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Abstract
Recent efforts in soft-body control have been hindered by the infinite dimensionality of soft bodies. Without restricting
the deformation space of soft bodies to desired degrees of freedom, it is difficult, if not impossible, to guarantee that
the soft body will remain constrained within a desired operating range. In this paper, we present novel modeling
and fabrication techniques for leveraging the reorientation of fiber arrays in soft bodies to restrict their deformation
space to a critical case. Implementing this fiber reinforcement introduces unique challenges, especially in complex
configurations. To address these challenges, we present a geometric technique for modeling fiber reinforcement on
smooth elastomeric surfaces and a two-stage molding process to embed the fiber patterns dictated by that technique
into elastomer membranes. The variable material properties afforded by fiber reinforcement are demonstrated with
the canonical case of a soft, circular membrane reinforced with an embedded, intersecting fiber pattern such that it
deforms into a prescribed hemispherical geometry when inflated. It remains constrained to that configuration, even with
an additional increase in internal pressure. Furthermore, we show that the fiber-reinforced membrane is capable of
maintaining its hemispherical shape under a load, and we present a practical application for the membrane by using it
to control the buoyancy of a bioinspired autonomous underwater robot developed in our lab. An additional experiment
on a circular membrane which inflates to a conical frustum is presented to provide additional validation of the versatility
of the proposed model and fabrication techniques.
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1 Introduction

The advantages of soft robots have rapidly been gaining the
attention of the robotics community, as evidenced by this
journal’s special edition, among others. Their appeal lies
in the ability of compliant bodies and components to offer
more robust and adaptable performance than traditional rigid
systems. Flexible robotic structures are less prone to critical
failure, as they can deform to accommodate critical loads
while maintaining the ability to return to an operational state
(Trivedi, Rahn, Kier and Walker 2008; Rus and Tolley 2015;
Manti, Cacucciolo and Cianchetti 2016; Laschi, Mazzolai
and Cianchetti 2016). Similarly, a deformable body can
collapse down to fit through narrow openings in order
to reach normally inaccessible locations. When it comes
to tasks like grasping and tactile sensing, a compliant
manipulator allows for a much more sensitive touch by
deforming to fit the geometry of objects (Polygerinos,
Correll, Morin, Mosadegh, Onal, Petersen, Cianchetti, Tolley
and Shepherd 2017; Galloway, Becker, Phillips, Kirby,
Licht, Tchernov, Wood and Gruber 2016). Soft skins have
shown tremendous promise as sensors and tools for haptic
feedback (Tavakoli, Rocha, Lourenço, Lu and Majidi 2017).
Soft robotic elements are also inherently safer for human-
robot interactions, or for robots studying and manipulating
sensitive biological systems. For a review of the current state
of the art in soft robotic systems please refer to Trivedi, Rahn,
Kier and Walker (2008); Rus and Tolley (2015); Manti,

Cacucciolo and Cianchetti (2016); Laschi, Mazzolai and
Cianchetti (2016).

Deformable robotic platforms allow for a level of
versatility and adaptability unrivaled by rigid systems, which
could be integral to the next generation of intelligent,
adaptable robots (Trivedi, Rahn, Kier and Walker 2008).
Traditional robotic systems are built with a series of rigid
elements connected through different types of joints, thus
having a finite number of degrees of freedom (DOFs)
defining the system configuration. An elastic body, on the
other hand, can deform to desired shapes, having an infinite
number of DOFs associated with a continuous deformation
space. This increase in versatility comes with additional
challenges, however, associated with actuation and structural
stability. For rigid robots, a single, high-strength actuator can
be applied to each DOF to provide complete control authority
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Figure 1. Schematics of squid mantle tissue dominated by circular muscle fibers with both inner and outer tunics (left) and octopus
mantle tissue with circular, radial, and longitudinal muscle tissue (right).

over that DOF. If a traditional actuator is applied to a flexible
body, however, it will often only cause local deformation at
the location where the force/torque is applied. Furthermore,
the robot will likely be subjected to external loading
during operation, which may cause undesired deformation.
Therefore, soft robots and systems require novel distributed
actuation and sensing techniques for proper operation.

Many researchers in the soft robotic community have
sought inspiration for these new techniques from systems
already found in nature, since biological systems have
learned to successfully incorporate compliant elements,
including soft structures with no rigid elements whatsoever.
There is a class of biological structures, without rigid
support, known as muscular hydrostats (Kier 1992).
Muscular hydrostats are structures composed of interwoven
muscle fibers which provide both actuation and structural
support in three-dimensional space. These structures include
elephant trunks, mammalian tongues, and cephalopod
mantles, arms, and tentacles, to name a few. Muscular
hydrostats serve as an excellent model for the possible
realizations of soft robotic components, but octopus and
squid mantles, in particular, help to illustrate how fiber
reinforcement can be utilized to control the deformation
space of soft bodies.

The mantle is a muscular hydrostat that extends like a
hood over cephalopods and creates an internal fluid cavity
used for jet propulsion. The octopus mantle is composed of
three orthogonal muscle groups, namely radial, longitudinal,
and circumferential (Gosline and DeMont 1985). Figure 1
shows a section of the octopus mantle and the different
muscle groups. The octopus mantle is amazingly versatile,
allowing it to perform jetting, enlarge to scare predators,
and even squeeze through openings much smaller than the
octopus body size (Mather, Anderson and Wood 2010); in
fact, the size of a hole an octopus can squeeze through is
only limited by its rigid beak. The squid mantle, though
similar, is encased on either side by an array of helical,
interwoven, inextensible collagen fibers known as tunics,
as depicted in Figure 1. The angle between fibers in squid

tunics is surprisingly consistent, even across different species
(Ward and Wainwright 1972; Wainwright, Biggs, Currey and
Gosline 1976). The inextensibility of the tunic fibers couples
strains in the circumferential and longitudinal directions,
effectively reducing the deformation space of the squid
mantle to a family of cylindrical shells. We have shown
that within this limited deformation space, tunic fiber angles
observed in squid maximize the propulsive jet volume flux
for a given circumferential contraction (Krieg and Mohseni
2012). The limited deformation space also allows squid
to prioritize muscle groups. Since the deformation of the
squid mantle in the axial direction is limited by the tunic
fibers, it does not require longitudinal muscle groups to
oppose this extension. As a result, more of the muscle in
the mantle can be dedicated to the circular muscle groups,
providing more power to contract the mantle and expel a jet
with higher velocity (Bone, Pulsford and Chubb 1981). This
specialized mantle structure gives squid impressive jetting
capabilities, resulting in the fastest swimming speeds of any
marine invertebrate (O’Dor and Webber 1991; Anderson and
Grosenbaugh 2005).

In the context of this paper, the two mantle structures
(Figure 1) exemplify how fiber reinforcement in soft
structures creates a trade-off between versatility and
increased performance of a specialized action. Various
groups have exploited fiber-reinforcement techniques to
accomplish similar goals. Cacucciolo, Renda, Poccia,
Laschi and Cianchetti (2016) use fiber reinforcement
to create a nonlinear, bending fluidic actuator, focusing
on using the fiber-reinforcement to maximize bending
angle. Fiber-reinforcement has been used in dielectric
actuators to restrict deformation in one direction and
improve actuation along the planar direction perpendicular
to the fibers (Lu, Huang, Jordi, Kovacs, Huang, Clarke
and Suo (2012); Shian, Bertoldi and Clarke (2015)).
Huang, Lu, Zhu, Clarke and Suo (2012) created a fiber-
reinforced cylindrical dielectric elastomer actuator (DEA)
that restricts circumferential expansion to improve axial
actuation strains. Bolzmacher, Biggs and Srinivasan (2006)
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use fiber reinforcement to maintain prestrain in a wearable
DEA. Fabrics have been used as dense fiber meshes in
pneumatic actuators (Cappello, Galloway, Sanan, Wagner,
Granberry, Engelhardt, Haufe, Peisner and Walsh 2018)
and synthetic, 3D camouflaging skins which can inflate
to various predefined shapes (Pikul, Li, Bai, Hanlon,
Cohen and Shepherd 2017). Some fiber-reinforcement
schemes have been used to produce twisting deformations
(Ceron, Cohen, Shepherd, Pikul and Harnett 2018; Fang,
Pence and Tan 2011).

