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a b s t r a c t 

In theoretical analyses of the moving contact line, an infinite force along the solid wall has been reported 

based off the non-integrable stress along a single interface. In this investigation we demonstrate that the 

stress singularity is integrable and results in a finite force at the moving contact line if the contact line 

is treated as a one-dimensional manifold and all three interfaces that make up the moving contact line 

are taken into consideration. This is due to the dipole nature of the vorticity and pressure distribution 

around the moving contact line. Mathematically, this finite force is determined by summing all the forces 

that act over an infinitesimally small cylindrical control volume that encloses the entire moving contact 

line. With this finite force, we propose a new dynamic Young’s equation for microscopic dynamic contact 

angle that is a function of known parameters only, specifically the interface velocity, surface tension, and 

fluid viscosity. We combine our model with Cox’s model for apparent dynamic contact angle and find 

good agreement with published dynamic contact angle measurements. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The moving contact line (MCL) is a unique and challenging

roblem that influences many natural and industrial processes

uch as drop impact ( Yarin, 2006 ), boiling ( Dhir, 1998 ), indus-

rial coatings ( Weinstein and Ruschak, 2004 ), and inkjet print-

ng ( Derby, 2010 ), among others. Some of the aspects that make

he MCL such a complex problem include its multiscale nature

 Snoeijer and Andreotti, 2013 ), the apparent breakdown of the no-

lip assumption ( Dussan, 1976 ), hysteresis ( Eral, Oh, et al., 2013 ),

nd dependence on surface properties ( Quéré, 2008 ). In recent

ears industrial and medical applications have spurred MCL re-

earch towards even more challenging problems such as wetting

ailure ( de Gennes, 1985; Landau and Levich, 1988 ), air entrain-

ent ( Vandre, Carvalho, Kumar, 2014 ), electrowetting ( Mugele and

aret, 2005 ), and phase change at the contact line ( Gelderblom

t al., 2012, 2013 ). While these problems are important for ad-

ancing multiphase technology, there is still no consensus on the

hysics that govern contact line movement over a smooth surface

 Blake, 20 06; Bonn et al., 20 09; Snoeijer and Andreotti, 2013; Sui

t al., 2014 ). Understanding the MCL dynamics over a smooth sur-

ace is essential to developing models for more complex wetting
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henomena and thus it has remained a topic of significant interest

or several decades. 

Two early investigations of this fundamental problem were con-

ucted by Moffatt (1964) and Huh and Scriven (1971) . In these

orks, the MCL geometry was modeled by three planar interfaces

ntersecting with a contact angle φ and characterized by an in-

erface velocity U , as shown in Fig. 1 . Moffatt examined a viscous

uid displacing an inviscid gas and reported a solution with an

infinite stress and pressure (both of order r −1 ) on the plate at

he corner”. Huh & Scriven extended this analysis to two viscous

uids and reported that “the total force exerted on the solid sur-

ace is logarithmically infinite” due to the singular stress at the

CL. These investigations, among others ( Blake, 2006; Bonn et al.,

009; Cox, 1986; de Gennes, 1985; Eggers and Stone, 2004; Hock-

ng, 1977; Shikhmurzaev, 1997; Snoeijer and Andreotti, 2013; Sui

t al., 2014 ), have concluded that the hydrodynamic solution does

ot accurately model the MCL because an infinite force is not phys-

cal and this result has come to be known as the MCL problem, or

Huh & Scriven’s paradox” ( Bonn et al., 2009 ). 

Since these early works, several MCL theories have been de-

eloped and include the molecular kinetic theory (MKT) ( Blake

nd Haynes, 1969 ), interface formation theory (IFT) ( Shikhmurzaev,

997, 2007 ), and hydrodynamic theory ( Cox, 1986; Dussan, 1976;

oinov, 1976 ) among others ( Petrov and Petrov, 1992; Pismen,

002; Seppecher, 1996 ). In many of these models, microscopic

hysical mechanisms relieve the stress singularity and allows the

nterface to move relative to the solid without inducing a singular

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103398
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
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mailto:mohseni@ufl.edu
http://www.enstrophy.mae.ufl.edu
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103398


2 P. Zhang and K. Mohseni / International Journal of Multiphase Flow 132 (2020) 103398 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic of a droplet sliding down an inclined plate. Near the moving con- 

tact line, the interface has minimal curvature and intersects the solid with a dy- 

namic contact angle φ. 
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force. MKT describes the motion of the contact line as a molecu-

lar process where molecules attach and detach from the solid sur-

face with some characteristic frequency and displacement. The rate

at which these molecules are displaced induces changes in the lo-

cal surface tension which subsequently affects the dynamic contact

angle. Typically the length scale of the molecular displacement is

on the order of nanometers while the frequency of this displace-

ment is inversely proportional to the viscosity of the fluid. Through

experiment the molecular frequency and displacement have been

determined for specific fluid-solid pairs however, it is often diffi-

cult to predict these parameters for general cases ( Blake, 2006 ). 

Interface formation theory is built on the premise that near a

MCL, fluid elements move from one interface to another in finite

time so that the fluid exhibits a rolling type motion rather than

a sliding type motion associated with fluid slip. As fluid elements

transition from one interface to another, IFT posits that the fluid

properties will gradually change such that a surface tension gradi-

ent will be generated near the MCL. Shikhmurzaev (1997) proposes

an equation of state to relate the surface tension to the interfa-

cial density multiplied by a phenomenological coefficient. Assum-

ing that the Young’s equation is valid for dynamic contact lines,

the predicted surface tension gradient results in a change in con-

tact angle. Proponents of IFT report that the model contains no

singularities, preserves the rolling kinematics of MCLs, and cap-

tures the effects of the local flow field on the dynamic contact

angle ( Shikhmurzaev, 2006 ). Based on these characteristics, and

the possibility of simulating high Capillary number flows without

slip, IFT has been praised as a potentially far-reaching approach

( Blake, 2006 ). 

The hydrodynamic theory of the MCL is based on classical con-

tinuum fluid mechanics but relaxes the no-slip condition. In many

cases the Navier-slip boundary condition ( Navier, 1823 ) and a con-

stant slip length is used to determine the flow near the MCL. How-

ever, recent molecular dynamics simulations have indicated that

the slip length is dependent on the fluid stress ( Thompson and

Troian, 1997 ) and that fluid slip near the MCL may require a more

generalized slip boundary condition ( Thalakkottor and Mohseni,

2016 ). In general, hydrodynamic models find that the interface

shape varies logarithmically with respect to distance from the

contact line and is a function of the microscopic contact angle

and inner to outer length scale ratio ( Cox, 1986; Hocking and

Rivers, 1982; Voinov, 1976 ). In many applications, a constant mi-

croscopic contact angle and length scale ratio allows the hydro-

dynamic model to capture the shape of the interface ( Ramé and

Garoff, 1996; Sui and Spelt, 2013 ). However, there is no physical

reason why these parameters should be constant and there have

been a growing number of publications that have reported that

these parameters should vary as a function of contact line velocity

( Ramé et al., 2004; Shen and Ruth, 1998; Sheng and Zhou, 1992 ). 

