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Correcting Current-Induced Magnetometer
Errors on UAVs: An Online

Model-Based Approach
Matthew Silic and Kamran Mohseni , Senior Member, IEEE

Abstract—The yaw attitude of an unmanned aerial vehi-
cle (UAV) is important for navigation applications. Magne-
tometers are attractive because they can directly resolve the
yaw attitude of the UAV. Roboticists, however, often dismiss
magnetometers because of the instrument’s susceptibility to
unwanted magnetic sources, such as hard irons, soft irons
and electric currents generated by the UAV’s powertrain.
Dynamic current-induced magnetometer biases are espe-
cially hard to fix because of their time dependency.A hardware
fix is to isolate or shield the current carrying wires of the
powertrain from the magnetometer. However, for UAVs with
weight and space restrictions, this solution may not be fea-
sible. An alternative is to fix the errors using software. This
work takes the software approach. Specifically, a model for the current-induced magnetometer bias as a function of the
throttle command is established. Based on this model, an adaptive estimator is developed that determines the model
parameters in realtime. The advantage of our method over existing techniques is the ability to handle rapid changes in
throttle command, thanks to the inclusion of the bias model. Experiments show the estimator can compensate for the
current-induced magnetometer bias across all throttle settings and yaw angles.

Index Terms— Magnetic sensors, parameter estimation, calibration.

I. INTRODUCTION

THE magnetic compass was first discovered over
2000 years ago. By the 14th century, mariners had come

to rely on the magnetic compass for navigation [1]. To this
day, compasses are used to give orientation. Digital com-
passes, or magnetometers, can be commonly found on robotic
platforms and smartphones. A three-axis magnetometer, when
paired with a three-axis accelerometer, can resolve the three-
axis attitude of a robotic platform [2]. While this functionality
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is attractive, many roboticists forgo the use of magnetome-
ters completely [3]. This is because magnetometers are
heavily influenced by unwanted magnetic sources. However,
with proper calibration, magnetometers can be successfully
deployed on a robotic platform.

Many methods of magnetometer calibration can be found
in the literature [4]–[10]. The cited methods are similar in
that the calibration parameters are determined solely from
magnetometer measurements. That is, no additional sensor
is needed. However, as proved in [7], these “autocalibration”
methods are unable to correct for misalignment between the
magnetometer and other inertial sensors. As shown in [8],
misalignment is detrimental to attitude estimation. In order
to correct for magnetometer misalignment, additional sensors
must be used, such as gyroscopes [11], [12], accelerome-
ters [13], [14], or cameras [15].

The effect of current carrying wires on magnetometers in
unmanned aerial vehicle (UAV) applications has been previ-
ously reported. System identification techniques are reported
in [16], [17]. Both papers characterize the magnetic bias
caused by driving the electric motors of a quad-copter. In [16],
a bivariate polynomial is fit to the amplitude of the magnetic
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bias. In [17], a local linear model is fit to each component
of the magnetic bias. An online method of determining the
magnetic bias is given in [18]. The authors, however, assume
the magnetic bias is constant.

In this work, we seek to cancel the magnetometer bias
induced by current carrying wires located in the magnetome-
ter’s vicinity. This work is different from previous work in
that we determine the model for the current-induced mag-
netometer bias through deduction, as opposed to induction.
That is, we deduce the relationship between throttle command
and magnetometer bias using physical models of the UAV’s
powertrain. This work also derives a new estimator that is able
to determine the magnetometer bias in realtime. The proposed
estimator is able to handle time varying biases, thanks to
the inclusion of the bias model. We consider the injection of
throttle information into the adaptive bias estimator to be the
primary contribution of this work.

Existing adaptive estimators assume the bias is con-
stant [18], [19]. Thus, a change in throttle would shift the
equilibrium point of the estimator. However, because we are
estimating a set of model parameters (as opposed to the bias
directly), our approach can handle rapid changes in the throttle
command. Furthermore, the quasi-static assumption is more
applicable to a set of model parameters than to the bias itself.

The remainder of this manuscript is organized as follows.
Section II reviews magnetometer calibration for time-invariant
errors, deduces a model for the current-induced bias, proposes
a nonlinear adaptive estimator to determine the model parame-
ters, and describes the hardware/implementation. Section III
presents the experimental results. Section IV interprets the
results, states our conclusions, and discusses some practical
applications of this work.

II. METHODS & MATERIALS

This section documents the methods and materials
employed in this study. First, the sensor calibration problem is
stated. An existing calibration method is reviewed, followed
by our adaptation of the method in order to permit in-situ mag-
netometer calibration. Next, a model for the current-induced
bias is established by combining knowledge of eletromag-
netism, electric motors, and propeller aerodynamics. Following
this, an adaptive estimator is designed in order to determine
the model parameters in realtime. Finally, the hardware is
described, along with how the algorithm is implemented.

