errors, achieving
asymptotic tracking in the presence of bounded disturbances and
errors. We compare this robust lateral line controller to a baseline
robust controller not using the lateral line system and to a controller
using the lateral line with simple PD feedback. We simulate a
spatially and time varying velocity flow field on the scale of the
vehicle and show that the robust lateral line controller has improved
performance compared to both the baseline robust controller and
the PD controller using the lateral line system.

Index Terms—Marine robotics, sensor-based control, motion
control.

I. INTRODUCTION

MARINE vehicles operate in dynamic fluid environments,
such as oceans and seas. While the dynamics of a marine

vehicle can be represented by a finite number of ODEs, the
fluid dynamics are governed by the Navier-Stokes equations,
a set of partial differential equations. The environment has a
strong coupling to the dynamics of the vehicle which manifests
as pressure and shear stress distributions over the hull of the
vehicle. These pressure and shear distributions result in hydro-
static and hydrodynamic forces, which can be decomposed into
added mass forces, pressure and viscous damping, buoyant and
restoring forces, and wave forces [1].

Historically, control engineers have dealt with this coupling
by using Taylor series expansions to approximate the fluid
interaction forces as functions of the vehicle state. This allows
the kinetic equations to be written as functions of the vehicle
velocity relative to the fluid, rather than as a function of the
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Fig. 1. Fish and other aquatic organisms have evolved a sensory system known
as the lateral line to identify information about their fluid environment, from [14].

entire fluid state. However, this approximation can lead to inac-
curacies when the background flow is dynamic and the scale is
smaller than the vehicle length. There have been several control
techniques employed to account for hydrodynamic forces, such
as disturbance velocity estimators [2], sliding mode [3], [4]
and adaptive [5]–[7] controllers, Kalman filter based veloc-
ity/disturbance estimators [8], [9], neural network or machine
learning based estimators [10], [11], and robust nonlinear con-
trollers [12]. These techniques have varying degrees of success,
but all suffer from the same flaw: they attempt to determine an
integral quantity, the total hydrodynamic force, from a single
local measurement, the relative velocity of the vehicle with
respect to the flow.

However, while control engineers have been attempting to
design control techniques to achieve good performance, fish
and other marine organisms have been performing maneuvers in
the dynamic fluid environment they inhabit. Fish have evolved
a sensory system, known as the lateral line [13], containing a
distribution of specialized hair cell receptors called neuromasts
to directly measure the pressure and velocity distributions over
the surface of their body (see Fig. 1(a)). Most lateral lines sys-
tems contain two distinct types of neuromasts: sub-dermal canal
neuromasts (shown in Fig. 1(b)) and superficial neuromasts
(shown in Fig. 1(c)). Researchers suggest that the physiology of
the neuromasts diverged to provide sensitivity to complimentary
information about the surrounding fluid. For example, superfi-
cial neuromasts respond to lower frequency signals, whereas
canal neuromasts respond to higher frequency signals [15].
Additionally, superficial neuromasts are believed to measure the
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relative flow velocity over the skin of the organism [16] whereas
canal neuromasts measure the acceleration of the fluid [17].
Many researchers believe that fish use the lateral line in many
behaviors such as rheotaxis [18], schooling [19], detection
of obstacles and other organisms [20], predation [21], and
communication [22].