In each of the theories reviewed above, molecular scale physics

are used to remove the stress singularity at the MCL. As a con-

sequence, the MCL becomes a multiscale problem that couples

macroscopic dynamics to microscopic physical parameters like the

molecular equilibrium frequency of MKT, the interfacial density of

IFT, or the slip length in hydrodynamic models. Currently these

microscopic parameters are difficult to determine theoretically and

are most often obtained by fitting the theory to experimental mea-

surements. Through the fitting process, most of these theories have

reported agreement with experimental measurements ( Blake and

Shikhmurzaev, 2002; Cox, 1986; Duvivier et al., 2011; Hoffman,

1975; Katoh et al., 2015; Seveno et al., 2009 ) and it has been

difficult to judge which theory captures the true physics of the

contact line. As a result, the physics of the MCL are still debated

to this day and the field continues to grow larger and more di-

verse. For additional information regarding the MCL, we refer the

reader to the following references: Blake (2006) ; Dussan (1979) ;
onn et al., 2009 ; Snoeijer and Andreotti (2013) ; Sui et al. (2014) ;

e Gennes (1985) . 

Looking back on the evolution of the MCL problem, it appears

hat many investigations were motivated by the conclusions of

offatt and Huh & Scriven who determined that a stress that

cales as 1/ r is not integrable and that the hydrodynamic solu-

ion of the MCL subject to the no-slip boundary condition predicts

n unphysical infinite force. Interestingly we have observed that a

ontinuum field that scales as 1/ r is treated as an integrable singu-

arity in other fields, and even in continuum fluid flows. In electro-

agnetism, an electric field that scales as 1/ r is integrable and cor-

elated to the total charge ( Griffiths, 1972 ). In potential flow theory,

 velocity field that scales with 1/ r is integrable and directly re-

ated to the total mass flux of a line source ( Batchelor, 1967 ). Even

n Stokes flows, the two-dimensional Stokeslet contains a stress

ingularity that scales as 1/ r and is considered an integrable sin-

ularity that is correlated to a finite force ( Crowdy and Or, 2010 ).

iven these numerous examples of integrable 1/ r singularities, one

egins to wonder why is the MCL different? 

Motivated by these observations, this work will revisit the clas-

ic hydrodynamic solution and present an alternative perspective

f the stress singularity. We will begin with a brief review of the

tokes solution to the MCL problem in §2 . In §3 , we will show that

lassical hydrodynamics models the contact line region as a math-

matical line, i.e. a one-dimensional manifold. By treating the MCL

s a one-dimensional manifold, we find that the total force exerted

y the fluid is finite and a function of the surface tension, inter-

ace velocity, and fluid viscosity. §4 presents a discussion of this fi-

ite force and a comparison with previous works to show that the

ogarithmically infinite force only arises if the MCL is treated as

 two-dimensional manifold. Based on this finite force result, we

ropose a model for the microscopic dynamic contact angle in §5

nd provide supporting experimental comparisons. Similarities be-

ween the MCL, Stokeslet, and cusped fluid interface are discussed

n §6 as they all exhibit singular stresses and finite forces. Con-

luding remarks are found in §7 . 

. Stokes flow solution to the moving contact line problem 

The primary analysis and results of this paper are based off

he well-known Stokes solution to the MCL problem originally pre-

ented by Cox (1986) . To establish a foundation for the following

iscussion, this section will provide a brief review of Cox’s so-

ution. At a top level, Cox’s solution to the MCL flow, shown in

ig. 2 , is obtained using perturbation theory and expanding about

he zeroth order solution in the small Capillary number limit. As

hown in the past ( Cox, 1986; Snoeijer, 2006 ), the zeroth order

ow corresponds to the boundary driven planar wedge whose so-
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Fig. 2. Geometry of a moving contact line in a cylindrical coordinate system ( r, θ ) 

whose origin is fixed at the contact line. In this moving reference frame, the solid 

boundary moves with a velocity U relative to the fluid-fluid interface whose shape 

is given by φ( r ). The inner, intermediate, and outer regions follows the definitions 

by Cox (1986) where � i and � c are the inner and outer length scales, respectively. 

Inside the inner region, Cox showed that the interface is approximately planar in 

the limit of Ca → 0 and thus φ0 is approximately equal to the contact line angle at 

the solid surface. 
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ution is known analytically from the works of Moffatt (1964) and

uh and Scriven (1971) and valid in the intermediate and outer re-

ions where the no-slip condition is valid. From this zeroth order

olution, Cox and others have iteratively solved for higher order

erms. Below, we present Cox’s derivation of the zeroth and first

rder solution. 

The analysis performed by Cox begins with assuming that the

eynolds number is significantly smaller than one ( Re = ρ�U/μ �
 ) so that the dynamics of fluids A and B near the MCL are gov-

rned by the Stokes and continuity equations given by 

 

2 u 

∗
A = ∇p ∗A , ∇ · u 

∗
A = 0 , (1) 

∇ 

2 u 

∗
B = ∇p ∗B , ∇ · u 

∗
B = 0 . (2) 

denotes the density, � the characteristic length scale, U the inter-

ace velocity, μ the viscosity, λ = μB /μA the viscosity ratio, u 

∗ the

imensionless velocity, and p ∗ the dimensionless pressure. If fluid

 or B is not specified in the subscript, then the variable is repre-

entative of either fluid. In this MCL problem, the fluid is subject

o the no-slip and zero penetration boundary condition along all

nterfaces in addition to the continuity of tangential stress and bal-

nce of normal stress at the fluid-fluid interface. In order to make

he problem tractable, Cox assumed that Capillary number is sig-

ificantly smaller than one ( Ca = μU/σ � 1 ) and expanded the ve-

ocity, pressure, and fluid-fluid interface shape as 

 

∗ = u 

∗
0 + Ca u 

∗
1 + . . . , (3) 

p ∗ = p ∗0 + Ca p ∗1 + . . . , (4) 

= φ0 + Ca φ1 + . . . . (5) 
ere, σ denotes the surface tension. Given the expansions above,

ther quantities of interest such as the stress tensor, T , or interface

urvature, κ , can be written using similar expansions. Substitut-

ng equations (3) - (4) into equation (1) - (2) and collecting terms

f order Ca 0 yields the zeroth order governing equations which are

iven by 

 

2 u 

∗
A 0 = ∇p ∗A 0 , ∇ · u 

∗
A 0 = 0 , (6) 

∇ 

2 u 

∗
B 0 = ∇p ∗B 0 , ∇ · u 

∗
B 0 = 0 . (7) 

s noted by Cox, Capillary number only appears in the normal

tress boundary condition at the fluid-fluid interface, i.e. 

a ̂  n · [[ T 0 + Ca T 1 + . . . ]] · ˆ n 

′ = κ0 + Ca κ1 + . . . , (8) 

here [[ · ]] denotes the jump of a quantity across an inter-

ace whose normal vector is denoted by ˆ n 

′ . Collecting terms of
rder Ca 0 , one obtains κ0 = 0 so that the zeroth order solution

s the flow in a planar wedge with angle φ0 . To obtain the ze-

oth order solution, Cox rewrites the Stokes equation as the bihar-

onic stream function equation, ∇ 

4 ψ = 0 , whose general solution

s known and given in Appendix A . Applying the aforementioned

oundary conditions, Cox identifies the zeroth order stream func-

ion as 

 0 = rU[ A cos (θ ) + B sin (θ ) + Cθ cos (θ ) + Dθ sin (θ )] , (9)

here ( r, θ ) is the local cylindrical coordinate system. This stream

unction solution represents the flow in the intermediate region,

ee equations (6.7) and (7.8) from Cox (1986) . The coefficients A, B,

 , and D are analytically known and presented in Appendix B , in

ddition to the zeroth order velocity, pressure, and vorticity. The

ormal stress jump that appears in the zeroth order solution, i.e. 