A. Basic Sensor Calibration

Magnetometers are affected by typical instrument errors:
scaling factors, nonorthogonality, misalignment and biases.
Magnetometers are also subject to artificial errors, i.e. errors
caused not by the instrument but by magnetic distortions.
These errors are classified as hard irons or soft irons. “Hard
iron” denotes an unwanted magnetic source, such as permanent
magnets or current carrying wires. A hard iron produces the
same magnetic field, no matter how it is orientated with
respect to the Earth’s magnetic field. “Soft iron” denotes
a magnetic distortion that depends on the incidence angle
of the Earth’s magnetic field. Steel is an example of a

soft iron. The magnetometer measures the superposition of the
Earth’s magnetic field and any artificial errors. The purpose
of magnetometer calibration is to extract the Earth’s magnetic
field vector from the sensor’s output, which is corrupted by
instrument errors and artificial errors.

Let �u ∈ R
3 be the sensor’s input and let �v ∈ R

3 be the
sensor’s output. A general error model for a tri-axial field
sensor is given by [20]

�v = K �u + �b, (1)

where the distortion matrix K ∈ R
3×3 includes all errors

proportional to the sensor inputs and �b ∈ R
3 includes all

errors that are attitude-independent. Equation (1) models all
linear and time-invariant sensor errors, including instrument
errors and artificial errors. Solving (1) for �u yields

�u = L �v − �d (2)

where L ≡ K −1 and �d ≡ K −1 �b. Thus, the sensor calibration
problem is mathematically equivalent to determining L and �d .
Once L and �d have been acquired, �u may be recovered from
�v using (2).

The literature is replete with calibration methods; a method
that is both simple and effective is the Dot Product Invari-
ance (DPI) method presented in [20]. The DPI method is
simple because it can be solved using least squares. It is effec-
tive because it corrects for sensor misalignment, a necessary
correction if the magnetometer is to be used for navigation.
Other methods that account for magnetometer misalignment
can be found in [13], [14]. However, these methods are more
complicated than the DPI method. And like the DPI method,
they rely on additional sensors.

The DPI method exploits the fact that the dot product
between two vectors is invariant under rotations. Thus, given
a reference vector �w, the dot product �w · �u is

�w · �u = �wT �u = �wT L �v − �wT �d = const. (3)

This equation is linear-in-the-parameters. Thus, all 12 elements
in L and �d may be estimated using least squares. The only
stipulation is that �w cannot be parallel or perpendicular to the
field vector �u.

The DPI method requires many observations of the refer-
ence vector. The accuracy of the resulting calibration depends
on the accuracy of the reference vector. Assuming the mag-
netometer is packaged together with an accelerometer, a con-
venient reference vector is the down direction as measured
by the accelerometer. However, there are two problems with
using an accelerometer. First, the accelerometer itself needs
to be calibrated. Second, the sensor must be stationary so
that inertial accelerations do not corrupt the accelerometer’s
measurement of the gravitational field.

An alternative to using an accelerometer is to use a calibra-
tion cube [21], [22]. Based on which face of the cube is point-
ing upward, the reference downward direction may be inferred.
However, there are two problems with using a calibration cube.
First, the process is tedious. Second, the resulting calibration
is only valid for when the magnetometer is in the cube. Once
the magnetometer is mounted in the vehicle, magnetic sources
on the vehicle will throw off the calibration.
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Fig. 1. The UAV’s powertrain consists of a LiPo battery, an electronic
speed controller (ESC), a brushless DC motor (BLDC), and a propeller.
The motor, via the ESC, draws current from the battery. This current pro-
duces a magnetic field which interferes with the nearby magnetometer.

Through trial and error, the authors found a reliable source
for the reference vector. Here, we propose to use the down-
ward direction as estimated by an attitude estimator. The
attitude is estimated using the nonlinear observer developed
by Mahony, et al. in [23]. The Mahony filter fuses gyroscope
and accelerometer readings to maintain an accurate earth-to-
body rotation matrix, Rb

e . Assuming a north-east-down (NED)
coordinate system is fixed to the earth’s reference frame, it is
easy to show the necessary reference vector is simply the last
column of Rb

e .
There are three advantages for using the third column of

the rotation matrix. First, because the reference vector is fused
from gyroscope and accelerometer readings, the vector is less
sensitive to errors in the accelerometer. Second, because the
reference vector is extracted from an orthonormal matrix,
the vector is automatically normalized. Finally, because the
reference vector is measured using the onboard IMU, the cali-
bration can be performed by rotating the vehicle by hand. The
third advantage is particularly important, since it is imperative
for the magnetometer to be calibrated in its final configuration
on the vehicle.