Seeing the benefit that the lateral line provides to aquatic
organisms has inspired many researchers to attempt to replicate
the sensing capabilities of this system for use in robotic applica-
tions. Ren and Mohseni developed theoretical models showing
the application of the lateral line to wake detection [23] and wall
detection [24]. Some researchers have fabricated custom sensors
to perform various task such as to measure flow rates [25]–[27]
and detect dipoles [28], [29]. However, manufacturing custom
sensors adds additional complexities, leading many researchers
to use off-the-shelf sensors to replicate the functionality of
the lateral line. Some researchers have used absolute pressure
sensors, for example, in [30], a linear array of absolute pressure
sensors was used in an attempt to determine the position, shape,
and size of various objects in a flow. In another work [31],
absolute pressure sensors were used to detect the angle of attack
of a marine craft for use in active yaw control; the system
was able to achieve reasonable results after advanced filtering
techniques were applied. Chambers, et al., attempted to use
absolute pressure sensors to detect the turbulent wake of a cylin-
der [32]; these sensors suffered from low resolution, requiring
amplification and high precision analog-to-digital converters to
achieve moderate sensor resolution. Free and Paley showed that
pressure sensors could be used to detect a Kármán vortex street
behind an obstacle [33]. Other researchers have shown that a
robotic fish with absolute pressure sensors can perform wall
following [34]. In underwater applications, the signal measured
by absolute pressure sensors is generally dominated by the large
static pressure of the water column. This necessitates that the
sensors have a large sensing range which leads to a reduction in
the sensitivity of the sensor. Conversely, differential pressure
sensors measure the pressure difference between two ports;
the static pressure is thus a function of the vertical separation
of the ports, which is generally much smaller than the height
of the water column. Thus, differential pressure sensors can
have a smaller sensing range leading to an increased sensitivity.
For many applications where absolute pressure is not needed,
the sensitivity of the sensor is more important than the range,
leading to differential pressure sensors being desirable. Xu and
Mohseni used differential pressure sensors to perform hydrody-
namic force estimation [14] and wall-detection [35]. Differential
pressure sensors have also been used to measure the relative
velocity of a vehicle [36], achieving better accuracy at higher
velocities; this setup was later validated in field tests [37].

In this letter, we use a distributed pressure sensory system
to directly measure the hydrodynamic forces acting on an au-
tonomous underwater vehicle (AUV) and decouple these forces
from the rigid body dynamics. If the hydrodynamic forces can
be measured and compensated for perfectly, the dynamics of the
AUV effectively reduce to that of a rigid body in a vacuum. This
approach is fundamentally different from traditional methods,
which approximate the hydrodynamic forces as a function of a

uniform flow over the vehicle; these traditional techniques break
down when the flow is not approximately uniform at the vehicle
scale. This continues our previous studies on the lateral line and
its application to vehicle control. We first proposed the idea of us-
ing the lateral line system for AUV control in [14]. To validate the
ability of the sensory system to measure hydrodynamic forces,
we created a prototype vehicle mock-up with pressure sensors
directly embedded into a PVC tube [35]. Rather than making
costly modifications to the hull of our underwater vehicle, we
developed a modular lateral line system composed of differential
pressure sensors and presented the design and validation of the
system in [38]. Additionally, in [39], we used our underwater
vehicle to experimentally validate this scheme by performing
station-keeping in the presence of arbitrary disturbances using
the lateral line combined with a proportional derivative (PD)
feedback controller. This letter differs from our previous work
by presenting an improved sensor fusion algorithm, using a non-
linear controller that is robust to measurement and model errors
rather than a simple PD controller, and by performing trajectory
tracking, as opposed to station-keeping. Trajectory tracking
adds additional complexity over station-keeping, since there
are non-vanishing inertial and Coriolis forces due to vehicle
velocities and accelerations. Typically, nonlinear controllers use
robust and adaptive feedforward techniques to compensate for
these forces. In this work, we use an adaptive term to compensate
for inertial and Coriolis forces that arise due to the trajectory.
We present simulation results to validate the fusion algorithm
and control scheme by simulating the vehicle in a double-gyre
inspired background flow and show that the lateral line with a
robust nonlinear controller outperforms both the same controller
without the lateral line system and a simple PD controller with
the lateral line system.

The paper is organized as follows. In Section II, we present
a model of the vehicle dynamics, the hydrodynamic force cou-
pling, and a nonlinear controller. Section III presents an algo-
rithm for calculating the hydrodynamic force from the discrete
pressure measurements of a distributed pressure sensory system.
Section IV presents a numerical simulation which we use to
validate our control scheme by simulating an AUV with a lateral
line in a spatially and time varying velocity field. In Section V,
we discuss the results of the simulation and in Section VI we
provide concluding remarks.