(r/� ) −1 m (φ0 , λ) = − 2 

r/� 
[ λ(C B cos φ0 + D B sin φ0 ) 

− (C A cos φ0 + D A sin φ0 )] , (10) 

s accounted for by the curvature of the first order interface shape,

hat is 

∂φ1 

∂r 
= (r/� ) −1 m (φ0 , λ) . (11) 

ntegrating the equation above yields φ1 = m (φ0 , λ) ln (r/� ) + Q

nd the interface shape 

= φ0 + Ca [ m (φ0 , λ) ln (r/� ) + Q] + . . . , (12) 

here Q is an unspecified constant of integration. The equation

bove is the widely recognized general form of the fluid-fluid in-

erface under steady motion ( Cox, 1986; Sibley et al., 2015 ). In the

aper by Cox, higher order terms were not reported as they had a

egligible effect. In the next section, we revisit this classic solution

o the MCL flow and demonstrate that the singular stress of the

ominant zeroth order solution exerts a finite force at the moving

ontact line. 

. Forces acting at the contact line 

In the past, moving contact line analyses have often utilized in-

egral equations that were derived for fluid interfaces. However,

he moving contact line is a one-dimensional manifold unlike fluid

nterfaces, which are two-dimensional manifolds. A fluid interface

s uniquely defined by a single normal vector while a contact line

as multiple normal vectors. This multivaluedness subsequently

ppears in the hydrodynamic solution which exhibits a multival-

ed velocity, stress, vorticity, and pressure along the contact line.

n light of these contact line attributes, let us take a step back and

onsider a summation of forces acting on a finite sized cylindri-

al control volume, V , with radius ε centered around the contact

ine, as shown in Fig. 3 . This volume is bounded by the surface

and intersects the interfacial surfaces denoted by I . As we will

emonstrate later, this is the control volume necessary to derive

he Young’s equation and is the one-dimensional analogue to the

ectangular control volume used to derive the balance of forces on

 fluid interface which is a two-dimensional manifold. For a steady

roblem, the sum of all the forces acting on the control volume V

s given by 

f = 

∫ ∫ 
S 

ˆ n · T dA ︸ ︷︷ ︸ 
surface force 

+ 

∫ ∫ ∫ 
V 

ρgdV ︸ ︷︷ ︸ 
body force 

+ 

∫ ∫ 
I 
∇ π · T π dA ︸ ︷︷ ︸ 

surface tension gradient 

+ 

∫ 
CL 

[[ T π · ˆ t ′ ]] ds ︸ ︷︷ ︸ 
surface tension force 

= 0 , (13) 
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Fig. 3. Schematic of the cylindrical control volume V with radius ε that is bounded by the surface S and centered at the MCL. The moving contact line has a contact angle 

of φ0 . ˆ n and ̂  t denote the unit normal and tangential vectors of the contour C. I denotes the interfacial surfaces and σ denotes the surface tension force between fluid A, B, 

and the solid. 
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assuming massless interfaces ( Slattery, Sagis, Oh, 2007 ). g denotes

the body force, the subscript π denotes surface quantities, CL de-

notes the contact line, and 

ˆ t ′ denotes the unit tangential vectors

of the interfaces. In the limit as ε → � i , where � i denotes the dis-

tance from the contact line over which fluid slip occurs, the equa-

tion above represents the sum of all forces acting over the MCL

region. Note that the last term of Eq. 13 should be interpreted as

the surface tension force acting on the control volume at r = ε
and CL indicates that the force is integrated in the binormal di-

rection (into/out of the page) and parallel to the contact line. In

some works � i is sometimes denoted by the slip length, � s , be-

cause they are often considered to be the same order of magni-

tude. However they are not equivalent and � i and � s are treated as

separate length scales in this work. For this analysis, we will as-

sume that there are zero body forces ( g = 0 ) and zero surface ten-

sion gradients ( ∇ π · T π = 0 ). As a result, the x and y component

of the forces (per unit contact line length) acting on the control

volume are reduced to 

� f x = lim 

ε→ � i 

∮ 
C 

ˆ n · T · ˆ e x ds + σAS − σBS + σAB cos (φ0 ) = 0 , (14)

� f y = lim 

ε→ � i 

∮ 
C 

ˆ n · T · ˆ e y ds + σAB sin (φ0 ) = 0 , (15)

where C denotes the contour path. The effects of surface tension

gradients are considered in a related work by Thalakkottor and

Mohseni (2019) . 

For the forces acting in the x direction, we decompose the

stress integral into three segments that lie inside each material so

that the integral above is rewritten as 

� f x = lim 

ε→ � i 

∫ φ0 

0 

ˆ e r · (T A 0 + Ca T A 1 + . . . ) · ˆ e x rdθ

+ lim 

ε→ � i 

∫ π

φ0 

ˆ e r · (T B 0 + Ca T B 1 + . . . ) · ˆ e x rdθ (16)

+ lim 

ε→ � i 

∫ 2 π

π
ˆ e r · T S · ˆ e x rdθ + σAS − σBS + σAB cos (φ0 ) = 0 . 

Here, the integral of T S represents the force induced by the stress

of the enclosed solid, f S . To evaluate the fluid stress tensor inte-

grals, we begin with the zeroth order solution and use the stress

tensor decomposition T = 

ˆ T − 2 μB , where ˆ T = −pI + 2 μ� is the
educed stress tensor, � is the vorticity tensor, and B = (∇ · u ) I −
(∇u ) T is the surface deformation rate tensor. With this decompo-

ition, the first stress tensor integral in equation (16) is rewritten

s 

 φ0 

0 

ˆ e r · T A 0 · ˆ e x rdθ = 

∫ φ0 

0 

ˆ e r · ˆ T A 0 · ˆ e x rdθ−2 μA 

∫ φ0 

0 

ˆ e r · B A 0 · ˆ e x rdθ,

(17)

or the zeroth order solution. The force contribution of the surface

eformation rate tensor is identically zero, as one can show that 

ˆ  r · B A 0 = −∂u 0 r 

∂r 
ˆ e r − ∂u 0 θ

∂r 
ˆ e θ = 0 , 

ince both the radial and azimuthal components of the zeroth or-

er velocity are independent of r . This is consistent with the find-

ngs of Wu et al. (2006) , who reported that the surface deforma-

ion rate tensor does not contribute to the total surface force over

 closed boundary if viscosity is constant. By substituting the ze-

oth order solution for pressure and vorticity into the first term on

he right hand side of equation (17) , we obtain 

f A 0 ,x = lim 

ε→ � i 

∫ φ0 

0 

ˆ e r · ˆ T A 0 · ˆ e x rdθ

= lim 

ε→ � i 

∫ φ0 

0 

(−p A 0 ̂  e r + μA ω A 0 ̂  e θ ) · ˆ e x rdθ

= −μA U lim 

ε→ � i 

∫ φ0 

0 

{ 

2 

r 
[ C A cos (θ ) + D A sin (θ )] cos (θ ) 

+ 

2 

r 
[ C A sin (θ ) − D A cos (θ )] sin (θ ) 

} 

rdθ

= −2 φ0 μA UC A . 