B. Modelling the Magnetometer Bias

The goal is to establish the transfer function between the
throttle command, δt , and the current-induced magnetometer
bias, �B. Our approach is to analyze the various components
of the powertrain (Fig. 1). Once the transfer functions of
the various components are established, the desired transfer
function directly follows.

1) Magnetic Disturbance: The magnetic field produced by a
current carrying wire at a point P is given by the Biot-Savart
law [p. 889] [24]

�B = μ0 I

4π

∫
d�s × �r

r3 , (4)

where μ0 is the permeability of free space, �r is the position
of P with respect to a differential current element I d�s, and
r is the magnitude of �r . Our purpose is not to solve (4) but
to realize the magnetic field induced by the current carry wire
is proportional to the current. Furthermore, the proportionality
constant depends on the path of the wire.

2) Motor/ESC: An electric motor converts electrical power
into mechanical power. The electrical portion and the
mechanical portion of the motor are coupled magnetically.

Fig. 2. Equivalent circuit for a brushed DC motor.

The magnetic coupling is realized through the armature and
field. The armature refers to one or more current carrying
copper windings. The field refers to a magnetic field that is
produced by a permanent magnet or another winding.

Brushed DC motors have the armature wound on the rotor
and the field fixed to the stator. When current is pushed
through the armature, the field produces a torque on the
rotor, as described by the Lorentz force law. In order for the
rotor to rotate continuously, the current in the winding must
change directions every half-turn of the rotor [p. 876] [24].
The process of switching the direction of the current is called
commutation. On a brushed DC motor, commutation is done
mechanically using a pair of graphite brushes and a split ring
commutator.

Fig. 2 shows an electrical model of a brushed DC motor.
In this figure, V (t) is the applied voltage, I (t) is the armature
current, R is the electrical resistance of the winding, �(t) is
the motor speed, and Qm(t) is the motor torque. The induc-
tance, L, and the voltage source, E(t), stem from Faraday’s
law, which relates the voltage induced in a coil of wire to the
magnetic flux linked by that coil. The voltage source, E(t),
is termed the back electromotive force (bEMF). For a brushed
DC motor, the motor torque is proportional to the armature
current and the bEMF is proportional to the motor speed.
These relationships are given by

Qm(t) = Kt I (t), (5a)

E(t) = Ke�(t), (5b)

where Kt is the motor torque constant and Ke is the electro-
motive force constant. Assuming the electrical power in the
bEMF is entirely converted into mechanical power, it is easy
to show that Kt = Ke.

The brushless DC (BLDC) motor is more complex than its
brushed counterpart. A typical BLDC has three phase wind-
ings, which may be connected in a wye or delta configuration.
The field is created by a permanent magnet, which is fixed to
the rotor. Each phase winding produces torque and generates
a bEMF. For an individual winding, the torque to current
ratio and the bEMF to speed ratio are no longer constants,
as in (5). Instead, these ratios depend on the angular position
of the rotor. The windings of a BLDC motor are commutated
via electronic switches, as opposed to mechanical means. The
electronic switches are found on the electronic speed controller
(ESC). The ESC performs the role of the commutator in a
brushed motor: it reverses polarity and interrupts current flow.

Despite the complexities of the BLDC, it can be shown
that (5a) still applies for the overall motor/ESC combination,
provided the appropriate commutation scheme is employed.
In other words, the total motor torque is proportional to the
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DC command current drawn by the ESC [p. 55] [25]. For this
reason, the brushed DC motor model approximately resem-
bles that of a BLDC/ESC combination [25], [26]. As such,
we appropriate the brushed DC motor model of Fig. 2 for
the UAV’s powertrain. We note that this substitution has
precedence in the literature [27], [28].

A useful result is the relationship between motor torque and
motor speed:

Qm(t) = Kt

R

(
V (t)− Ke�(t)

)
. (6)

This result is obtained by applying Kirchhoff’s voltage law
to the circuit of Fig. 2 and using the motor relations of (5).
This result assumes the voltage drop across the inductor is
negligible.

3) Propeller Theory: A model for the propeller torque may
be obtained using dimensional analysis. Suppose Q is the
propeller torque [N·m], D is the propeller diameter [m], � is
the propeller speed [rad/s], u is the flight speed [m/s], ρ is the
fluid density [kg/m3], ν is the fluid viscosity [m2/s], and K
is the fluid volume modulus [N/m2]. These quantities are the
physically relevant variables for the propeller torque problem.
As such, they are related via an unknown function of the form

F(Q, D,�, u, ρ, ν, K ) = 0. (7)

Using dimensional analysis, it is possible to express (7) in
terms of the following dimensionless π groups:

π1 = Q

ρ�2 D5
, π2 = u

�D
, π3 = �D2

ν
, π4 = ρ�2 D2

K
.