These studies have almost exclusively used fiber
reinforcement to prevent deflection along the axes of the
fibers, only scratching the surface of the passive control
over deformation that can be achieved with customized
fiber reinforcement. In contrast to the fiber reinforcement
techniques presented in the literature, we propose creating
arrays of intersecting fibers such that any deformation
within the plane of those arrays requires fiber reorientation,
resulting in a coupling of orthogonal components of strain,
similar to the effect of fibers in the squid mantle, that
can be tailored to any desired relative strain relationship.
The end result is the ability to create nearly any desired
space of possible deformations, both increasing desired
output for a given actuation and allowing soft actuator
density to be weighted toward a desired specialized action,
since antagonistic actuation forces are not needed to
prevent unwanted deformation. As an additional benefit,
the custom arrays of reinforcing fibers also result in
highly nonlinear stress-strain (stiffness) relationships in soft
composite structures that can be customized for given robotic
applications to increase structural stability in a final desired
configuration.

Typical investigations into modeling the effect of fiber
reinforcement on elastomers focus on determining the
material properties at a macroscopic scale, similar to
the approach used for calculating material properties in
composites (Agarwal and Broutman 1980). Lou and Chou
(1988, 1990) use a strain energy approach for Eulerian
and Lagrangian strains. Clark (1987) discusses a bimodular
approach to modeling zig-zag fibers. Peel (1998) uses
experimentally determined material properties to model the
stress-strain characteristics without directly characterizing
the fiber reorientation’s effect on the results. In general, these
studies consider the composite to be a single homogeneous
material with a highly nonlinear elastic modulus, due
to fiber reorientation, and then characterize that modulus
empirically.

Krieg and Mohseni (2017) took a different approach to
modeling highly-flexible planar composites by treating the
fibers and elastomeric matrix as independent systems that
interact through a local stress balance directly affected by
fiber orientation. This allowed the nonlinear elastic modulus
of the combined system to be calculated with high accuracy
over a large range of deformation. It was experimentally
shown that custom fiber reinforcement increased planar
expansion in a desired direction to 14 times that of an
unreinforced sample for an equivalent compression of the
thickness, which has the ability to drastically improve the
performance of soft actuators like DEAs. The analytical
stress-strain model was used to simulate energetics in the soft
structure, showing a reduction in required deformation work

(a) (b)

Figure 2. Fiber-reinforced membranes designed to inflate to a
hemisphere (a) and a conical frustum (b).

by as much as 83% for optimal fiber configurations and a
high modulus ratio compared to no reinforcement or parallel
reinforcing fibers.

In this study, we extend the analysis for passive
deformation control beyond the planar case and present
a technique for using custom arrays of reinforcing fibers
to control the 3D deformation space of a soft, elastomer
membrane. We develop a technique for modeling the effect
of fiber reinforcement on soft membranes, demonstrate the
improvements in geometric stability of a fiber-reinforced
membrane over that of an unreinforced membrane, subject
them both to various loads to evaluate their behavior,
validate the model for the simple cases of inflated spheres
and conical frustums (Figure 2), and use a fiber-reinforced
membrane to aid in the buoyancy control of an autonomous
underwater vehicle (AUV) developed in our lab (Krieg,
Klein, Hodgkinson and Mohseni 2011; Krieg and Mohseni
2010). This platform has been used regularly in our group
as a technology demonstrator (Krieg, Nelson, Eisele and
Mohseni 2018) and testing platform to analyze different
AUV control strategies and novel distributed sensing
techniques (Krieg, Nelson and Mohseni 2019). Interestingly,
the AUV also uses a bioinspired jetting propulsion system
(Krieg and Mohseni 2008) that utilizes flexible internal
cavities that are reinforced with helical metallic fibers to
prevent unwanted radial expansion during the pulsation
cycles. Similar techniques could be used in a variety of other
applications, including improving soft actuator performance,
creating soft pumps and valves, enabling advanced haptic
feedback, or reducing the complexity of packing the airbags
used in cars or to soften the landing of Mars rovers.

We begin by presenting our model of fiber geometry
in Section 2, followed by a description of the fabrication
process of the fiber-reinforced membranes designed after that
model in Section 3. The experiments designed to test the
validity of our modeling and the robustness of our fabrication
technique are then presented in Section 4, and their results
are reported in Section 5. Finally, we discuss the implications
and intricacies of our findings in Section 6 and conclude with
Section 7.

2 Modeling
Following the methods presented by Krieg and Mohseni
(2017), who solved the kinematics of fiber-reinforced
elastomeric sheets with two intersecting sets of fibers to
derive analytical nonlinear stress-strain models, this paper
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Figure 3. Schematic of a general, fiber-reinforced curved
membrane. e1 is the surface normal, e2 is fixed tangent to one
of the fibers, and the other fiber lies between e2 and e3.

takes the first step toward extending the modeling of fiber
arrays to arbitrary, convex fiber-reinforced surfaces.

A simple approximation of a surface in three-dimensional
space is the tangent to a point on that surface. If the
tangents do not vary with respect to the point chosen, the
surface is a planar sheet. Expressions for fiber reorientation
and associated stiffness variations were derived for this
case in Krieg and Mohseni’s work. Adding the next level
of complexity, a single second-order term, or curvature,
can be added to the approximation while maintaining
constant parallel tangent lines perpendicular to the plane of
principal curvature, forming a cylinder. The introduction of
an additional second-order term gives the curvature in both
principal directions on a surface to form a general, three-
dimensional curved surface.

In this section, we establish techniques for modeling
the fiber reorientation on a convex curved surface using
generalized curvilinear coordinates and focusing on the
reorientation of these components with respect to the
constant magnitude of a differential fiber length. We then
present this technique to solve for the canonical cases of
a sphere, where both principal curvatures are equal, and
compare it to the simpler cases of a circular conical frustum
and a planar sheet to show how this modeling would be
applied to a variety of geometries.

2.1 General Formulation

First, the nature of the constraint applied by the fibers must
be considered. The tensile modulus of the fiber is chosen
to be several orders of magnitude greater than that of the
elastomer matrix. With such a large difference, the fibers
are considered inextensible with all deformation occurring
in the elastomer, resulting in significant fiber reorientation.
Additionally, the fibers are considered to have a negligible
contribution to bending stiffness. These assumptions are
established by Krieg and Mohseni (2017) for a planar
sheet, and they can be used to establish a mathematical
relationship between fiber inextensibility and reorientation.
To accomplish this for three dimensional shapes, we first
consider the fiber length, which is defined as a curve along
the surface of the membrane.

The fiber length can locally be considered a vector on the
surface of the elastomer with a constant magnitude

L =

∫
C

|ds|, (1)

where the differential fiber length, ds, can be defined in terms
of general orthogonal curvilinear coordinates,

ds =
∂s
∂x1

dx1 +
∂s
∂x2

dx2 +
∂s
∂x3

dx3 (2a)

= h1dx1e1 + h2dx2e2 + h3dx3e3, (2b)

hi =

∣∣∣∣ ∂s
∂xi

∣∣∣∣ , (2c)

where hi are the scale factors, dxi are the components
in each base direction, and ei are the unit base vectors.
This provides a relationship between the components of
the differential fiber length. The problem is simplified
considerably if a coordinate system is chosen that defines
one of the components to be normal to the surface, as the
fibers are fixed to the surface and therefore contain no normal
component, as shown in Figure 3. This can be seen in Krieg
and Mohseni’s work, where Cartesian coordinates were used
with the z-axis normal to the plane; therefore, there was
no fiber component along this axis. In a cylindrical system,
the radial component is normal to the tangent plane and
fiber components are along the polar and longitudinal axes.
A spherical system also accomplishes this if the fibers are
completely defined using the polar and azimuthal angles.
For more complex systems, a local coordinate system can
be used to determine reorientation and then be transformed
to a global system.