The result above shows that the zeroth order viscous force con-

ribution from fluid A in the x direction ( f A 0, x ) is independent of

 and a function of contact angle, viscosity, and interface velocity

nly. The same analysis performed on the segment that lies in fluid

 and for the zeroth order fluid stress integrals in the y direction

llows us to rewrite equations (14) and (15) as 

 φ0 μA UC A + 2(π − φ0 ) μB UC B − σAB cos (φ0 ) = σAS − σBS + f S ,x , 

(18)
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Fig. 4. Fully resolved MCL region. Both the path C 1 and C 2 connect the point M 

to N , however C 1 lies in the intermediate region where no-slip is valid and C 2 lies 

inside the inner region where fluid slip is present. 
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 φ0 μA UD A + 2(π − φ0 ) μB UD B − σAB sin (φ0 ) = f S ,y , (19)

nd represents the balance of forces in the x and y direction when

he sum of all forces is zero and the moving contact line is steady.

he equations above are zeroth order accurate and have been or-

anized so that the left hand side contains the forces that the fluid

xerts on the solid, and the right hand side contains the forces that

he solid exerts on the fluid. 

The finite force of the analysis above captures the total inte-

rated force of the inner slip region ( r < � i ) because the integral

f stress in a Stokes flow is independent of path. Specifically, the

ntegral form of the two-dimensional Stokes equation is given by 
 

T · ˆ n ds = 0 , (20) 

hich means that the integral of stress is path independent for

ny boundary condition. Consider the fully resolved contact line

epicted in Fig. 4 where the path C 1 lies in the intermediate no-

lip region and C 2 lies in the inner slip region. Path independence

nsures that the integral of stress along the path C 1 and C 2 are

qual so that 
 

C 1 

T · ˆ n ds = 

∫ 
C 2 

T · ˆ n ds. (21) 

hus, the total integrated force along the contour C captures the ef-

ect of slip in the inner region without resolving the inner velocity

eld. This property of path independence allows us to construct a

sharp line’ approximation of the MCL as an extension of the sharp

nterface approximation of the diffuse interface. In the ‘sharp line’

imit we model the inner region as a mathematical line ( � i → 0)

here the total integrated force of the inner slip region (known as

he unbalanced Young’s force) is preserved by the jump in stress

cross the contact line. This is a direct extension of the sharp in-

erface approximation where the integral of stress inside a diffuse

nterface (known as surface tension) is preserved by the jump in

tress across the sharp interface. In both the sharp interface and

harp line limit, an integrably singular stress acts on an infinitesi-

ally small area resulting in a finite force. 

The analysis above, which has been performed for the zeroth

rder solution, can also be applied to the first order solution. Given

he first order interface shape in equation (12) , and assuming that

 1 is finite at the contact line, the first order stream function will

ave the form given by 

 1 = (r/� ) 2 ln (r/� ) q 2 L, 1 (θ ) + 

∞ ∑ 

n =1 

(r/� ) n q n, 1 (θ ) . (22) 

rom this stream function, the velocity field and stress tensor

an be analytically determined so that first order equivalent of
quation (17) , taken in the limit as ε → � i , becomes 

lim 

→ � i 

∫ φ0 

0 

ˆ e r · ( Ca T A 1 ) · ˆ e x rdθ

= lim 

ε→ � i 

∫ φ0 

0 

Ca 

[ 

ln (r/� ) h 2 L (θ ) + 

∞ ∑ 

n =1 

(r/� ) n −2 h n (θ ) 

] 

rdθ . (23) 

ere, h simply denotes the function that collects the terms of ˆ e r ·
( Ca T A 1 ) · ˆ e x that scale with the same order of r . In this limit where

→ � i , all terms of the integrand are negligible except the n = 1

erm. Thus the first order viscous force of fluid A acting at the MCL

s given by 

a f A 1 ,x = Ca 

∫ φ0 

0 

h 1 (θ ) dθ . (24) 

s f A 0, x and f A 1, x are of the same order of magnitude and be-

ause Ca � 1, we conclude that the first order force is signifi-

antly smaller than the zeroth order force. Similarly, we find that

he first order forces due to fluid B and in the y direction are also

egligible so that the balance of forces at the MCL is given by

quation (18) and (19) . In the work by Cox (1986) , the first order

elocity field and corresponding viscous forces are also neglected

s they have a negligible effect on the interface shape when com-

ared to the zeroth order forces. 

Based on the finite force results above, we remark that the ze-

oth order MCL solution is a prime example of the singular math-

matical models described by Dussan and Davis (1974) , much like

he well-known Stokeslet ( Guazzelli and Morris, 2011 ). In both the

tokeslet and the zeroth order MCL solution, the force acting over

 small area is modeled as mathematical line with infinite stress

nd finite force. Therefore, they can be considered physically re-

listic, at least in regard to conservation of mass and momentum.

n the context of moving contact lines, it may appear unusual for

 model to contain a singular stress and finite force. However, we

mphasize that the Stokeslet, potential line source, and potential

ine vortex all exhibit the same characteristics and have all been

uccessfully used in modeling a wide variety of physical phenom-

na. In the following discussion, we present a complex formulation

f the MCL problem that yields the same finite force at the MCL,

ut avoids some of the algebra through the use of Cauchy’s residue

heorem. 

omplex formulation of the moving contact line force 

In the analysis above, the steps required to find the MCL force

an be some what cumbersome and therefore, we introduce a rel-

tively simpler complex formulation of the problem in this section.

he advantages of this formulation will become clear in §6 , when

he MCL problem is compared with the Stokeslet and cusped fluid

nterface. 

As demonstrated by Langlois and Deville (1964) , any flow sat-

sfying the Stokes equation will ensure that the pressure and vor-

icity are harmonic conjugates. Thus, we can define the function

 = μω + ip representing the shear and normal stresses. For the

eroth order solution, G 0 is given by 

 0 = μω 0 + ip 0 = 2 μU 

−D + iC 

z 
. (25) 

t is immediately apparent that G 0 has a simple pole at the loca-

ion of the contact line where z = 0 and represents a dipole distri-

ution. Furthermore, we observe that the complex function G and

he reduced stress tensor ˆ T are composed of pressure and vorticity

nly. Thus, it is not all that surprising that the contour integral of
ˆ 
 can be written in terms of a complex contour integral of G , that

s 
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Fig. 5. Decomposition of the contour C into C A , C B , and C S . 
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∮ 
Gdz = 

∮ 
(μω + ip)(d x + id y ) 

= 

∮ 
(−p ̂  e x − μω ̂  e y ) ·

(
dy 

ds 
ˆ e x − dx 

ds 
ˆ e y 

)
ds 

+ i 

∮ 
(μω ̂  e x − p ̂  e y ) ·

(
dy 

ds 
ˆ e x − dx 

ds 
ˆ e y 

)
ds 

= 

∮ 
ˆ n · ˆ T · ˆ e x ds + i 

∮ 
ˆ n · ˆ T · ˆ e y ds . (26)

Here, the real and imaginary components are exactly equal to the

stress integral terms of equations (14) and (15) and correspond to

the viscous force exerted by the fluid in the x and y directions. In

contrast to the previous analysis, this formulation reveals that we

can avoid the tedious algebra of integrating ˆ T , and instead eval-

uate the left hand side of equation (26) using Cauchy’s method

of residues ( Mitrinovic and Keckic, 1984 ). However, the standard

residue theorem cannot be applied over the contour C, as the func-

tion G is piecewise holormophic within the contour. Therefore, it is

necessary to decompose the contour C into the three subcontours

C A , C B , and C S that enclose each phase, see Fig. 5 . Inside each sub-

contour, G is entirely holomorphic and the pole resides at the MCL

( z = 0 ). Thus, we can treat the contour integral of G A and G B us-

ing Cauchy’s residue theorem and the Sokhotski-Plemelj formulas

( Estrada and Kanwal, 2012 ). For the zeroth order solution, we ob-

tain ∮ 
C 

G 0 dz = 

∮ 
C A 

G A 0 d z + 

∮ 
C B 

G B 0 d z + 

∮ 
C S 

G S d z, ∮ 
C A 

G A 0 dz = φ0 i Res (G A 0 ) = −2 φ0 μA UC A − i 2 φ0 μA UD A , ∮ 
C B 

G B 0 dz = (π − φ0 ) i Res (G B 0 ) 

= −2(π − φ0 ) μB UC B − i 2(π − φ0 ) μB UD B . 