The dimensionless variables π2, π3 and π4 are equivalent to
the advance ratio, λ, the Reynolds number, Re, and the Mach
number, Ma , respectively. Using these π groups, (7) may be
rewritten as

Q

ρ�2 D5
= CQ(λ, Re,Ma)

The right-hand-side of the previous equation is called the
torque coefficient and is denoted by CQ . Thus, we have

Q = CQρ�
2 D5, (8)

where CQ is a function of the advance ratio, the Reynolds
number, and the Mach number.

4) Model of the Current-Induced Magnetometer Bias: Having
reviewed the required background, the transfer function from
the throttle command, δt , to the current-induced bias, �B,
may now be established. The throttle command is directly
proportional to the motor speed, �, and is given by

δt = �/�max, (9)

where�max is the maximum speed of the motor. It follows that
0 ≤ δt ≤ 1. Equation (9) assumes the ESC’s response function
is linear. (This assumption will be revisited in the results
section.) The relationship between � and the propeller torque,
Q, is given by (8). Under dynamic equilibrium, the motor
torque, Qm , matches Q. This torque matching condition is
expressed graphically in Fig. 3. In this figure, Q varies with
� according to (8) and Qm varies with � according to (6).

Fig. 3. Under dynamic equilibrium, the motor torque, Qm, matches the
propeller torque, Q.

The relationship between Qm and the current, I , is given
by (5a) and the relationship between I and the magnetometer
bias, �B, is given by (4). Combining all the previous relation-
ships, the following model is obtained:

�B = CQρ(δt�max)
2 D5

Kt

μ0

4π

∫
d�s × �r

r3 . (10)

This equation shows the current-induced bias is proportional
to the square of the throttle command:

�B = δ2
t
�θ. (11)

The parameter vector �θ ∈ R
3 groups all the unknown coeffi-

cients in (10). This parameter vector will be determined using
a parameter estimator, as shown in the next section.

C. Parameter Estimators

Assuming the linear and time-invariant sensor errors have
been properly canceled, the only error that remains is the
current-induced bias. Thus, the measurement model becomes

�v = �u + δ2
t
�θ. (12)

Suppose the attitude of the sensor is parameterized by the
body-to-earth rotation matrix R = Re

b. Solving (12) for �u and
rotating the result into the earth’s reference frame yields

�u e = R
(
�v − δ2

t
�θ
)
, (13)

where �u e is the magnetic field vector expressed in the earth’s
reference frame. Over several tens of miles, �ue will be approx-
imately constant. The NOAA maintains magnetic maps which
evaluate �u e based on a zip code.1

1) Offline Estimation: If the vehicle is stationary, �θ can
be estimated using a least squares estimator. Because the
vehicle is stationary, the field vector �u is constant and may
be designated as an unknown parameter. The x component
of (12) may be written as

vx = [
δ2

t 1
] [
θx

ux

]
.

The y and z components of (12) may be expressed simi-
larly. The previous equation is of the form �y = X �β, which
enjoys the least squares solution. The least squares estimator
and the covariance of the estimator are [29]

β̂ = (X T X)−1 X T �y, (14a)

P =
(

X T X
)−1

σ 2, (14b)

1www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml
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where σ 2 is the variance of the noise. An estimate of the noise
variance is given by

σ̂ 2 = (�y − X β̂)T (�y − X β̂)

n − p
, (15)

where n is the number of observations and p is the number
of parameters.

2) Online Estimation: The previous estimation scheme works
only if the vehicle is stationary; that way, any change in
the magnetometer reading is due to a change in the current.
To determine the parameters in realtime and while the vehicle
is moving, we adapt the nonlinear observer designed by Troni
and Whitcomb in [19] to incorporate our model for the current
induced magnetometer bias. First, (13) is differentiated to
produce

0 = Ṙ
(
�v − δ2

t
�θ
)

+ R
(
�̇v + 2δt δ̇t �θ

)
. (16)

Let �ω be the angular velocity vector and let �ω× be the skew
symmetric cross product matrix defined as

�ω× ≡
⎡
⎣ 0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0.