As stated previously, the constant magnitude of a
differential fiber length provides a relation between its
components which can be used to determine the reorientation
of the fibers. First, the magnitude of the differential fiber
length defined in Equation (2) is considered. If we define the
first component along the surface normal, we get

dL

dγ
=

√(
h2
dx2
dγ

)2

+

(
h3
dx3
dγ

)2

, (3)

where dL = |ds| and γ is a general parameter that defines
the surface. We next need to define the remaining bases to
describe the components of the differential fiber length. By
fixing one coordinate direction tangent to one of the fibers,
which we will refer to as the fixed fiber, we are able to solve
for the movement of the second fiber, which we will refer to
as the reorienting fiber, in terms of the first. As the membrane
deforms, the fibers restrict deformation along their length,
and the membrane is only able to expand through fiber
reorientation, which takes place to maximize the planar area
encapsulated by the fibers. The differential area between two
sets of fibers is

dA = |ds1 × ds2| (4a)
= |ds1| |ds2| sin ψ , (4b)

where the subscripts of ds are used refer to the different fiber
sets. dA goes to a maximum when ψ, the angle between
the two fibers, goes to π/2. This is the critical configuration,
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where any additional deformation requires fiber extension, as
the planar area of the elastomer has already been maximized.
Following that the maximum area occurs when the fibers are
locally orthogonal and that the surface bases lie tangent to
the fibers in this configuration, we next assume that the fibers
do not slide past each other. Because of this, the differential
length of the fiber with respect to the parameter γ will be
constant throughout all stages of deformation and can be
solved for from one of the known stages. If the desired
configuration is chosen such that the two sets of fibers are
locally orthogonal, the expression for differential fiber length
with respect to γ simplifies to

dL

dγ
= h3

dx3
dγ

∣∣∣∣
f

, (5)

where f refers to the final configuration associated with
the critical angle. Then by applying this relationship to the
original fiber length equation shown in Equation (3), we get
an equation for fiber reorientation at any configuration as(

h3
dx3
dγ

∣∣∣∣
f

)2

=

(
h2
dx2
dγ

)2

+

(
h3
dx3
dγ

)2

, (6a)

dx2
dγ

=
1

h2

(h3 dx3
dγ

∣∣∣∣
f

)2

−
(
h3
dx3
dγ

)2
0.5

, (6b)

which relates the two surface components of the fiber and
can be used to describe the kinematics of the fiber-reinforced
membrane. If the desired configuration is chosen as anything
other than an orthogonal fiber mesh, Equations (5) and (6)
must simply be modified to account for the additional
differential terms.

This technique allows us to describe the kinematics of
fiber reorientation that govern the deformation space of the
reinforced membrane. For specific geometries, a constraint
can often be defined that simplifies the closed-form solution
of the model. In Sections 2.2 and 2.3, we illustrate this
concept by defining desired membrane geometries that
we use as the critical cases of fiber reorientation. To
accomplish this, we define an orthogonal mesh of fibers
on the desired surface. Deformation of the membrane past
this critical configuration would require fiber extension,
which is limited by the fibers’ high tensile strength. In the
following sections, several special cases are presented where
the membranes deform from a flat membrane to their final
desired configuration.

2.2 Special Case: Sphere
To demonstrate an example of the kinematic modeling
described above, we assume a simple case of a system with
two equal principal curvatures, which is that of a sphere. As
such, we adopt a spherical coordinate system to describe the
symmetry associated with this configuration with radius R,
polar angle φ, and azimuthal angle θ, shown in Figure 4. By
applying this to Equation (3), we obtain

dL

dγ
=

√(
ρ
dθ

dγ

)2

+

(
R
dφ

dγ

)2

, (7)

where the polar radius ρ = R sinφ.

Figure 4. Schematic of the fiber-reinforced spherical
membrane at an intermediate stage of inflation. The circular set
of fibers that act along the θ direction restrict the polar radius ρ,
while the second set of fibers straighten to form major arcs
along the φ direction, resulting in hemispherical geometry at full
inflation. The origin is set at the center of curvature and not the
center of the clamped edges of the circular membrane to keep
the radial coordinate normal to the surface.

If we choose to define the desired configuration to be
a hemisphere at the critical case of fiber reorientation, we
can establish one set of fibers as major arcs along the polar
angle φ. To complete the fiber mesh, a set of fibers needs
to be applied in the orthogonal direction, which form rings
along the azimuthal angle θ. This layup can be seen in
an intermediate stage of inflation in Figure 4. We want
the hemisphere to be formed by inflation of a flat circular
membrane. This leads us to orient the fiber circles along
the θ direction to be concentric with the outer edge of the
clamped membrane, making the rings have constant polar
radii through all stages of deformation. This makes ρ a
convenient parameter to describe the geometry, so we set γ =
ρ. Additionally, while transitioning between the flat plate,
which can be treated as a spherical cap with an infinite radius,
and the hemisphere, we assume that the membrane maintains
the geometry of a spherical cap at every point of inflation.
This allows for a kinematic description of the membrane’s
geometry to be established without requiring knowledge of
the stresses experienced by the membrane. Justification for
this approximation can be found in Appendix A. We can then
characterize the polar angle φ and its spatial derivative as

φ = sin−1
( ρ
R

)
, (8a)

dφ

dρ
=

1

R ·
√

1−
( ρ
R

)2 . (8b)

As shown in Equation (5), the magnitude of the differential
fiber length with respect to the parameter γ can be defined
by its final configuration. This corresponds to when the
fibers form major arcs along the φ direction. Presenting this
mathematically, we obtain

dL

dρ
= R

dφ

dρ

∣∣∣∣
f

=
1√

1−
(
ρ
a

)2 , (9)
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where a is the inner radius of the membrane clamp ring
(shown in Figure 12), which is the radius of the final
hemisphere, R.

Finally, the unknown component of the reorienting fiber
can be solved for by applying the relations established in
Equations (8b) and (9) to Equation (7) and rearranging the
expression to give

dθ

dρ
=

√
1

1−( ρa )
2 − 1

1−( ρR )2

ρ
. (10)

Then, solving for θ as a function of parameter ρ simply
requires integration,

θ = θ0 +
a

ρ

√
1−

(ρ
a

)2√
1−

( ρ
R

)2
√

1

1−
(
ρ
a

)2 − 1

1−
(
ρ
R

)2 F (sin−1
(ρ
a

)
,
( a
R

)2) (11)

where F (ψ,m) is the incomplete elliptical integral of the
first kind, see Abramowitz and Stegun (1972).

As the membrane is treated as a spherical cap, we can
solve for the radiusR used in Equation (11) from the volume

V =
1

3
π
(
R−

√
R2 − a2

)2 (
2R+

√
R2 − a2

)
. (12)

V ranges from 0 in the planar configuration to the critical
volume of the inflated membrane, which can be determined
by setting the radius of curvature to a

V =
2

3
πa3. (13)

Once the radius R is determined with Equation (12) and
used to solve for θ (Equation (11)) and φ (Equation (8a)),
the above analysis provides the spatial configurations of the
fibers at all inflation levels, which can be used to determine
the configuration needed to fabricate a flat membrane.