Additional details regarding the Sokhotski-Plemelj formulas and

the treatment of singularities residing on the contour can be found

in Appendix C . As before, the integral of G S is the force exerted by

the stress of the solid. 

The real component of the complex contour integrals above

can be substituted into equation (16) , and we once again obtain

equation (18) , representing the balance of viscous and surface ten-

sion forces at the MCL. Similarly the imaginary components can be

used to obtain equation (19) . Interestingly, one can use the com-

plex contour integral of G to find the total surface force for any

Stokes flow. As we will show in §6 , this complex analysis correctly

captures the viscous force exerted by two other singular Stokes

flows that have similar pressure and vorticity fields. While we have

only presented a relatively simple complex formulation relevant to

the MCL force, complex variables can also be used to define the

stream function and velocity to analytically solve for viscous flows

in a variety of problems ( Crowdy and Brzezicki, 2017; Crowdy and

Or, 2010 ). In the following section, we compare our result to pre-

vious works and discuss the physical implications and limitations

of this solution. 
. Discussion of the MCL force 

The analysis of the previous section shows that the force at the

oving contact line predicted by the Stokes solution is finite. How-

ver, previous works ( Batchelor, 1967; Huh and Scriven, 1971 ) have

eported a logarithmically infinite total force on the solid. So why

oes the analysis above predict a finite force when others report an

nfinite force? To understand the distinction, we first replicate the

esult of Huh & Scriven, by integrating the stress of fluid A along

nly the fluid-solid boundary, i.e. 

f AS,x = 

∫ R 

0 

ˆ e θ · T A 0 · ˆ e x dr at θ = 0 

◦, (27)

here R is some finite length. From the solution provided in

ppendix B , one can show that ˆ e θ · T A 0 · ˆ e x = −μA ω A 0 , and that the

ntegral above is improper, as ω A 0 is singular at r = 0 . Therefore,

his integral can only be evaluated in the limit, that is 

f AS,x = lim 

ε→ 0 

∫ R 

ε
−2 μA U 

r 
[ C A sin (0) − D A cos (0)] dr 

= lim 

ε→ 0 
2 μA D A U[ ln R − ln ε] 

= ∞ . 

hus, the viscous force exerted by fluid A along the fluid-solid in-

erface is logarithmically infinite. The same analysis performed for

uid B at θ = 180 ◦ yields another infinite force. Individually , fluid

 and B exert infinite forces along the fluid-solid interface, how-

ver, the sum of these two infinite forces is undefined or infinite

epending on the sign of D . Note that in this approach, only the

orces along the fluid-solid interface are considered. This would

ontradict Young’s equation, which clearly includes the surface ten-

ion force of the fluid-fluid interface that only exists at r = 0 on the

olid boundary, and nowhere else. 

Based on the discussion above, we find that the distinction

etween our analysis and previous results, is the control vol-

me that is used to derive the force integral. In the analysis

f Huh & Scriven, the force integral given by equation (27) is

erived for rectangular control volumes containing discontinu-

ties across a two-dimensional manifold or surface, i.e. a fluid in-

erface ( Leal, 2007 ). In contrast, the force integral presented in

quation (17) is specifically derived for volumes containing line

iscontinuities like the contact line and thus includes the forces

cting along the fluid-fluid interface. In works that report an infi-

ite force, it appears that the MCL was viewed as an extension of

he interface between a single fluid and solid. Thus, the force was

etermined by integrating the fluid stress along the fluid-solid in-

erface only. However, the MCL is not an extension of a fluid-solid

nterface, but rather a line defined by the intersection of three im-

iscible materials. From this perspective, it is natural to define

 control volume that encloses all three materials and the MCL.

n related analyses of the contact line Slattery et al. (2007) and

ndreotti and Snoeijer (2016) have also chosen the same cylindri-

al control volume. By defining the control volume in this fashion,

e include the forces that act on the fluid-fluid interface and cap-

ure the multivalued nature of the MCL. 
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Fig. 6. Annular contour C′ A (shown in red) with inner radius R i and outer radius 

R o residing in fluid A. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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To physically understand why the total force at the MCL re-

ains finite, consider the annular contour C′ A with inner radius R i 
nd outer radius R o that lies inside fluid A, as shown in Fig. 6 . In

he zeroth order solution, the stress along the two radial segments

nd the stress along the two azimuthal segments are exactly equal

nd opposite, that is 

−
[

ˆ e θ · ˆ T A 0 · ˆ e x 
]
θ=0 ︸ ︷︷ ︸ 

fluid-solid interface 

= 

[
ˆ e θ · ˆ T A 0 · ˆ e x 

]
θ= φ0 ︸ ︷︷ ︸ 

fluid-fluid interface 

= −2 μA UD A 

r 
, 

−
[
( ̂  e r · ˆ T A 0 · ˆ e x ) r 

]
r= R i ︸ ︷︷ ︸ 

inner arc 

= 

[
( ̂  e r · ˆ T A 0 · ˆ e x ) r 

]
r= R o ︸ ︷︷ ︸ 

outer arc 

= −2 μA UC A . 

hus, the force acting along the fluid-fluid interface is balanced

y the force acting along the fluid-solid interface. Similarly, the

orces along the two azimuthal arcs balance each other and the

otal surface force acting on the contour C′ A is zero, as expected

iven Eq. 20 . If we shrink the radius of the inner arc to zero, the

ontour C′ A is reduced to C A and passes through the singularity, as

hown in Fig. 5 . Here, the logarithmically infinite force along the

uid-solid interface is balanced by the force along the fluid-fluid

nterface, as the stress along each boundary approaches positive

nd negative infinity at the same rate. A similar cancellation of log-

rithmic singularities is reported in the work of Jones (2003) when

he free vortex sheet is shed tangentially from the plate edge. In

he end, the total force exerted by the fluid is given by the az-

muthal arc and remains finite no matter how small C A becomes. 

While the analysis above demonstrates that there is a finite

orce at the MCL, the model is not without its limitations. One

uch limitation is the viscous dissipation per unit volume, which

cales as r −2 . This dissipation is non-integrable for both fluids and

esults in a singular total energy. However, this does not affect

he balance of momentum so long as density and viscosity are

onstant. This singular energy is not unique to the MCL problem

nd appears in several other two-dimensional singular continuum

odels. For example, the potential line source/sink and line vor-

ex have infinite kinetic energy at the singularity ( Batchelor, 1967 ).

rom electromagnetism, the energy per unit volume for an infi-

ite line charge or infinitely long current carrying wire is also sin-

ular ( Griffiths, 1972 ). These singular magnitudes in energy are a

onsequence of modeling some finite sized physical feature as a

athematical line, where some desired integral quantity is pre-

erved. For example, the potential line vortex is the limiting case

f a Rankine vortex where the radius of the central core is reduced

o zero while preserving the total circulation. In this limit, circula-

ion can only be preserved if angular velocity approaches infinity,

herefore, the potential line vortex exhibits infinite kinetic energy.

espite this non-physical kinetic energy, potential flow theory has

uccessfully modeled a wide range of high Reynolds number flows.

imilarly, the MCL model presented in this manuscript is the limit

here the fluid slip region has been reduced to an infinitely small
oint while preserving the total force. We recognize that these sin-

ular continuum models are idealized representations of the true

hysical phenomena. For the MCL problem, this relatively simple

odel will require additional development in order to capture the

ransfer of energy. However, it is still valid when considering forces

nd momentum transfer near the MCL. In the following section,

e explore the impact of this model on the prediction of dynamic

ontact angle. 