II. BACKGROUND

A. Vehicle Model

One of the most general formulations of underwater vehicle
dynamics is given by the governing equations for a rigid body
with external forces [1]:

MRBν̇ + CRB(ν)ν = τRB, (1a)

η̇ = J(η)ν, (1b)

where the vectorη ∈ Rn contains the position and orientation of
the vehicle in the inertial frame and ν ∈ Rn contains the linear
and angular velocity of the vehicle expressed in the body-fixed
frame with n representing the number of states. MRB ∈ Rn×n
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is a matrix containing the inertial terms of the rigid body, CRB :
Rn → Rn×n is a matrix containing the Coriolis/centrifugal
terms of the rigid body, which is a function of the which is a
function of the body-frame velocities, J : Rn → Rn×n repre-
sents the velocity transformation from the body-fixed frame to
the inertial frame, and τRB ∈ Rn is a vector of external forces
and moments acting on the rigid body. The vector of external
forces and moments can be written as

τRB = τ grav + τ fluid + τ dist + τ c, (2)

where τ grav is a vector of gravitational forces and moments,
τ fluid is a vector of hydrodynamic and hydrostatic forces and
moments, τ dist is a vector of unmodeled disturbance forces and
moments, and τ c is a vector of control and propulsive forces and
moments.

These external forces are functions of both the vehicle state
and the external environment state, which is, in general, in-
finite dimension and governed by complex partial differential
equations. For example, the hydrodynamic force/moment term,
τ fluid, is dependent on both the state of the fluid and the state
of the vehicle within the fluid, with the state of the fluid being
continuous in both space and time and governed by the Navier-
Stokes equation. However, it is difficult to fully observe the
state of the environment, which leads us to seek a reduced order
model that will provide sufficient accuracy for vehicle control.
Historically, these forces have been approximated as functions
of the vehicle states, i.e., these forces are linearized with respect
to the vehicle velocities and accelerations. This leads to the
dynamics of underwater vehicles generally being modeled by
the following set of differential equations which are functions
of the vehicle states [1]:

MRBν̇ + CRB(ν)ν +MAν̇ + CA(ν)ν

+D(ν)ν + g(η) + τ dist = τ c, (3a)

η̇ = J(η)ν, (3b)

where MA ∈ Rn×n represents the added mass matrix of the
fluid, CA : Rn → Rn×n is the Coriolis/centrifugal terms of
the added mass, D : Rn → Rn×n represents the drag terms,
g : Rn → Rn represents the gravitational and buoyancy forces
and moments, and τ dist ∈ Rn represents any unmodeled or
disturbance forces and moments. However, the fluid forces and
moments can be highly nonlinear and not well approximated by
this model, leading to large disturbance forces and moments. In
the next section, we will discuss how to directly calculate the
fluid forces from the surface pressure and shear distribution,
rather than approximating these forces as a function of the
vehicle state.

B. Hydrodynamic Forces and Moments

The total force acting on the rigid body due to the fluid can
be calculated from the surface integral of the pressure and shear
stress distributions over the surface of the vehicle [40], i.e.,

ffluid = −
∫
S

pn̂dS +

∫
S

1

Re
ω × n̂dS, (4)

where p is the pressure distribution over the vehicle’s surface,
S, n̂ is the normal vector, Re is the Reynolds number, and ω =
∇× u(x, t) where u is the fluid velocity. The fluid moments on
the vehicle can be found by,

mfluid = −
∫
S

r× (pn̂)dS +

∫
S

1

Re
r× ω × n̂dS (5)

where r is the moment arm. Aggregating the forces and moments
into a single vector yields τ fluid = [fTfluid, mT

fluid]
T.

Hence, for an incompressible fluid, the coupling of between
the fluid environment and the vehicle dynamics is not a function
of the entire fluid state, but rather a subset of the fluid state,
i.e., the fluid state at the surface of the vehicle. If the pressure
and shear distribution over the surface of the vehicle can be
measured, then the fluid forces and moments can be calculated
directly from eq. (4) and eq. (5), respectively. Furthermore, if
these forces and moments are injected into a vehicle control sys-
tem and adequate control authority is available, these forces and
moments can be counteracted by the control system, effectively
decoupling the vehicle dynamics from the fluid environment,
reducing the dynamics to that of a rigid body in a vacuum.

Two simplifications can be made to the vehicle model and
the fluid force estimator. First, many underwater vehicles are
designed to be neutrally buoyant so that the weight is in equi-
librium with the buoyant force. Thus, the gravitational force,
τ grav, no longer needs to be tracked. However, the pressure
distribution includes the hydrostatic pressure, in addition to the
dynamic pressure, which, when integrated, produces the buoyant
force acting on the vehicle. Since the buoyant force is already
being compensated by the weight of the vehicle, if the total
pressure distribution is integrated and the resultant force is fed
into the controller without first compensating for the hydrostatic
pressure, the inverse of the buoyant force will be erroneously
added into the control signal. To compensate, the hydrostatic
pressure is removed from the pressure distribution before the
surface integration is performed. A method for removing the
hydrostatic pressure is described in [39].