2.3 Special Case: Conical Frustum
In addition to the spherical membrane, a membrane which
deforms to a conical frustum from a flat plate has also
been designed to demonstrate the versatility of the proposed
model. The modeling for this new geometry progresses in
a similar fashion to that of the spherical membrane, so
the first steps are the adoption of an appropriate basis and
the definition of the differential fiber length. For a circular
conical frustum, cylindrical coordinates provide a convenient
coordinate system (Figure 5); however, unlike the case of the
spherical membrane, the fibers can have components in all
three coordinate directions. To limit the final, critical case,
circular rings along the θ direction, similar to the spherical
membrane, are used in conjunction with radial fibers which
form the conical surface. As such, the expression for the
differential fiber length of the reorienting fibers is

dL

dρ
=

√
1 +

(
ρ
dθ

dρ

)2

+

(
dz

dρ

)2

. (14)

Similar to the approach taken in the spherical case where
an approximation of the geometry during intermediate stages

Figure 5. Schematic of the geometry of a conical frustum at an
intermediate stage of inflation. The circular set of fibers that act
along the θ direction restrict the radius ρ, while the second set
of fibers straighten to form the sides of the conical frustum. The
conical frustum’s height, h, base radius, a, and top radius, b, are
also shown.

assumed a spherical cap, an approximation of the conical
frustum provides information on the fiber reorientation
in the conical case. As the membrane forms a circular
conical frustum in both the initial planar and final critical
configurations, the membrane is approximated to maintain
this shape through every stage of inflation. From this
geometry, the differential component of the fiber length
along the longitudinal axis can be defined as

z =
h

a− b
(a− ρ) , (15a)

dz

dρ
=
−h
a− b

, (15b)

where a is the inner radius of the membrane clamp ring and
b is the radius of the innermost ring along the angle θ, as
shown in Figure 5. From the desired final configuration, we
know that there is no component of the radial fiber acting
along the θ direction; therefore, the differential fiber length
with respect to ρ through all stages of inflation can be defined
as

dL

dρ
=
dz

dρ

∣∣∣∣
f

=

√
1 +

hf
b− a

, (16)

where hf is the height in the final configuration. By
combining Equations (15b) and (16) and solving for the
unknown fiber component,

dθ

dρ
=

1

ρ

√
h2f − h2

(a− b)2
, (17)

θ = θ0 +

√
h2f − h2

(a− b)2
ln ρ , (18)

we have the last coordinate needed to describe the fiber
position during every level of inflation. This includes the
initial configuration, which is solved by setting h = 0 and
is used to determine the layup used in Section 3.
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Figure 6. Schematic of a differential fiber element in a planar
sheet with a fiber angle denoted by ψ. Fiber lengths are equal
to define the x-y coordinate system, but due to the equivalence
of parallelogram elements proven in Section 2.5 of Krieg and
Mohseni (2017), this model is valid for any parallelogram with
angle ψ.

2.4 Special Case: Planar Sheet
Our previous examples focused on extending the analysis
used for planar sheets to arbitrary curved surfaces, but the
same techniques used for arbitrary curvatures can be applied
to the simplified kinematics of a sheet which maintains its
planar geometry when deformed. Besides describing how a
flat membrane would deform, modeling for a planar sheet
would provide a first order approximation and linearization
for a general manifold around a point. As such, we can look
into the characteristics of the planar sheet to approximately
predict how the material will perform for a curved surface.
For this case, Cartesian coordinates are adopted, with scale
factors equal to 1, which simplifies Equation (3) to

dL

dγ
=

√(
dx2
dγ

)2

+

(
dx3
dγ

)2

(19)

For straight fibers, like those used by Krieg and Mohseni
(2017), the differential components of the fiber lengths do
not vary in space, and the magnitude of the differential
fiber length is purely a function of its planar components.
This allows Equation (19) to be simplified and for the
global kinematics to be defined by a single quantity ψ, the
acute angle between the fibers. Defining e2 along the fiber,
the components of a differential length of the second fiber
become a projection of dL,

dx2 = dL · cosψ , (20a)
dx3 = dL · sinψ , (20b)

where ψ is the angle between the two fibers. This projection
reaches a maximum at the critical angle π/2,

dL = dx3

∣∣∣
f
. (21)

By rotating the coordinate system such that the
coordinates act between the nodes of the quadrilateral
element formed, as shown in Figure 6, we are able to obtain
the principal strains in the material. Determining the distance
between the nodes of a differential element along the x-axis,
we get

lx =
√

(dL− dx2)2 + dx23 , (22a)
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Figure 7. Stress-strain relationship for the soft composite
sheets with various initial fiber angles, taken from Figure 11 of
(Krieg and Mohseni 2017). The solid lines in are calculated from
the analytical stress-strain model in (Krieg and Mohseni 2017).

=

√
dL2(1− cosψ)2 + dL2sin2ψ , (22b)

=
√

2dL2 (1− cosψ) . (22c)

By a similar process, the distance between the nodes of
a differential element along the y-axis can be determined,
leading to

ly =
√

2dL2 (1 + cosψ) . (23)

Defining the strains as the displacement between the
initial and current configurations with respect to the initial
configuration, the strains become

εx =

[
1− cosψ
1− cosψ0

]0.5
− 1 , (24a)

εy =

[
1 + cosψ
1 + cosψ0

]0.5
− 1 , (24b)

where ψ0 is the initial angle between the fibers. These are the
exact kinematic expressions obtained by Krieg and Mohseni
(2017), which are then used to determine the nonlinear
stress-strain response of the material.

Ultimately, any deformation of these soft structures will
be the result of some external loading, such as stresses
imposed by soft actuators. As an example, consider a DEA
with conductor plates oriented parallel/tangent to the surface,
which will create compressive stress in the normal direction
resulting in planar expansion. By introducing a term for
the total compression of the soft material, which is coupled
to the material Poisson ratio, the two planar components
of strain were related to the third component of strain in
the sheet normal direction (Krieg and Mohseni 2017), and
reinforced sheets were shown experimentally to produce
planar expansion in a desired direction up to 14 times that
of an unreinforced sheet, matching well with the kinematic
model associated with fiber reorientation.

As the sheet is compressed, the fiber angle increases
to account for planar expansion, and the elastic modulus
of the entire composite structure increases significantly. In
order to model the nonlinear stress-strain relationship in
fiber-reinforced sheets under large deformations analytically,
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Krieg and Mohseni (2017) considered the elastomeric matrix
and fiber arrays as independent systems that interact through
local stresses in the planar directions to create the constrained
deformations. The unreinforced elastomer is an isotropic,
homogeneous material, meaning that compressing a sheet
of the elastomer results in an outward strain in each of
the planar directions as governed by the material’s Poisson
ratio. When the sheet is reinforced by fiber arrays, the
planar strains are instead governed by the fiber orientation,
as described previously. The stresses transferred between the
fibers and elastomeric matrix in the planar directions can then
be calculated as the stresses required to create the reinforced
sample strains.

Figure 7 shows the stress-strain relationship for several
flat, fiber-reinforced sheets with different initial fiber angles,
along with the analytical model for the total stress and strain.
The analytical modeling shows excellent agreement with
measured stress and strain data, validating the methodology.
As a first order approximation, small regions of a general
3D sheet can be considered planar to solve for local stress-
strain relationships, assuming that the characteristic size of
that region is small compared to the radii of curvature.
Then, the local stress-strain relationship can be integrated
over the entire surface to get the macroscopic relationship.
It should also be noted that there is a significant increase
in elastic modulus as the fiber angle approaches the critical
value. This stiffening associated with fiber reorientation is
important because the structure will be easily deformed
while in a resting state, but in the final configuration,
fiber reinforced sheets will attain much higher structural
stability. In section Sections 4.3 and 4.4, we discuss specific
applications of a fiber reinforced sheet that deforms into
a hemisphere when pressurized, namely using the device
as either a flexible buoyancy bladder or as an appendage
interacting with external loading. In both applications, the
drastic increase in stiffness at the final configuration aids
in the desired application. The increase in stiffness prevents
rupture of the buoyancy bladder at increased depths and
also helps maintain the desired shape even under significant
external loading.