. Dynamic contact angle model 

The force balance presented above is essentially a dynamic

oung’s equation that can be used to model the dynamic contact

ngle. To do so, we assume that the solid is relatively rigid such

hat any deformation of the solid near the MCL is extremely small

 Lester, 1961; Slattery et al., 2007 ). As a result, f S, x is small relative

o the other terms of equation (18) and the force balance at the

ontact line can be written as 

 φ0 μA UC A + 2(π − φ0 ) μB UC B − σAB cos (φ0 ) = σAS − σBS . (28) 

n the equation above, the viscosity, interface velocity, and sur-

ace tension are known and therefore one can solve for the only

emaining unknown variable, namely the dynamic contact angle

0 . This angle corresponds to the microscopic contact angle since

quation (28) represents the force balance at r = � i . For the ideal-

zed hydrodynamic solution, � i = 0 and φ0 is the microscopic angle

easured at the solid surface. In problems where slip occurs over

 finite but significantly smaller length than the capillary length

 � i � � c ), φ0 corresponds to the microscopic angle measured just

utside the slip region. In the limit U → 0, equation (28) is sim-

lified to the static Young’s equation. The static Young’s equation

an be used to replace the right hand side of equation (28) with

σAB cos (φstatic ) so that the dimensionless dynamic Young’s equa-

ion is rewritten as 

os (φ0 ) − cos (φstatic ) = Ca A [2 φ0 C A + 2(π − φ0 ) C B λ] . (29) 

This non-dimensional form reveals that the change in micro-

copic contact angle scales with Capillary number and is consis-

ent with diffuse interface and molecular kinetic models. The dif-

use interface model predicts that microscopic contact angle will

cale as 

os (φ0 ) − cos (φstatic ) ∼ Ca 
ζ

� s 
, (30) 

here ζ is the fluid-solid interface width ( Qian et al., 20 03, 20 06 ).

en and E. (2007) propose a similar model except the change in

ontact angle is also dependent on the thickness of the fluid-fluid

nterface and a phenomenological friction coefficient. Molecular ki-

etic theory proposes the relation 

os (φ0 ) − cos (φstatic ) = Ca F B (ν0 , ξ ) , (31) 

here F B is a Boltzman factor that is a function of the molec-

lar equilibrium frequency and molecular displacement, ν0 and

( Blake, 2006; Blake and Coninck, 2011; Snoeijer and Andreotti,

013 ). The right hand side of equations (29)–(31) show that the

hange in microscopic contact angle scales with Capillary number

ultiplied by a factor representing the proposed physical mech-

nisms of each model. In our proposed model, the factor on the

ight hand side represents the total viscous force acting on the

ontact line region and only contains macroscopic parameters that

re known a priori, e.g. viscosity. In contrast, microscopic parame-

ers used in other models such as the interface thickness, molec-

lar displacement, and molecular equilibrium frequency are typ-

cally fitted from experimental data ( Blake, 2006 ). Interestingly,

e have not specified the physical mechanism which regularizes

he stress singularity at microscopic scales, whether it be slip or
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Table 1 

Fluid properties of Brookfield std. viscosity fluid and 70% glycerol solution investigated 

by Hoffman (1975) and Blake and Shikhmurzaev (2002) , respectively. 

μ [N s/m 

2 ] ρ [kg/m 

3 ] σ AB [N/m] φstatic 

Brookfield std. viscosity fluid 98.8 974 0.0217 0 ◦

70% glycerol solution 0.023 1181 0.0635 67 ◦
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molecular attachment and detachment. So long as the inner flow is

governed by the Stokes equation, path independence of the stress

integral means that regardless of the microscopic physical mecha-

nisms, the total force must equal the net change in fluid momen-

tum. As conservation of momentum must be satisfied for any phys-

ical model, it is somewhat expected that equations (29)–(31) are

similar in form. Among these models there are subtle differences

in how the contact line region is defined. In the work by Qian

et al. (20 03, 20 06) , the contact line is defined only as the lower

boundary of the fluid-solid interface. Ren and E. (2007) define a

microscopic pill box that sits on the solid surface and encloses the

fluid-solid and fluid-fluid interface. In this manuscript, we define

the contact line region by r < � i . These differing definitions of

the contact line region also leads to slightly different viewpoints

on the length scale at which the microscopic contact angle is de-

fined. Despite these differences, these models can still be reason-

ably compared because Cox (1986) demonstrated that within the

inner region, the interface is approximately planar and the contact

angle is not dependent on distance from the contact line (see page

176). As discussed in §3 , path independence of the stress integral

in Stokes flows allows us to model this inner region as a sharp line

if the length scale of the problem of interest is much larger than

� i . The sharp line limit of the MCL is simply the extension of the

sharp interface limit from a mathematical surface to a line. 

To demonstrate the utility of this model, we apply it to

the Brookfield std. viscosity fluid and 70% glycerol solution,

whose dynamic contact angles were experimentally measured by

Hoffman (1975) and Blake and Shikhmurzaev (2002) , respectively.

In this example, these two fluids and experiments are chosen for

their contrasting fluid properties and experimental set ups. How-

ever, the same analysis can be applied to other fluids and geome-

tries as well. As shown in Table 1 , the Brookfield fluid has a high

viscosity and perfectly wets the solid while the glycerol solution

has a significantly lower viscosity and only partially wets the solid.

With respect to the experimental set up, Hoffman measured the

contact angle of a liquid slug as it was pushed through a 1.95 mm

precision bore tube while Blake & Shikhmurzaev measured the dy-

namic contact angle created by plunging a smooth tape into a bath

of fluid. Despite these two very different fluids and experiments,

we will see that the theoretical model is in good agreement with

the experimental measurements. 

Given the fluid properties in Table 1 , we use equation (28) to

obtain a theoretical prediction of microscopic dynamic contact an-

gle as a function of Capillary number, as shown in Fig. 7 (a). To ac-

count for the roughness of the solid surface we have used φ( Ca →
0 + ) in place of φstatic in equation (28) . At first glance, we observe

that the glycerol solution exhibits a relatively smaller change in

contact angle as Ca increases. This is due to the significantly larger

viscosity ratio that allows the Brookfield fluid to more easily re-

duce the contact angle of the receding air phase. To compare our

results with those reported by Hoffman and Blake & Shikhmurzaev,

we combine our model for microscopic contact angle ( φ0 ) with

Cox’s model for apparent contact angle ( φ ) ( Cox, 1986 ). Cox’s ze-

g(λ, φ) = 

∫ φ

0 

λ(β2 − sin 

2 β)[(π − β) + sin β cos β] + [(π − β) 2 

2 sin β[ λ2 ( β2 sin 

2 β) + 2 λ{ β( π − β) + sin 

2 β} 
D 

c  
oth order model is given by 

(λ, φD ) = g(λ, φ0 ) + Ca ln (1 /ε) , (32)

here all terms are of order 1 and ε = � i /� o is the ratio of the in-

er length scale to the outer length scale. g ( λ, φ) is given by 

 

2 β](β − sin β cos β) 

− β) 2 − sin 

2 β} ] dβ. 

n contrast to the dynamic Young’s equation which captures the

otal force acting over the inner region r ≤ � i , Cox’s model cap-

ures the viscous bending of the fluid interface between � i and � c 

long the fluid-fluid interface ( Blake, 2006 ). The apparent contact

ngle predicted by the combination of these two models is shown

n Fig. 7 (b) with ε = 10 −4 . Note that the outer length scale is the

istance at which the apparent contact angle is measured and is

ften interpreted as the capillary length scale. Hoffman and Blake

 Shikhmurzaev did not report the length scale of their contact an-

le measurements, however it was likely smaller than the capillary

ength scale due to their use of microscopes. Consequently, exper-

mentally obtained values of ε are slightly larger than one might

xpect if one were to use the capillary length as the outer length

cale. 