⎤
⎦ (17)

The kinematics of the rotation matrix R are given by the strap-
down equation [30]:

Ṙ = R �ω×. (18)

Using the strap-down equation and assuming the throttle
command is held constant, (16) can be rearranged to yield

�̇v = −ω×
(
�v − δ2

t
�θ
)
. (19)

The observer dynamics are defined as

˙̂v = −ω×
(
v̂ − δ2

t θ̂
)

− k1ṽ , (20a)

˙̂
θ = k2δ

2
t ω×ṽ , (20b)

where the estimation errors are defined as ṽ ≡ v̂ − �v and
θ̃ ≡ θ̂ − �θ . Given an angular rate signal, �ω, and a biased field
vector measurement, �v, the goal of the observer is to drive the
estimation error to zero, i.e. θ̃ → 0. The proposed observer
satisfies this goal, as shown by the following stability analysis.
The proof relies on the following definition and lemma.

Definition 1 (Persistently Exciting [31]): A matrix function
W : R

+ → R
m×m is persistently exciting (PE) if there exists

T, α1, α2 > 0 such that for all t ≥ 0:

α1 Im ≥
∫ t+T

t
W(τ )WT (τ )dτ ≥ α2 Im . (21)

Lemma 1: Given a system of the following form:
ė1 = g(t)e2 + f1(t); e1 ∈ R

p,

ė2 = f2(t),

such that

(i) ||e1(t)|| → 0, || f1(t)|| → 0, and || f2(t)|| → 0 as
t → ∞,

(ii) g(t), ġ(t) are bounded, and gT (t) is persistently exiting;

then limt→∞ ||e2(t)|| = 0.

Proof: See [31] for proof. �
Theorem 1: Consider the system (19) for time-varying �ω(t)

and �v(t). Assume that �ω(t), �̇ω(t) and �v(t) remain bounded
for all time. Also assume that �ω(t) is persistently excited. Let
(v̂, θ̂ ) denote the solution to (20) with k1, k2 > 0. Then the
equilibrium point (ṽ, θ̃ ) = (0, 0) is globally asymptotically
stable.

Proof: From (20), the error dynamics are derived to be

˙̃v = −ω×
(
ṽ − δ2

t θ̃
)

− k1ṽ, (22a)

˙̃θ = k2δ
2
t ω×ṽ . (22b)

Define a candidate Lyapunov function by

V = 1

2
ṽT ṽ + 1

2k2
θ̃T θ̃ . (23)

Note the Lyapunov function is positive definite and radially
unbounded. The derivative of V is given by

V̇ = ṽT ˙̃v + 1

k2
θ̃T ˙̃θ,

= ṽT
[
−ω×

(
ṽ − δ2

t θ̃
)

− k1ṽ
]

+ 1

k2
θ̃T

(
k2δ

2
t ω×ṽ

)
,

= −ṽTω×ṽ + δ2
t ṽ

Tω×θ̃ − k1ṽ
T ṽ + δ2

t θ̃
Tω×ṽ ,

= −k1ṽ
T ṽ ≤ 0.

Because V̇ ≤ 0, it follows that V ∈ L∞. Because V is radially
unbounded, it follows that ṽ, θ̃ ∈ L∞. Because �ω ∈ L∞
(by assumption), it follows that ˙̃v, ˙̃θ ∈ L∞ by (20). Since
ṽ , θ̃ ∈ L∞ and ˙̃v, ˙̃θ ∈ L∞, it follows that ṽ and θ̃ are
uniformly continuous. Furthermore, ṽ ∈ L2 since

[∫ ∞

0
ṽT (τ )ṽ(τ )dτ

]1/2

≤
[

1

k1
V (0)

]1/2

.

Thus, from Barbalat’s lemma [32], ṽ is globally asymptotically
stable at the origin, i.e. ṽ → 0. Because ṽ → 0 and
δt , �ω ∈ L∞, it follows from (20b) that ˙̃θ → 0. Furthermore,
because �ω is persistently exciting and �ω, �̇ω are bounded,
we conclude from lemma 1 that limt→∞ θ̃ = 0. �

D. Hardware and Implementation

Fig. 4 shows the aerial vehicle used to test the theory and
algorithms presented previously. The platform is a tailless delta
wing that is driven by a pusher propeller and actuated by two
elevons. The fins, elevons and motor-mount are manufactured
in-house; the foam airframe and the remaining components
are off-the-shelf. The aircraft has a wingspan of 37 inches,
weighs less than 18 ounces, and can fly continuously for
30 minutes. The delta wing has been used in our group for over
a decade for a variety of missions, including wireless commu-
nication characterization [33], [34], cooperative control [35],
and atmospheric sensing [36].

The vehicle is controlled by the AMP autopilot, which is
made in-house by our research group [37]. The autopilot is a
collection of electronic devices, namely a GPS receiver, a radio
transceiver, a barometer, an atmospheric sensor, and an IMU.
Processing is done using a 16 bit, 140 MHz microprocessor.
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Fig. 4. A battle-tested delta wing UAV. The inset shows a close-up of
the autopilot. Note the proximity of the IMU (green circle) to the battery’s
power leads.