3 Fabrication
Fabrication of the membranes tested in this study was
conducted in two main steps: fiber layup (Section 3.1) and
two-stage elastomer molding (Section 3.2).

3.1 Fiber Layup
The fiber-reinforcement patterns for the membranes
designed for this study were prepared on 3D-printed molds
(3D Systems ProJet MJP 2500 Plus). The mold designed
for the spherical final configuration is shown in Figure 8.
Extruded posts trace the path of each fiber, whose orientation
was determined based on the modeling in Section 2. The
maximum fiber density is determined by the ability to lay out
these posts without them crossing the path of another fiber.
Small extrusions jut out from each post to raise the fiber off
the base of the mold, ensuring that elastomer will encase as
much of the fiber as possible during the molding process. If
the fibers make contact with the base of the mold, it is likely
that they will delaminate while removing the membrane

(a) (b)

Figure 8. CAD model of membrane mold base for
spherical-configuration fiber layup (a) and completed
fiber-reinforcement mesh (b). The outermost circular fiber is
included to provide extra stiffness in the completed membrane
at the clamping surface.

from the mold, ruining the sample in the process. The larger
posts on the outer edge result in holes for clamping screws
and serve as an anchor point for each of the radial fibers.

Cotton fibers were chosen to enhance bonding with
an elastomer matrix. Ecoflex 30 elastomer (Smooth-On,
Inc.) was chosen as the matrix of the composite due to
its combination of large strain at rupture (allowing for
large deformations) and stiffness (to prevent issues with
clamping). The fibers are arranged as seen in Figure 8, with
circular fibers shown in orange and radial fibers shown in
blue. An additional, outermost circular fiber lies under the
clamp to provide extra, more uniform stiffness for a proper
seal with the clamp base (see Section 4.1 and Figure 8).

While the radial fibers have anchor points to aid in the
layup process, the circular fibers do not have anything to
hold them in place. Therefore, they are laid down first so
the radial fibers can hold them in place once the layup is
completed. Each circular fiber was pre-tied with a simple
noose knot before being placed on the mold base (Figure 9b)
and tightened around its respective guide posts. The two
ends of the fiber were then tied with a square knot before
being trimmed as short as possible. Finally, the knot was
coated with a cyanoacrylate glue (Loctite Ultragel Control)
to prevent untying at high membrane stresses (Figure 9c).

Looming the radial fibers is significantly less difficult than
looming the circular fibers. For each fiber, a knot was tied
around the anchor at one end of a fiber profile (Figure 9e).
While maintaining tension in the fiber, the fiber was pulled
around the proper guide posts before tying the same knot
on the opposite anchor point (Figure 9f). Care was taken to
ensure that the fiber was fully extended before tying the final
knot and trimming loose ends (Figure 9g).

The fiber-layup method presented here differs from
previous work which has utilized various methods for laying
up fibers, such as molded cavities for fiber alignment
(Galloway, Polygerinos, Walsh and Wood 2013), rubber
cement for fiber adhesion (Bishop-Moser, Krishnan, Kim
and Kota 2012), linear fiber layups on elastomeric tapes
(Huang, Lu, Zhu, Clarke and Suo 2012), embroidered fibers
with soluble supports (Ceron, Cohen, Shepherd, Pikul and
Harnett 2018), or loomed fibers encased in injection molded
elastomer (Krieg and Mohseni 2017), in that it provides a
rigid support structure for laying arbitrary, planar, curved
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fiber patterns. Existing processes do not provide a stable base
for tensioning planar, curved fibers in soft elastomers while
sufficiently preventing deviation from the desired curve,
which is necessary for the samples in this paper. Without
this tension to ensure that the cotton fibers are taut, the fibers
could potentially retain some extensibility, which invalidates
the fiber inextensibility assumption made in Section 2.

3.2 Two-Stage Molding Process
Molding of the fiber-reinforced membranes took place in
two stages. For each stage, the Ecoflex 30 elastomer was
thoroughly mixed and degassed in a vacuum chamber before
being poured. Each mold was also sprayed with Universal
Mold Release (Smooth-On, Inc.) to aid in removing the
membrane from the mold. The first stage embedded the
completed fiber layup (Figure 9h) in elastomer. After pouring
the elastomer over the fibers, the mold (Figure 10) was
placed back into the vacuum chamber to pull elastomer
between the cotton threads of the fibers. This helped to
ensure proper bonding between the elastomer and the fibers.
After degassing, a thick acrylic disk was placed over the open
surface of the mold, the mold and disk were flipped upside
down to allow any residual bubbles to rise to the surface that
is filled in stage 2, and a weight was placed on top while the
elastomer cured.

The second stage started with the output of the first stage
and the stage 2 mold, both shown in Figure 10. The pattern
seen on the surface of the half-completed membrane is
the negative of the guide posts, anchor points, and clamp
holes. This molding stage brought the membrane to its final
thickness and filled in all of the cavities left by the guide
posts while leaving holes for the clamp screws and anchor
points. After placing the first half of the membrane into
the stage 2 mold, cleaning the surface of the sample with
rubbing alcohol, and pouring elastomer in, the sample was
again placed in the vacuum chamber to ensure that any
significant air pockets remaining in the fibers and the guide
post negatives were removed. Once degassing was complete,
another acrylic disk was placed over the open side of the
mold, a weight was placed on top, and the sample was
allowed to cure. The unreinforced membrane was fabricated
by completely filling the stage 2 mold without completing
stage 1. Once complete, the membranes measured 114 mm in
diameter and 5 mm in thickness. After inflation to the critical
case, the spherical and conical membranes will reach heights
of 4.7 cm and 7.0 cm, respectively.

It is important to note that the bonding surface between
the stage 1 and 2 molds was designed to be parallel to the
direction of maximum strain during inflation. It also includes
many small elastomer protrusions that fill the guide post
negatives after the second molding stage. These features
prevent separation of the two layers at high strains, even with
the use of the mold release during the molding process.

4 Experimental Setup and Procedure

In this section, we provide an overview of our inflation
experiment setup and procedure in Section 4.1 and describe
our data processing techniques for the inflation experiment
in Section 4.2. We then describe the external and internal

loading tests in Section 4.3 and explain our practical testing
of the membrane in a bioinspired AUV in Section 4.4.

4.1 Inflation Experiment
To validate our model, both the inflated volume of the
membrane and the fiber orientation were measured at various
stages of inflation. To accomplish this, the sample being
tested, whether reinforced with fibers or not, was connected
to a facility compressed air line with a simple, mechanical
pressure regulator. As the applied pressure was increased by
adjusting the regulator, a 20 kPa to 250 kPa absolute pressure
sensor (MPXHZ6250AC6T1, Freescale Semiconductor)
sampled by a 16-bit ADC (MAX1167BEEE+, Maxim
Integrated Products) controlled by an Arduino Mega 2560
provided an average value for the pressure over a 1 second
interval. While the pressure was averaged, pictures were
taken of the membrane from the front (to show the fiber
pattern) and side (to calculate volume) using 8 MP digital
cameras (Figure 11).