Overall, there is good agreement between the theoretical ap-

arent dynamic contact angle and the experimental data of both

offman and Blake & Shikhmurzaev. At low Ca , the current model

iverges slightly from the experimental data of the glycerol so-

ution. This difference could be created by errors in contact an-

le measurement or by differences in the way apparent contact

ngle is defined. In Fig. 8 we provide additional comparisons for

he remaining fluids that were tested by Hoffman and Blake &

hikhmurzaev. In this figure the magnitude of g(λ, φD ) − g(λ, φ0 )

s plotted against Ca ln (1/ ε) so that the model can be represented

y a single curve regardless of static contact angle or viscosity

atio. As before, the microscopic contact angle is predicted by

quation (28) and the combined model captures the dynamic con-

act angle behavior. There is some deviation at high Ca , however

his is to be expected as the current model is derived by assum-

ng Ca � 1. In a recent experimental work, we have found addi-

ional support for this finite MCL force model by accurately captur-

ng the microscopic dynamic contact angle using a dynamic Wil-

elmy plate ( Zhang and Mohseni, 2019 ). The results presented here

an be extended to receding contact lines by combining our model

ith the model proposed by Eggers (20 04, 20 05) . One only needs

o substitute negative values of U into equation (28) so that the

dvancing and receding fluids are reversed. 

In this current model, φ0 is a function of Ca and is in agreement

ith the experimental observations of Ramé et al. (2004) . How-

ver, the finite force analysis does not provide a theoretical means

f determining the length scale ratio, ε. Regardless, we found that

he results are not particularly sensitive to ε (in agreement with

onn et al., 2009 ) and therefore a constant value of 10 −4 was used

or all experimental comparisons despite the different fluid prop-

rties. This suggests that, at least for these test cases, ε could be

reated as a constant that is independent of the fluid properties

nd experimental set up. 

In addition to providing a theoretical model of the dynamic

ontact angle, the results above will impact other aspects of
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Fig. 7. (a) Microscopic dynamic contact angle predicted for the Brookfield fluid and 70% glycerol solution investigated by Hoffman (1975) and Blake and Shikhmurzaev (2002) , 

respectively. Microscopic dynamic contact angle is obtained using equation (28) and the MCL solution presented in §2 . (b) Apparent dynamic contact angle comparison be- 

tween experimental measurements and current theoretical model. The current work uses the model from Cox (1986) where the microscopic contact angle, φ0 , is theoretically 

predicted by equation (28) . 

Fig. 8. Comparison of the current model to experimental data measured by 

Hoffman (1975) and Blake and Shikhmurzaev (2002) . All glycerol solution data 

points were adapted from Blake and Shikhmurzaev (2002) while the remaining 

data points were adapted from Hoffman (1975) . To collapse the model regardless of 

static contact angle or viscosity ratio, the data is presented as g(λ, φD ) − g(λ, φ0 ) 

vs. Ca ln (1/ ε) where ε = 10 −4 . 
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CL dynamics. For example, microscopic contact angle deter-

ines the sign and strength of vorticity near the MCL ( Zhang and

ohseni, 2018 ) as well as the surface tension force which is

iven by σ cos φ0 . These effects are important in microfluidics and

eat/mass transfer applications where vorticity and surface ten-

ion forces influence mixing and contact line pinning. Furthermore,

his result may be useful in numerical simulations where physi-

al phenomena of interest typically span several orders of mag-

itude. Convergence of numerical solutions are extremely sensi-

ive to the prescribed contact angle and grid size ( Afkhami, Za-

eski, Bussmann, 2009 ). In general, grid convergence is achieved

hen the grid resolution of the simulation is the same order of

agnitude as the slip length, typically 10 −7 m to 10 −9 m for wa-

er. Thus, the required number of grid points for most simulations
s extremely large. In order to reduce the computational cost and

mprove accuracy, the Stokes flow solution could be used as a sub-

rid model. In such a scheme, the minimum grid size would be

etermined by the validity of the small Re assumption. The imple-

entation of a Stokes flow subgrid model is outside the scope of

his publication, but will be investigated in future works. 

. Comparison with similar singular stokes flows 

While unfamiliar in the context of a moving contact line, a fi-

ite force corresponding to a singular stress is not unprecedented.

n fact, there exist two other Stokes flows that contain stress sin-

ularities and that have known finite forces, namely the cusped in-

erface flow and Stokeslet. The cusped interface flow, investigated

y Richardson (1968) and Joseph et al. (1990) , is created by two

ubmerged cylinders rotating with constant angular velocity. Under

he right conditions, the fluid interface will develop a cusp singu-

arity. The stream function near a cusped interface is reported by

ichardson as 

 = 

σ

2 πμ
r ln (r) sin (θ ) . 

t is easily shown that the complex formulation of this flow is

iven by 

 = μω + ip = − σ i 

πz 
. 

valuating equation (26) using Cauchy’s residue theorem for a sin-

ularity that lies on the contour and at a cusp yields a force per

nit length of f = 2 σ, in agreement with Richardson. 

A similar analysis can be performed for a two-dimensional

tokeslet, i.e. the flow that is created by an infinitely small cylinder

oving through a quiescent fluid ( Avudainayagam and Jothiram,

987; Guazzelli and Morris, 2011 ). For a Stokeslet that is aligned

ith the x -axis, the stream function and complex function G are

iven by 

 = 

α

4 π
r sin (θ )[1 − ln (r)] , 

 = μω + ip = 

μαi 

2 πz 
, 

here α is the strength of the Stokeslet. Evaluating

quation (26) for a contour path that encloses the Stokeslet
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yields a force per unit length of f = −μα. This result is consistent

with the force reported by Avudainayagam and Jothiram (1987) . As

discussed previously, the viscous surface force in a Stokes flow is

solely determined by the pressure and vorticity. From the complex

function G , we see that despite the different velocity fields, both

the Stokeslet and the cusped fluid interface have vorticity and

pressure fields that take the form of a dipole. In addition to a

singular stress and finite force, we also note that the Stokeslet,

cusped interface, and MCL singularity all predict infinite viscous

dissipation per unit volume at r = 0 . While this dissipation is sin-

gular, numerous applications of the Stokeslet singularity ( Crowdy

and Or, 2010; Pozrikidis, 1990 ) have demonstrated that the finite

force predicted by these singular models can still be used to

model physical problems. 

7. Concluding remarks 

In this publication, the force at a moving contact line was theo-

retically investigated using the hydrodynamic solution of the MCL.