The microprocessor belongs to the DSPIC33 family of micro-
processors made by Microchip. Additionally, an Xbee radio
can plug into headers on the underside of the board. Along
the perimeter of the board is a header that breaks out all the
unassigned pins of the microcontroller. Additional sensors can
be wired into this header for mission-specific customization of
the autopilot.

The IMU is the MPU-9250 made by Invensense; it combines
a gyroscope triad, an accelerometer triad, and a magnetometer
triad. The magnetometer is a Hall effect sensor. The Hall effect
describes the voltage induced by a current moving through a
flat conductor in the presence of a magnetic field [p. 867] [24].
The magnetometer has a built-in, 16 bit ADC and a resolution
1.5 mG/LSB.

The adaptive observer is implemented in C and is executed
by the autopilot’s microprocessor at a rate of 25 Hz. The inputs
to the observer are the measurements from the gyroscope
triad, the measurements from the magnetometer triad, and the
throttle command. In order to improve the signal to noise ratio,
a digital, low-pass filter with a corner frequency of 5 Hz is
applied to the magnetometer readings upstream of the adaptive
observer.

To better discuss the results presenting next, it helps to
establish how much error in the estimated yaw angle is accept-
able/reasonable. Acceptable error limits based on application
vary greatly and will not be considered. On the other hand,
acceptable error limits based on the accuracy of the hardware
can be easily adapted to different applications. The following
calculation shows how the uncertainty in the magnetometer
measurement propagates to the uncertainty in the estimated
yaw angle. The attitude estimator is approximated by

ψ = −atan(my/mx), (24)

where mx and my are the magnetometer measurements with
respect to the x and y axes of the vehicle-fixed reference
frame. This equation assumes the vehicle is restricted to the
horizontal plane and the magnetic field is pointing directly
north. Let σ 2

m represent the variance of both mx and my . Using
the propagation of error formula, the variance of the yaw angle
is given by

σ 2
ψ = σ 2

m

m2
x + m2

y
.

A simple coordinate transformation shows that mx = H cosψ
and my = H sinψ where H denotes the magnitude of the
earth’s magnetic field. It follows that σψ = σm/H . Specializ-
ing to our geographic location and our hardware, we get that
H = 0.464 mG and σm = 0.0082 mG. It follows that the
3σ error bound is 3◦.

The previous analysis assumes the sensor errors are limited
to just measurement noise and the attitude estimator is approx-
imated by (24). Given these simplifying assumptions, the 3◦
error limit should be interpreted more as a ballpark figure than
a strict requirement.

III. RESULTS

This section presents the experimental results. The results
are organized into three parts. In the first part, the DPI
method is used to calibrate the magnetometers of two AMP
autopilots. The first autopilot is embarked on the aerial vehicle
shown in Fig. 4. The magnetometer of the second autopilot is
used as a reference for subsequent tests. In the second part,
the current-induced bias model (11) is experimentally verified.
Furthermore, the model parameters are estimated using the
offline approach and the online approach. In the third part,
we show that the proposed observer is able to identify the
current-induced bias and cancel its negative effects.

A. Basic Calibration

The first step is to calibrate the magnetometers on both the
vehicle autopilot and reference autopilot. The magnetometers
are calibrated using the DPI method; the reference down
direction is taken to be the last column of the earth-to-body
rotation matrix. The gyroscope measurements are fused into
the attitude estimate at 100 Hz and the accelerometer measure-
ments are fused at 25 Hz. Fusing the accelerometer at a slower
rate makes the reference vector less susceptible to sensor
errors (i.e. scaling factor errors and inertial accelerations).
To generate the calibration data, the vehicle is rotated by hand
while the autopilot downlinks magnetometer data and observa-
tions of the reference “down” vector. At minimum, we collect
10K observations. For best results, the measurements should
be uniformly distributed over the sensor’s response surface.
As proved in [10], the response surface of an uncalibrated
magnetometer is an off-centered ellipsoid; the response surface
of a calibrated magnetometer is a sphere centered at the
origin. Fig. 5 shows the loci of magnetometer measurements
before and after calibration. Qualitatively, it is clear that the
calibration produces the desired result (i.e. a centered sphere).
Fig. 5 corresponds to the vehicle autopilot; a similar result
is obtained for the reference autopilot. That is, the response
surface of the reference magnetometer goes from a shifted
ellipsoid to a centered sphere.

To verify the magnetometer calibration quantitatively, a sim-
ple compass rose is printed on a piece of paper and taped to a
level surface. Using a recreational field compass, the compass
rose is aligned to true north (taking into account the local
magnetic declination). The autopilots are then pointed in the
four cardinal directions of the compass rose. The estimated
yaw angles are recorded in Table I.
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Fig. 5. Locus of magnetometer measurements, before calibration (left)
and after calibration (right).