The membrane was fixed to our setup for pressure testing
using the clamping assembly shown in Figure 12. A quick
connect tube fitting for 8 mm tube was threaded into a 0.25
in thick laser-cut (ULS PLS6MW, 50 W CO2 laser) delrin
base. Blind holes were drilled into the base for dowel pins,
which were placed at the end of each fiber to prevent the
fiber from pulling the membrane out of the clamp. This also
ensured that the fibers maintained the correct orientation
during clamping and testing. A 3.2 mm thick ring with an
inner diameter of 9.37 cm was used to clamp down on the
edge of the membrane. Helicoil inserts in the base mated
to twelve 4-40 screws to ensure a strong and even clamping
force.

4.2 Image Processing
Both the volume and fiber orientation measurements
required simple image processing using color thresholding
to complete. Volume analysis for both reinforced and
unreinforced samples is described first, followed by the
determination of the fiber orientation.

Volume Analysis: Matlab was used for image analysis
to determine the volume of the inflated membrane at each
pressure step. Images from the experiments were taken and
altered for ease of processing using GIMP. The known
diameter of the clamp was used as a reference length and
is denoted by the green rectangles in Figure 13. In images
where the largest diameter of the membrane was equal to
the interior diameter of the clamp, the volume of the inflated
membrane was calculated as a spherical cap,

Vspherical cap =
1

6
πh(3a2 + h2), (25)

where a is the inner radius of the clamp and h is the height
of the membrane (see Figure 13).

The unreinforced membrane expanded to a spheroidal
profile in some images, necessitating a slightly different
volume calculation:

Vspheroid =
4

3
πα2β1, (26)

where α is the semi major axis (measured using the blue
rectangle) and β1 is the semi minor axis, minus a spheroidal
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Step-by-step fiber layup. The fiber pattern is traced by extruded guide posts on a 3D printed mold shown in (a). Circular
fibers are placed around their respective guide posts (b), tightened, trimmed, and glued (c), resulting in 5 total circular fibers to
restrict radial deformation (d). Radial fibers are tied to an anchor point (e), routed around their guide posts (f), tightened, and
trimmed (g). This completes the fiber layup with 5 circular fibers and 4 radial fibers to restrict the final radius of curvature of the
membrane (h).

Figure 10. Stage 1 mold with height offset ring installed (left)
and stage 2 mold with the output of the stage 1 mold inserted
(right). At the beginning of stage 2, the surface of the
membrane is covered with holes from the guide posts in the
stage 1 mold. These are filled in the stage 2 molding process.
Fibers are not shown in this image.

cap

Vspheroidal cap = πα2h
2(3β1 − h)

3β2
1

, (27)

where h is the height of the spheroidal cap (see Figure 13).
The image-based volume analysis was validated by

measuring the mass of water pumped into the membrane at
various pressures. This additional experiment confirmed that
lens distortion did not introduce significant errors into the
volume analysis.

Fiber Orientation Comparison: Image analysis for the
fiber orientation comparison was performed using a
combination of GIMP and Matlab. After correcting for lens
distortion using the circular fibers (which remain a constant
diameter during the experiment) as a reference, a fiber from
each image was traced to allow for easier color thresholding.

Digital Cameras

Membrane

and Clamp

Pressure

Sensor

Figure 11. Experimental setup for membrane inflation tests.
The membrane was connected to a compressed air source and
subjected to various pressures. An Arduino averaged data from
a pressure sensor to provide pressure feedback. Two digital
cameras, one above the membrane and another in front of the
membrane, captured images of the membrane at each pressure
step.

Tracing the fibers allows for the angle, θ, of the fiber in each
experimental image to be determined as a function of ρ. This
function can then be directly compared to the theoretical fiber
pattern using the experimental membrane’s volume as the
input to the model. To obtain a metric for comparison, the
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Clamp Ring

Membrane

Dowel Pins

Base

Tube

Fitting

Screws

Figure 12. Exploded view of membrane clamping assembly.
Compressed air can be released under the membrane to inflate
it once it is clamped down. Twelve screws and a clamp ring
provide an even clamping force on the membrane. Stainless
steel dowel pins provide anchor points for the radial fibers and
help to align the membrane on the clamp base.

(a) (b)

Figure 13. Images prepared for computer volume analysis. The
horizontal, green rectangles were superimposed on the clamp,
which has a known diameter and was used as a length
reference. In (a), the overall shape of the fibers maintained a
spherical profile, so the volume of the inflated membrane was
calculated as a spherical cap using the vertical, red rectangle as
the height of the cap (labeled h). In images where the elastomer
expanded between the fiber array, the vertical, red rectangle
was drawn to the top of the fiber pattern, as shown here. When
the unreinforced control sample reached a spheroidal profile
due to its higher strain (b), the volume was calculated as an
oblate spheroid minus a spheroidal cap. The pixel-tall blue
rectangle was used to measure the major axis of the ellipsoid
(α), and the two red rectangles were used to measure the minor
axis (β1) and height of the spheroidal cap (h = β1 − β2).

coefficient of determination for the spatial variation between
the fiber patterns was established as follows:

θ =
1

n

n∑
i=1

θi, (28a)

SSt =

n∑
i=1

(ρi · θi − ρi · θ)2, (28b)

SSr =

n∑
i=1

(ρi · θi − ρi ·Θi)
2, (28c)

Aluminum

Block

Membrane

and Clamp

Block Support

Figure 14. Test setup for external loading test. A 5.84 kg block
was lifted up to a brace by the test sample. The inflation
pressure was recorded while a photo was taken to show the
differences in loaded geometry.

R2 = 1− SSr

SSt
, (28d)

where θi is the measured azimuthal angle at ρi, Θi is the
theoretical azimuthal angle from Equation (11) evaluated at
ρi, SSr is the residual sum of squares, and SSt is the total sum
of squares. In addition to the coefficient of determination, the
mean absolute error (in degrees) is also calculated

MAE =
1

n

n∑
i=1

|θi −Θi| (29)

4.3 Load Experiment
While the inflation test proves our ability to alter the
deformation space of the elastomer membrane, it does not
reveal how the membrane will behave when placed under
a load. This load could come from an external force or
from the fluid used to inflate the membrane. Here, we seek
to determine the behavior of both the unreinforced and
spherical fiber-reinforced membranes under both of these
loads.

External Loading: An external load was exerted on the
inflated membrane perpendicular to the clamp base by a 5.84
kg aluminum block, shown in Figure 14. The membrane
was inflated to the point where it pushed the block against
a stabilizing fixture. The internal pressure of the membrane
at this point was recorded and a picture was taken for
analysis. Both membranes were also inflated to the same
hemispherical shape before being loaded by the same
aluminum block to directly compare their shape change.

Internal Loading: An internal load was exerted on
the membrane tangent to the clamp base by inflating
the membrane with water. Images were taken at various
pressures to compare the loaded membranes’ geometry.

4.4 Buoyancy Experiment
To demonstrate this fiber-reinforcement technique’s utility in
a practical application, we implemented it on our group’s
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Pressure Port and Intake

Wetmate Connector

Fiber-Reinforced

Buoyancy Bladder

Gear PumpValve

Ballast

Figure 15. Buoyancy test cylinder with fiber-reinforced
membrane as a buoyancy bladder. Pumping water in and out of
the bladder changes the density of the device as a whole,
causing it to ascend or descend in the water column.

submersible buoyancy test cylinder, shown in Figure 15.
Previously, we filled or emptied an inextensible plastic
swim bladder with water to change the density of the test
cylinder and cause it to ascend or descend in the water
column (Sholl and Mohseni 2019). This technique has
several disadvantages, including an inability to control the
shape of the bladder, which can kink itself or push into
other components, and an inability measure the volume
of the bladder, which maintains the same pressure as the
internal cavity of the test cylinder throughout operation.
While the volume of the bladder can be estimated by
integrating the flow rate in and out of the bladder or
calculating it from the acceleration of the cylinder, such
measurements are relatively inaccurate when conducted
with small, inexpensive components. If the volume of
the bladder is unknown, so is the applied control force
resulting from the mass of water inside the bladder. Using
the fiber-reinforced membrane instead of an inextensible
plastic bladder addresses both of these issues by providing
a predictable volume for a given pressure differential
and ensuring a more predictable geometry of the bladder
at different orientations and volumes. Additionally, fiber
reinforcement helps to prevent rupture in the membrane,
which could occur more easily in an unreinforced membrane.
We plan to integrate the fiber-reinforced buoyancy bladder
into our bioinspired AUVs, the CephaloBot (Krieg, Klein,
Hodgkinson and Mohseni 2011) and daughter vehicle (Song,
Mazzola, Schwartz, Finlaw, Chen, Krieg and Mohseni 2016).