Second, a simplification can be made to the fluid force cal-
culation by noticing that the component of the force due to the
pressure dominates the component due to the shear stress for
high Reynolds number objects. The Reynolds number is a non-
dimensional number given by the equationRe = ρUL/μ,where
ρ is the density of the fluid, U is the velocity of the fluid, L is the
characteristic length dimension, and μ is the dynamic viscosity
of the fluid. Due to the high density of water, AUVs typically
operate at Reynolds numbers of greater than 104. Thus, the fluid
forces acting on the rigid body are dominated by the pressure
forces and the hydrodynamic force can be approximated as the
surface integral of the pressure distribution.

C. Control Scheme

If the above approximations hold, the fluid states can be
decoupled from the vehicle states by directly measuring and
integrating the hydrodynamic pressure distribution and feeding
the resultant hydrodynamic force into the motion controller. The
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Fig. 2. Picture of CephaloBot, our in-house developed AUV.

dynamics can be rewritten as

MRBν̇ + CRB(ν)ν + τ hyd + τ dist = τ c, (6a)

η̇ = J(η)ν, (6b)

where τ hyd is a vector of hydrodynamic forces and moments
resulting from the pressure distribution on the surface the rigid
body and τ dist are the unmodeled disturbance forces (which
includes the residual unmeasured forces due to the shear stress).
The vector of control forces and moments can be written as

τ c = τ̂ hyd + τ FB, (7)

where τ̂ hyd is the measured hydrodynamic forces and τ FB is a
stabilizing feedback term. Using Lyapunov analysis, a nonlinear
controller can be designed that is robust to disturbances and
measurement errors [41]. This controller applies to affine in the
control systems, which includes the dynamics in eq. (6). For
these dynamics, a stabilizing control law can be defined as

τ FB = Y θ̂ + J(η)T
[
Kss+

∫ t

0

(Kss+ βsgn(s)) dt

]
, (8)

with adaptive update law

˙̂
θ = ΓY TJTs, (9)

where s = ˙̃η + αη̃ is the filtered error system,Y is the regression
matrix of known dynamics, θ̂ is an estimate of the unknown
model parameters, and Ks, α, β, and Γ are controller gains. The
adaptive terms,Y θ, are designed to learn the inertial and Coriolis
parameters of the rigid body. This controller is capable of achiev-
ing asymptotic tracking which can be proved with Lyapunov
stability analysis. A similar controller without a hydrodynamic
force compensator was derived with stability analysis in [12];
for brevity, the stability analysis is not shown here.

III. METHODOLOGY

To validate the robust controller and hydrodynamic force
compensation, we developed a measurement algorithm to calcu-
late the forces from a distributed pressure system. This system
was designed for use with our in-house-developed underwater
vehicle, CephaloBot, shown in Fig. 2. Extensive details describ-
ing CephaloBot’s design and systems can be found in [42].

In this study, we will approximate CephaloBot’s geometry as a
cylinder and derive the sway, heave, yaw, and pitch components
of the hydrodynamic force. Thus, the hydrodynamic force is the
surface integral of the pressure distribution over a cylinder, that

Fig. 3. Diagram of the distribution of sensor modules over CephaloBot.
(a) Shows the body frame coordinate system which is affixed to the center of
volume of CephaloBot. (b) Shows a cross-section of CephaloBot with module
axial locations marked in yellow. (c) Shows the sensor module distribution: the
modules are organized into two rings of six modules with an additional six
modules connecting the two rings (for a total of eighteen modules).

is,

fhyd = R

∫ L/2

−L/2

∫ 2π

0

p (α, x) n̂dαdx (10)

where α represents the azimuthal angle and the unit normal
vector is n̂ = [0 cosα sinα]T. Performing the azimuthal
integration gives the force per unit length, that is,

dfhyd(x)

dx
= R

∮ 2π

0

p (α, x) n̂dα. (11)