TABLE I
MAGNETOMETER ACCURACY RESULTS

Fig. 6. Propeller speed versus throttle command. A freshly charged
battery is used for each observation.

B. Model Verification and Parameter Estimation

Here, we test the validity of the linear relationship between
throttle command and motor speed, i.e. (9). Using a handheld
tachometer, the speed of the motor/propeller is measured for
various throttle settings. A fresh battery is used for each
observation. This is done to reduce the effect of battery
drainage. The data is plotted in Fig. 6, along with two linear
models. The first model (solid line) admits an offset whereas
the second model (dashed line) passes through the origin.
The R2 values for the first and second models are 0.99 and
0.83, respectively. Despite the lower R2 value, the second
model is adopted for further evaluation. The first model is
not considered because it would make the magnetometer bias
model nonlinear in the parameters. (This decision will be
revisited in the discussion section).

Next, we estimate the model parameters. As described
in the methods section, the parameters may be determined
using an offline approach or an online approach. The offline
approach requires the vehicle to be stationary, which allows
the parameters to be determined using least squares. Fig. 7
shows the results of the offline approach. The magnetometer
signals are recorded while the throttle is increased from 0 to
100%. The bias model (11) is fit to the data using (14a) and
the variance of the measurement noise is estimated using (15).

Fig. 7. Magnetometer bias versus throttle command. Bx, By, and
Bz denote the components of the magnetometer bias, �B. The model
parameters can be easily determined if the vehicle is stationary. Then,
any change in the magnetometer signal is due to a change in throttle.

TABLE II
RESULTS OF OFFLINE APPROACH

Additionally, the R2 value and the signal-to-noise ratio (SNR)
are also computed. In this case, the signal is assumed to be
the coefficient of the bias model. A benchmark for the R2

values is generated via a Monte-Carlo simulation. The Monte-
Carlo simulation assumes the underlying model is quadratic
and the noise is additive, zero mean and normally distributed.
The variance of the simulated noise matches the variance of
the measurement noise. Table II lists the results of the offline
approach. The benchmark R2 values are listed with their 2σ
error bounds.

The calibration coefficients may also be determined using
the online adaptive estimator. For this test, the throttle is
set to full throttle and the vehicle is rotated by hand, thus
satisfying the persistently exciting condition on �ω(t). This test
is similar to the basic calibration test, except that the propeller
is spinning at several thousand RPM. The parameter estimates
are shown in Fig. 8. The horizontal lines show the parameter
estimates as determined by the offline method.

C. Yaw Angle Recovery

The final step is to verify that accurate yaw tracking is
recovered when the estimated current-induced magnetometer
bias, B̂ , is subtracted from the magnetometer readings. The
variable of interest is the yaw error. If the orientation of the
vehicle is fixed, the yaw error is the change in the estimated
yaw angle due to throttle. If the orientation of the vehicle is not
fixed, the yaw error is the difference between the yaw angle
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Fig. 8. Parameter estimates over time. The parameter vector, θ̂,
comprises the components {θ̂x, θ̂y, θ̂z}. The “true” parameters, drawn as
the thick horizontal lines, are obtained using the offline procedure.

Fig. 9. The ability of the bias model to reduce yaw error is tested under
three scenarios: (a) the throttle is set to full and the vehicle is panned in
the horizontal plane, (b) the vehicle’s orientation is fixed and the throttle is
slowly ramped up, and (c) a step input is applied to the throttle at t = 4 s.

as estimated by the vehicle autopilot and the yaw angle as
estimated by the reference autopilot. The reference autopilot
is fixed to the wing tip of the airframe, far enough away from
the powertrain to be unaffected by the current.

The yaw error is affected by various factors, such as the
orientation of the vehicle with respect to the Earth’s magnetic
field, the magnitude of the throttle command, and the rate of
change of the throttle command. Thus, a proper investigation
requires the bias model to be tested under various scenarios.
For this study, three scenarios are selected (Fig. 9). For a given
scenario, the yaw error is plotted with the bias model disabled,
B̂ = 0, and enabled, B̂ = θ̂ δ2

t .

TABLE III
MAXIMUM YAW ERROR

The first scenario (Fig. 9a) considers the effect of vehicle
orientation on yaw error. For this test, the throttle is set to full
throttle and the vehicle—with the reference autopilot attached
to the wingtip—is panned in the horizontal plane. The second
scenario (Fig. 9b) considers the effect of throttle magnitude.
Here, the vehicle’s orientation is fixed and the throttle is slowly
ramped up from 0 to 100%. The third scenario (Fig. 9c)
considers the effect of throttle rate of change. Like the previous
test, the vehicle’s orientation is fixed. A step input is applied
to the throttle at t = 4 s. Table III lists the maximum yaw
error across all three scenarios.