For this test, the buoyancy test cylinder inflated the
fiber-reinforced membrane with ambient pool water using
a gear pump (Greylor PQ-12DC) to a maximum mass
of 0.14 kg. The controller (Sholl and Mohseni 2019)
utilized a 100 kPa differential pressure sensor (Freescale
Semiconductor MPX5100DP) to determine the membrane’s
inflation pressure. A 3D-printed attachment for a 25
kPa differential pressure sensor (Freescale Semiconductor
MPXV7025DP) was used to monitor the flow rate in and out
of the membrane. Depth was measured using a 1 atm gage
pressure sensor (Honeywell FP2000).

0 5 10 15 20 25 30
0

200

400
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800

No Reinforcement
Fiber-Reinforced

Figure 16. Membrane internal volume as a function of applied
inflation pressure for an unreinforced membrane and a
spherical, fiber-reinforced membrane. The fiber-reinforced
sample appears to reach an asymptote corresponding to the
maximum theoretical volume of 215.1 cm3 as the pressure
increases, while the unreinforced membrane expands
exponentially at low pressures.

5 Results

Here we present the results of our inflation experiment
in Section 5.1 and use them to validate our mathematical
model in Section 5.2. We also show the deformations of
the spherical membrane produced by external and internal
loading in Section 5.3 and the performance of our buoyancy
test cylinder using a spherical fiber-reinforced bladder in
Section 5.4.

5.1 Inflation Experiment Results
The inflated volume of each membrane is shown as a
function of pressure in Figure 16. While the spherical
fiber-reinforced membrane appeared to reach an asymptote
corresponding to the critical volume of 215.1 cm3 by its
maximum inflation at 30.10 kPa, the conical fiber-reinforced
membrane could only reach 81.8% of its theoretical
maximum volume of 254.1 cm3 before the fibers ripped
the elastomer matrix at 42.69 kPa, and the unreinforced
membrane expanded exponentially at as little as 4.78 kPa.

Figure 17 shows both the unreinforced and fiber-
reinforced membranes at various stages of inflation. As
expected, the radial fibers straightened throughout the
inflation process for both fiber-reinforced membranes. While
the circular fibers in both samples successfully prevented
radial expansion, the membranes did not reach their fiber-
imposed volume limits due to the stiffness of the elastomer,
resulting in the curved portions of fiber at maximum
inflation, especially in the conical case.

5.2 Comparison with Model
The error between the theoretically-calculated and
experimentally-observed fiber patterns can be found in
Table 1 and Figure 18. With the exception of the last,
near-critical-volume test case of the spherical membrane, the
model and experiment show good agreement with an average
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(a) (b) (c) (d)

(e) (f) (g) (h)
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(q) (r) (s) (t)

Figure 17. Unreinforced and fiber-reinforced membranes at various stages of the inflation test. A side view of the unreinforced
membrane is shown in (a)-(d), a side view of the fiber-reinforced spherical membrane is shown in (e)-(h), a front view of the
spherical fiber-reinforced membrane is shown in (i)-(l), a side view of the conical fiber-reinforced membrane is shown in (m)-(p), and
a front view of the conical fiber-reinforced membrane is shown in (q)-(t). The internal pressure is increased from 0 kPa to a
maximum of 4.78 kPa for the unreinforced membrane, 24.60 kPa for the spherical fiber-reinforced membrane, and 42.69 kPa for the
conical fiber-reinforced membrane. Note that as the pressure increases, the radial fibers straighten, bringing the membranes closer
to their final configurations.

R2 value of 0.982 (±2.59◦) for the spherical membrane and
0.995 (±1.56◦) for the conical membrane.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. Comparison between modeled and experimental fiber reorientation for the spherical membrane (top) and the conical
membrane (bottom). Inflated volume increases for both samples from left to right. The theoretical fiber paths are superimposed
upon images of the membranes from the inflation test. Note that the largest errors are in (d), where the spherical membrane
approaches its critical volume.

Table 1. Errors between theory and experiment for each of the
images shown in Figure 17. The ideal volume is calculated
based on the image processing in Section 4.2 and is normalized
to the volume of the designed critical case. Pressure data is
normalized to the maximum tested pressure, R2 values are
calculated using Equation (28), and MAE is calculated using
Equation (29). As the volume of the spherical membrane
increases, so does its error, likely due to stress concentrations
within the elastomer which prevent the membrane from
deforming to the desired shape. The conical membrane exhibits
relatively consistent, low errors, further suggesting that the most
significant errors only occur near the critical fiber angle, when
stress concentrations are highest for the samples presented.

Fiber
Pattern

Normalized
Ideal
Volume

Normalized
Pressure

Fiber R2 Mean
Absolute
Error

Spherical

16.7% 0.0% 0.998 2.27◦

32.7% 8.6% 0.992 2.35◦

63.1% 36.8% 0.956 3.15◦

91.7% 81.7% 0.670 6.19◦

Conical

13.1% 0.0% 0.998 1.35◦

34.5% 20.8% 0.998 1.51◦

66.1% 51.6% 0.991 2.06◦

81.8% 100.0% 0.994 1.33◦

5.3 Load Test Results

Here, we report the results of our internal and external
load tests on spherical fiber-reinforced and unreinforced
membranes.

External Loading: Both the unreinforced and the spheri-
cal fiber-reinforced membranes were capable of lifting and

(a) (b)

(c) (d)

Figure 19. Unreinforced (a,c) and spherical fiber-reinforced
(b,d) membranes under a 5.84 kg aluminum block. Note that the
reinforced membrane holds its hemispherical shape while the
unreinforced membrane is significantly deformed by the weight
of the aluminum at both high (a and b) and low (c and d)
respective pressures.

supporting the test mass at 11.93 kPa and 31.32 kPa, respec-
tively. As shown in Figures 19a and 19b, the unreinforced
membrane was forced to compensate for the lack of sufficient
internal pressure by expanding its contact area with the
aluminum block to lift it. This need to expand the contact
area resulted in the membrane significantly deforming from a
hemispherical shape. Due to the higher pressure in the fiber-
reinforced membrane, it was able to lift the aluminum block
while maintaining a hemispherical geometry.

Figures 19c and 19d show the unreinforced and spherical
fiber-reinforced membranes after being inflated to the
hemispherical configurations in Figures 17c and 17g,
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(a) (b)

Figure 20. Unreinforced (a) and spherical fiber-reinforced (b)
membranes filled with water at 4.42 kPa and 13.17 kPa,
respectively. While the unreinforced membrane is capable of
holding a larger volume of water, much more precise control
over the pressure differential is required to control that volume
and the overall geometry of the membrane. To bring the
unreinforced membrane in (a) to the same geometry as (b), the
pressure only needs to be reduced by 0.82 kPa. The spherical
fiber-reinforced membrane, on the other hand, exhibits a larger
change in pressure with respect to a change in volume.
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Figure 21. Buoyancy test cylinder performance using a
spherical fiber-reinforced membrane as a buoyancy bladder.
The mean error past 30 s is 4.4 cm.

respectively, and loaded with the aluminum block. The
unreinforced membrane started at 3.29 kPa and increased
to 10.99 kPa after loading, whereas the spherical fiber-
reinforced membrane increased from 7.61 kPa to 17.82 kPa.