Assuming that the azimuthal pressure distribution at a given
axial location x can be represented by a Fourier series, then the
orthogonality of trigonometric functions can be used to show that
that the hydrodynamic force due to the pressure distribution is
only dependent on the first Fourier sine and cosine coefficients of
the azimuthal pressure distribution. That is, the sway component
of the force acting on the body section depends on the first cosine
coefficient of the azimuthal pressure distribution and the heave
component depends on the first sine coefficient. Additionally,
the yaw and pitch moments can be calculated from the sway
and heave force per length distribution as in eq. (5). A vectorial
equation for the hydrodynamic force can be written as

τ hyd = πR

∫ L/2

−L/2
Π(x)dx, (12)

where Π(x) = [0 a1(x) b1(x) 0 xb1(x) xa1(x)]
T.

Equation (12) suggests that instead of needing to measure the
full azimuthal pressure distribution over the body, due to orthog-
onality, it is only necessary to measure sufficient information to
calculate the first Fourier mode of the pressure distribution. To
this end, we organized the lateral line into two rings of six evenly
spaced sensors as shown in Fig. 3. From the discrete pressure
measurements, the first Fourier coefficients can be calculated
at the two rings. We discuss a method for fitting these modes
to discrete measurements made by differential pressure sensors
in [39]. Since we want the coefficients as a function of distance
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along the length of the vehicle, we placed additional pressure
sensors in between the two rings which are used to interpolate
the coefficient between the rings. In [39], we assumed a linear
flow distribution between the two rings and linearly interpolated
a1(x) between the rings. In this work, instead of assuming
a linear flow distribution, we fit a function to the pressure
measurements of the intermediate sensors and interpolate a1(x)
using this function.

IV. SIMULATION RESULTS

A. Simulation Setup

To validate the proposed sensory system and control scheme,
we developed a numerical simulation to simulate the model of an
underwater vehicle’s dynamics given in eq. (6) and the effects of
a spatially and time varying background flow on the vehicle. The
simulation uses a fourth-order Runge-Kutta solver to integrate
the rigid body dynamics and external forces.

1) Vehicle Model: For this simulation, we modeled our cus-
tom AUV, CephaloBot. For actuation, the vehicle is equipped
with a rear propeller and four vortex ring thrusters (VRTs). The
rear propeller provides surge forces while the VRTs provide
sway forces and yaw moments. For this simulation, we assume
each thruster can provide a maximum force of 10 N and we
assume that the thrusters do not impact the fluid or sensors. In a
previous study [43], we experimentally determined the model
coefficients for CephaloBot which we use here. The vehicle
model matrices are

M = diag(m+Xu̇, m+ Yv̇, Iz +Nṙ),

C(ν) =

⎡
⎢⎣

0 0 −mv − Yv̇vrel

0 0 mu+Xu̇urel

mv + Yv̇vrel −mu−Xu̇urel 0

⎤
⎥⎦ ,

where m is the mass of the vehicle, Iz is the moment of inertia
about the body z axis,Xu̇ is the added mass along the bodyx axis
due to a surge acceleration, Yv̇ is the added mass along the body
y axis due to a sway acceleration, and Nṙ is the added moment
of inertial about the body z axis due to a yaw rotation. The
coefficients used are m=16.0 kg, Iz=2.27 kg m2, Xu̇=0.52 kg,
Yv̇=1.97 kg, Nṙ=0.0021 kg m2.

2) Hydrodynamic Model: For this simulation, we use a hy-
drodynamic model derived from potential flow to generate the
pressure distribution and hydrodynamic forces acting on the
vehicle. To calculate the sway drag on the vehicle due to a
uniform flow, we use the drag equation [44]

Fy =
1

2
ρv2relCD(Re)A, (13)

where ρ is the density of the fluid, vrel is the relative flow velocity
over the vehicle,CD is the drag coefficient of the object which is
a function of the Reynolds number, and A is the projected area.
Since the Reynolds number is a function of the relative velocity,
the drag force is a nonlinear function of the relative velocity
which is not well approximated by a polynomial.