IV. DISCUSSION & CONCLUDING REMARKS

In this section, we begin by interpreting our results and
drawing key conclusions. Following this, we summarize our
findings. Finally, we discuss some practical applications of this
work.

Beginning with the basic calibration results, we note the
estimation error is less than 3◦ (see Table I). This preci-
sion is remarkable considering the calibration was in-situ,
the accelerometers were uncalibrated and the platforms were
rotated by hand. We also note that this error is consistent with
the error analysis presented in Section II-D.

The throttle model verification experiment (Fig. 6) compares
two competing models. The first model admits an offset
whereas the second model passes through the origin. Through
experience, we expect the first model to be more accurate,
since it typically takes two or three clicks of the throttle
stick for the motor to start spinning. The empirical R2 values
corroborate our experience. A possible explanation for the
offset is that a start-up current is needed to overcome the
friction of the motor. Another explanation is that the ESC has
trouble sensing the bEMF of the unused phase a low speeds.
Regardless of the cause, the offset presents a complication—it
makes the magnetometer bias model nonlinear in the para-
meters. Fortunately, the offset may not be necessary: the
error associated with neglecting the offset is negligible when
compared to the measurement noise, as shown by the next
experiment. For this reason, we deem the second model, which
corresponds to (9), to be sufficiently accurate for our needs.

Turning to the offline approach, we note the measurement
noise is substantial, as borne out by the computed SNRs (see
Table II). The R2 values differ greatly, but positively correlate
to the SNRs. The Monte-Carlo simulation, which assumes
the underlying model is quadratic, produces R2 values which
agree with the experimental values. This agreement supports
the hypothesis that a quadratic model is appropriate for the
current-induced magnetometer bias.

We note the offline approach has limited usefulness because
the vehicle is required to be stationary. However, it provides
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a benchmark for the online approach. Fig. 8 shows the online
approach arriving at parameter values similar to those obtained
with the offline approach. The online parameters, however,
feature minor fluctuations. A possible explanation for these
fluctuations is that the online approach ignores measurement
noise. We expect the noise to produce a bounded error in the
estimated parameters.

Ultimately, the purpose of the parameter estimation is to fix
the yaw attitude. Consequently, errors in the estimated para-
meters are tolerable provided the yaw attitude is sufficiently
accurate. The ability of the bias model to correct yaw errors
is demonstrated by the experiments shown in Fig. 9. The bias
model is able to reduce the yaw error across all yaw angles
(Fig. 9a), throttle settings (Fig. 9b), and for a step input to the
throttle command (Fig. 9c). As shown in Table III, the bias
model is able to reduce the maximum error by a factor of 5
or greater, when compared to the case of no bais correction.
Furthermore, the maximum yaw errors are reasonable, given
the uncertainty analysis presented in Section II-D and the
benchmark yaw errors listed in Table I.

In summary, we have developed a way to fix current-induced
magnetometer biases. First, we demonstrated that repeatable,
straightforward, in-situ magnetometer calibration is possible
when the right source for the reference vector is selected.
By combining knowledge of electomagnetism, electric motors,
and propeller aerodynamics, we established a model for the
current-induced magnetometer bias as a function of the throttle
command. Finally, we designed an adaptive estimator to deter-
mine the model parameters in realtime. The advantage of our
method over existing techniques is the ability to handle rapid
changes in throttle command. Existing adaptive estimators
assume the bias is constant [18], [19]. Thus, a change in
throttle would shift the equilibrium point of the estimator.
However, because we are estimating a set of model parameters
(as opposed to the bias directly), our approach can handle rapid
changes in the throttle command. Furthermore, the quasi-static
assumption is more applicable to a set of model parameters
than to the bias itself.

The primary application of this work is vehicle state-
estimation. Because of their sensitivity to unwanted magnetic
sources (i.e. hard irons, soft irons and currents), magne-
tometers have often been dismissed as a lost cause. As an
alternative, the yaw angle is taken to be the course-over-ground
(COG) reading from a GPS unit. However, for low speeds or
GPS denied environments, the COG signal is no longer avail-
able. Also, for vehicles that side-slip significantly, the COG
is a poor substitute for the yaw angle. Finally, GPS suffers
from slow refresh rates. For these reasons, the magnetometer
is preferable to GPS as a yaw attitude sensor. Our hope is
that, because of this work, roboticists will come to rely on the
magnetometer for navigation, much like the mariners of old
came to rely on the compass.
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