Internal Loading: Images from the internal loading test
are shown in Figure 20. The unreinforced membrane can be
inflated to a larger volume than the spherical fiber-reinforced
membrane, so it was possible to make the membrane deform
in the direction of gravity at larger volumes (4.42 kPa
in Figure 20a). When filled with water to 3.60 kPa, the
unreinforced membrane exhibits nearly identical geometry
to the spherical fiber-reinforced membrane at 13.17 kPa in
Figure 20b. The spherical fiber-reinforced membrane, on the
other hand did not exhibit any observable deformation as a
result of the internal load at the maximum possible volume.

5.4 Buoyancy Test Results
The performance of the buoyancy test cylinder fitted with
a spherical fiber-reinforced membrane buoyancy bladder is

shown in Figure 21. The cylinder settled to within 10 cm
of the depth setpoint of 1.6 m within 20 s of the start of its
decent. After the 30 s mark, the system exhibited a mean
error of 4.4 cm.

6 Discussion

Figures 16 and 17 strongly suggest that our initial claim
to the ability to restrict the deformation space of a soft
membrane is valid. The unreinforced membrane’s volume
exponentially increases at low pressures, making accurate
control of the inflated membrane’s volume and shape
difficult. The fiber-reinforced samples, on the other hand, are
clearly restrained to their predefined profiles. While there is
elastomer expansion between the fibers at higher pressures
(see Figures 17h and 17l), the overall shape and volume
of the membranes can still be controlled. Additionally, this
expansion between the fibers can be reduced by increasing
the fiber density.

The model presented in Section 2 does not consider the
stiffness of the elastomer. In the unreinforced case, there is
relatively uniform deformation in the membrane as a result
of its uniform material properties and loading. However,
when fiber reinforcement is introduced, a deformation
gradient is developed within the membrane as a result of
local reorientation of the fibers. These gradients result in
significantly higher required pressures to actuate a fiber-
reinforced membrane to a given volume than are required
for an unreinforced membrane, as shown in Figure 16.

The differences in the curves shown in Figure 16 speak to
the advantages of a fiber-reinforced elastomeric membrane
for controls applications. If the membrane is used as a
buoyancy bladder in an AUV, as demonstrated in this
paper, fiber-reinforcement greatly increases the range of
pressures that can be used for volume control over that of
the unreinforced membrane. Small changes in the applied
pressure in an unreinforced membrane can cause the volume
to exponentially increase, which is an issue for small,
inaccurate pumps. Since many pumps which meet the
performance requirements for an active buoyancy system
and the stringent power and space requirements imposed on
AUV components are incapable of accurate volume control
without other equipment, the ability to control and sense
the volume of the buoyancy bladder using pressure alone
is a major advantage over non-elastomeric and unreinforced
elastomeric bladders.

While the wider pressure range used for inflation of a
fiber-reinforced membrane has its advantages, it also makes
actuating the membrane to its critical design case without
failure of either the membrane or the clamp much more
difficult. Due to the geometry of the fiber layups designed for
this paper, the elastomer towards the edges of the membrane
must deform significantly more than the elastomer in the
center of the sample. This results in unmodeled deviations
from the predicted fiber pattern close to the critical case
(e.g., Figure 18d) and increased stress and deformation at
the clamping surface. These stress concentrations lead to
failure of the conical membranes before they can approach
the critical case, but they can be mitigated in the future either
by choosing a softer elastomer matrix or by modeling the
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stress-strain relationship within the membrane to design fiber
patterns that minimize stress concentrations.

As seen in Table 1, the volume recorded at 0% inflation
pressure is 36 cm3. This is due to the clamping force that is
exerted around the edge of the membrane to maintain a seal
against the base. The clamp causes stress concentrations in
the elastomer around it, resulting in a slight deformation of
the membrane away from the base.

As shown in Figure 21, the buoyancy test cylinder does not
initially overshoot the depth setpoint. The controller gains
were intentionally tuned for this behavior to avoid hitting the
bottom of the testing pool. Also, the error and behavior past
30 s are likely due to custom flow sensor errors at low flow
rates and interactions between the buoyancy test cylinder and
its tether. Flow sensor errors can be mitigated with further
revisions to the sensor geometry, and tether-induced errors
will be eliminated once the buoyancy system is employed on
the CephaloBot AUV.

While we only present deformation of these soft
membranes as a result of increasing the differential pressure
across the membrane, many different actuation methods
could be utilized. For example, the same effect could be
achieved by inducing a stress within the membrane. Such
a stress could be created by a dielectric elastomer actuator
to generate a pressure differential across the membrane, as
we have demonstrated previously in unreinforced elastomers
(Sholl, Moss, Kier and Mohseni 2019). This pressure could
be used as an adhesive force, as in a suction cup, or to
pump fluids. Additionally, the proposed method of fiber
reinforcement is not dependent on the fiber material chosen,
so long as it is nearly inextensible in the desired range
of actuation forces. Enhanced geometric feedback could
therefore be provided by replacing the cotton fibers used in
this paper with fiber-optic fibers, as used in Galloway, Chen,
Templeton, Rife, Godage and Barth (2019).

Since this soft membrane is able to start in a completely
flat configuration, stretch to a desired shape, and maintain
that shape under a load, it could also be used as an easy-to-
pack solution for vehicle airbags. This is especially important
for spacecraft applications, where reducing the weight and
size of a system can lead to a large reduction in cost.

7 Conclusions
In this paper, we have mathematically shown and
experimentally proven that it is possible to design a pattern
of fibers that will restrict the deformation of an elastomer
membrane to a critical point of expansion. The stiffness
of the membrane at that critical point is greatly increased,
enabling the soft membrane to both support a load and
maintain its shape in the process. Given these characteristics,
fiber reinforcement of this kind could provide a technique
for more accurately predicting and controlling soft-body
deformation.

Future work involves expanding the model for use in
more generalized cases. By focusing on the reorientation of
a differential element of the fiber, it should be possible to
describe the reorientation of a particular fiber configuration
on any smooth surface, providing a technique for creating
complex three-dimensional soft skins that could be used
to control the deformation space of larger soft robotic

(a) (b) (c)

(d) (e) (f)

Figure 22. Comparison of the fiber-reinforced membranes to
their associated spherical cap and conical frustum geometric
assumptions. The approximation of the overall membrane
shape at intermediate levels of inflation shows good agreement
with the experimental results.

systems. Additionally, the modeling could be expanded to
include the stress-strain characteristics of fiber-reinforced
membranes, which would allow us to better predict how
stress concentrations will influence fiber reorientation in the
membrane as it deforms.

A Intermediate Stage Validation
When solving for the reorientation of the fiber-reinforced
membranes presented in this paper, an approximation of
the membranes’ curvature was required to solve for the
reorientation of the fibers at intermediate stages of inflation.
These intermediate stages were assumed to maintain a
spherical cap geometry for the spherical membrane and a
conical frustum geometry for the conical membrane.

For the spherical case, the membrane must maintain a
spherical cap geometry with an infinite radius of curvature in
the initial (planar) case and a radius of curvature equal to the
radius of the membrane in the critical (hemispherical) case.
Due to the additional fact that the unreinforced membrane
maintains a spherical cap profile during inflation up until
a hemispherical geometry (Figures 17a to 17c), a spherical
cap assumption was made for the spherical fiber-reinforced
membrane. We validate this assumption in Figures 22a
to 22c. A similar assumption was made in the conical case,
where a conical frustum geometry was assumed for the
intermediate stages. Overlays of this assumption can be
seen in Figures 22d to 22f. Both assumptions exhibit good
agreement with the experimental results.
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