For a nonuniform flow, we modified eq. (13) to be

Fy =
1

2
ρR

∫ L/2

−L/2
CD(Re)v2rel(x)dx, (14)

where vrel is a function of the distance, x, from the center of the
vehicle. The relative velocity at a distancex is given by vrel(x) =
v + rx+ vbg(x), where v is the velocity of the vehicle, r is the
angular velocity of the vehicle, and vbg is the sway component
of the background flow velocity at position x. The yaw drag
moment,Mψ , can be calculate by multiplying the quantity inside
the integral in eq. (14) by the distance along the body, x, before
performing the integration.

To generate the pressure distribution acting on the surface of
the vehicle, we used a modified potential flow model. In potential
flow, the pressure distribution over an infinitely long cylinder in
a flow is given by the equation [44]

p(α) = p∞ + ρv2rel

[
cos(2α)− 1

2

]
(15)

where p∞ is the free stream pressure, ρ is the density of the fluid,
and vrel is the relative velocity of the fluid. The potential flow
model predicts zero drag force; therefore, we modify this model
by adding a cos(α) term so that after integrating the pressure
distribution, the resulting force will be consistent with eq. (13).
The modified pressure model is

p(α) = p∞ +
ρ

π
Cd(Re)v2rel

[
cos(2α) + cosα− 1

2

]
. (16)

To calculate the force due to added mass, we use the model
from eq. (3). For the added mass coefficients, we use the fitted
parameters from our study [43]. We then modify eq. (16) to
account for the added mass, that is,

p(α) = p∞ +
1

2
ρD

ma

m

dvrel
dt

cos(α)

+
ρ

π
Cd(Re)v2rel

[
cos(2α) + cosα− 1

2

]
, (17)

where ma is the added mass coefficient, m is the mass of the
vehicle, and D is the cross-sectional diameter of the vehicle.
These modifications are made to simplify the complexity of
the simulation and are not required for the proposed sensing
algorithm, which remains valid for real world flow conditions
as we have demonstrated our previous study [39].

3) Background Flow: To demonstrate the performance of
the proposed controller in dynamic flow conditions, we used
a model of a time-dependent double-gyre [45] to generate a
temporally and spatially varying flow field. This model provides
a simple analytical equation for a time dependent flow-field, not
an approximate solution to the Navier-Stokes equations. This
background flow is given by the stream-function

φ(x, y, t) = A sin(πf(x, y)) sin(πy), (18)

where f(x, t) = a(t)x2 + b(t)x, a(t) = ε sin(ωt), and b(t) =
1− 2ε sin(ωt). The parameterA affects the amplitude of the ve-
locity field,ω is the period of oscillation, and ε affects the magni-
tude of oscillation in thex direction. The flow parameters used in
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Fig. 4. Velocity field of the background flow, generated from eq. (18) at t = 0.
The desired trajectory of the vehicle is shown by the red, dashed line.

this simulation wereA = 0.1m/s, ε = 0.3m, andω = 1 rad. The
velocity field can by calculated from the stream function given in
eq. (18) by νbg(x, y, t) = [ubg vbg rbg]

T = [−∂φ
∂y

∂φ
∂x 0]T.

The resulting velocity field generated from eq. (18) at t = 0 is
shown in Fig. 4.

B. Results

This section presents the results of the numerical simulation,
described above. To validate the proposed hydrodynamic force
compensation algorithm and control scheme, we simulated our
AUV traveling through the dynamic background flow described
above, using the lateral line system to measure the hydrody-
namic forces and moments acting on the vehicle and directly
compensating for them as described in Section II. For this
simulation, the controller gains used areKs = 25,α = 1,β = 1,
and Γ = 1. The desired trajectory was ηd = [sin( π10 t) 0 π

2 ]
T,

which is shown as a dashed line in Fig. 4. This trajectory was
chosen to maximize the sway hydrodynamic forces acting on the
vehicle. The hydrodynamic forces acting on the vehicle during
this simulation are shown in Fig. 5, along with the lateral line
measurements and measurement errors; the maximum measure-
ment error of the lateral line was 0.78 N, a relative error of
5.2%. The vehicle position, sway velocity, and controller force
calculations during this simulation are shown in Fig. 6(a); this
controller achieved a mean position error of 0.3 cm and an
root-mean-square (RMS) position error of 1.3 cm.

For comparison, we also simulated a baseline robust non-
linear controller without a hydrodynamic force compensation
system. This controller has the same form as the aforementioned
controller, except that since the controller is not directly
measuring the hydrodynamic forces, it assumes that the fluid
interaction with the vehicle can be approximated as a function
of the vehicle state as in eq. (3). The adaptive terms are designed
accordingly, i.e., to adapt for added mass and linear and quadratic
damping parameters in addition to the inertial and Coriolis
parameters. The flow conditions, simulation parameters, and

Fig. 5. Hydrodynamic sway forces from simulation of vehicle in test back-
ground flow. (Top) Hydrodynamic forces acting on the vehicle, Fy (shown by a
solid blue line), compared to the forces measured by the lateral line, F̂y (shown
by a dashed red line). (Middle) Shows the measurement error, F̃y = Fy − F̂y .
(Bottom) Relative measurement error of the lateral line.

controller gains are identical to the previous controller. The
results of this baseline controller are shown in Fig. 6(b), which
achieved a mean position error of 4.4 cm and a RMS position
error of 5.1 cm.

As a final comparison, we simulated the controller described
in [39], which uses the hydrodynamic force compensation
scheme described in this letter with a simple PD feedback
structure. The simulation and flow parameters are identical to
those listed above, with the controller gains identical to those
reported in [39]. The performance of this controller is shown
in Fig. 6(c); it achieves a mean position error of 24.3 cm and a
RMS position error of 28.1 cm.

V. DISCUSSION

These results show that the PD controller with hydrody-
namic force compensation achieves worse performance than
both robust nonlinear controllers. Theoretically, this controller
is only able to achieve bounded tracking stability, rather than
asymptotic tracking convergence, since it does not compensate
for measurement errors or for the inertial and Coriolis forces due
to the trajectory. However, this controller can achieve asymptotic
regulation to a setpoint if it is assumed that the measurement
error scales with velocity, since the inertial and Coriolis forces
and the measurement error vanish as the vehicle converges to
the desired setpoint.

While in theory both robust controllers confer asymptotic
stability, these simulations show that the controller using the
lateral line system to measure the hydrodynamic forces outper-
forms the baseline controller by a significant margin. This is
due to the dynamic background flow, which varies both in space
and in time, having a scale which is smaller than the vehicle
scale. The baseline controller attempts to adapt for the fluid
forces as a function of a single variable, the relative vehicle
velocity, which is not valid at this spatial scale. Additionally, the
integral term, which provides robustness to modeling errors, is
not able to learn the disturbances quickly enough at the given
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Fig. 6. Simulated results of the (a) robust nonlinear controller with hydrodynamic force compensation, (b) baseline robust controller, (c) PD controller with
hydrodynamic force compensation. Actual trajectories are denoted by a solid blue line and desired trajectories are denoted by a dashed red line. (Top) The actual
and desired inertial frame X trajectory. (Middle) The actual and desired sway velocities. (Bottom) The force commanded by the controller.

time scales. However, the lateral line is able to directly measure
the hydrodynamic forces acting on the vehicle, which eliminates
the majority of the complexity from the adaptive terms and any
disturbance terms that must be compensated for by the integral
term are small in comparison to the disturbances of the baseline
controller.

In simpler flow conditions, for example with no background
flow, the baseline controller can achieve comparable perfor-
mance to the hydrodynamic force compensation controller. For
missions in passive environments, it might make sense to forgo
the additional costs of a distributed sensory system. However,
as shown in this study, in dynamic flows, the lateral line can
improve the overall performance of the system and thus is
a desirable addition to an underwater vehicle. Additionally,
though not presented in this study, a lateral line can be used
to facilitate higher level decision making such as obstacle
avoidance or background flow estimation. In future studies,
we plan to investigate using the lateral line to facilitate these
behaviors on an AUV in addition to using it for hydrody-
namic force compensation. Additionally, we plan to extend the
sensing capabilities to measure the surge forces acting on the
vehicle.

VI. CONCLUSION

We presented a distributed sensory system capable of mea-
suring the pressure distribution on a submerged autonomous
underwater vehicle along with algorithms for calculating the
hydrodynamic forces and moments from this distribution.
Additionally, we presented a robust nonlinear controller that
leverages these measurements to effectively decoupling the
vehicle states from the fluid states. We developed a numeri-
cal simulation to validate our control algorithms and sensory
system, and show that a controller which leverages this sensory

system can outperform a modern robust nonlinear controller in
a dynamic background flow.
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