By defining a cylindrical control volume around the MCL, we were

able to show using both real and complex analysis that the total

viscous force exerted by the fluids on the solid is finite despite

a singular stress. Unlike previous treatments of the contact line,

this control volume accounts for the viscous forces that act on the

fluid-fluid interface in addition to the forces that act on the fluid-

solid interface, much like the Young’s equation. With this finite

force, we proposed a model for microscopic dynamic contact an-

gle that is a function of the interface velocity, fluid viscosity, and

surface tension. As validation, we combined our model for micro-

scopic contact angle with Cox’s model for apparent contact angle

and achieved a good match with experimental measurements. In-

terestingly, the results reported in this work have been alluded to

in previous publications. Cox recognized the possibility of a veloc-

ity dependent microscopic contact angle and stated “it is uncer-

tain whether such an angle [microscopic angle] would depend on

the spreading velocity” ( Cox, 1986 ). In a more direct observation,

Voinov (1976) stated “In this case αm 

[microscopic angle] can be a

function of the velocity”. Dussan and Davis (1974) recognized the

similarities between the MCL problem and other singular models

which led them state: “There exist physical situations where the

force distributed over a small area is replaced by a force acting at

a point or a line. (This implies an unbounded stress tensor)”. In the

end, we would like to emphasize that the analysis and conclusions

made in this work are for a MCL model much like the Stokeslet

and cusped fluid interface. The finite force result does not imply

that phenomena like slip or thermal activation do not occur, but

merely that the net effect of these microscopic phenomena should

yield the same total change in momentum within a microscopic

control volume enclosing the contact line. 

In the field of wetting and dewetting, the concept of a finite

force despite a singular stress is somewhat unusual. However, if we

look to other fields, we find that there are many two-dimensional

singular continuum models with similar characteristics. In elec-

tromagnetism, electric fields are singular at the locations of line

charges. Through Gauss’ law, we know that the strength of the

point charge is finite despite the fact that the electric field is singu-

lar. In potential flow theory, line sources and line vortices are reg-

ularly used to model flows at high Reynolds numbers. Despite the

fact that the velocity or shear stress approaches infinity at these

singularities, they still conserve physical quantities such as mass

flux and circulation. These singular models do not resolve the ex-

act physics that occur at the singularity and are capable of cor-

rectly capturing the global features of the problem. In this sense,

there may be fluid slip extremely close to the moving contact line,

however we do not need to resolve it as we can already obtain

the contact line force and nearby velocity field. Essentially the fi-
ite force at the moving contact line is merely a different physical

pplication of the same mathematical concepts that are applied in

ther fields. At present, the MCL model retains a singular stress

nd infinite viscous dissipation at the corner singularity and are

nown limitations of this model. Motivated by the results of this

ork, future works will seek to extend this model to accurately

apture the transfer of energy at the MCL. 
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ppendix A. General solution to the biharmonic equation 

The biharmonic stream function equation is given by 

 

4 ψ = 0 . (A.1)

n polar coordinates, the solution is found using the technique

f separation of variables with ψ = R (r)�(θ ) . The solution that

as initially reported by Michell (1899) , and later extended by

ilonenko-Borodich (1958) , is given by 

 = (r/� ) 2 ln (r/� ) q 2 L (θ ) + (r/� ) ln (r/� ) q 1 L (θ ) + ln (r/� ) q 0 L (θ ) 

+ 

∞ ∑ 

n = −∞ 

(r/� ) n q n (θ ) . (A.2)

he functions q are given by 

 2 L = P 2 L [ A 2 L + B 2 L θ ] , 

 1 L = P 1 L [ A 1 L cos (θ ) + B 1 L sin (θ ) + C 1 L θ cos (θ ) + D 1 L θ sin (θ )] , 

q 0 L = P 0 L [ A 0 L + B 0 L θ ] , 

q 0 = P 0 [ A 0 + B 0 θ + C 0 cos (2 θ ) + D 0 sin (2 θ )] , 

q 1 = P 1 [ A 1 cos (θ ) + B 1 sin (θ ) + C 1 θ cos (θ ) + D 1 θ sin (θ )] , 

q 2 = P 2 [ A 2 + B 2 θ + C 2 cos (2 θ ) + D 2 sin (2 θ )] , 

q n = P n [ A n cos ((n − 2) θ ) + B n cos (nθ ) + C n sin ((n − 2) θ ) 

+ D n sin (nθ )] for n ≥ 3 , 

q n = P n [ A n cos ((n + 2) θ ) + B n cos (nθ ) + C n sin ((n + 2) θ ) 

+ D n sin (nθ )] for n ≤ −1 , 

here P is a dimensional coefficient and A, B, C , and D are coeffi-

ients determined by the boundary conditions. The velocity, vortic-

ty, and pressure can all be determined using the equations given

y 

 = ∇ × ψ ̂  e z , (A.3)

 = −∇ 

2 ψ, (A.4)

p = μ∇ 

2 u . (A.5)
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In the past, stream functions of various order r have been inves-

igated individually and correlated to unique classes of flows. The

aint scraper problem investigated by Taylor (1962) is described

y terms of order (r/� ) −1 . Similarly, the MCL problem investigated

y Huh and Scriven (1971) is described by terms of order (r/� ) −1 .

offatt eddies and the hinged plate flow correspond to terms with

 ≥ 1 ( Moffatt, 1964 ). The cusped fluid interface and Stokeslet so-

ution investigated by Richardson (1968) and Joseph et al. (1990) is

escribed by terms of order ( r / � )ln ( r / � ). Solutions that combine

ultiple orders of n have been shown to represent more complex

ows such as evaporation near the contact line ( Gelderblom et al.,

012, 2013 ). 

ppendix B. Zeroth order solution to the moving contact line 

ow 

The zeroth order solution to the moving contact line problem

escribed in §2 was first reported by Moffatt (1964) and Huh and

criven (1971) . In a planar wedge geometry, where fluid A has a

ontact angle of φ0 , the flow is governed by the biharmonic stream

unction equations given by 

 

4 ψ A 0 = 0 , 

 

4 ψ B 0 = 0 . 

he boundary conditions of the zeroth order solution include no-

lip at the fluid-solid interface, zero mass flux through all inter-

aces, and continuity of tangential velocity and shear stress across

he fluid-fluid interface. The resulting boundary conditions on ψ A 0 

nd ψ B 0 are therefore given by 

 A 0 (θ = 0) = 0 , 

 B 0 (θ = φ0 ) = 0 , 

1 
r 

∂ψ A 0 

∂θ

]
θ=0 

= U, 

∂ψ A 0 

∂θ

]
θ= φ0 

= 

[
∂ψ B 0 

∂θ

]
θ= φ0 

, 

ψ A 0 (θ = φ0 ) = 0 , 

ψ B 0 (θ = π) = 0 , [
1 
r 

∂ψ B 0 

∂θ

]
θ= π = −U, [ 

∂ 2 ψ A 0 

∂θ2 

] 
θ= φ

= 

[ 
λ∂ 2 ψ B 0 

∂θ2 

] 
θ= φ

, 

A A = 0 , 

B A = 

(8 φ0 (λ − 1)) sin (φ0 ) 
2 + 4 πλφ0 sin (2 φ0 ) + 8 φ0 (π

2 − λφ2 
0 −

�

C A = [ −8 πλ sin (φ0 ) 
2 + (8 πφ0 − 2 λ + 4 λφ2 

0 − 4 π2 − 4 φ2 
0 − 4 πλ

+ λ sin (4 φ0 ) − sin (4 φ0 )] / �, 

 A = 

(8 − 8 λ) sin (φ0 ) 
4 + (16 πφ0 + 8 λφ2 

0 − 8 π2 − 8 φ2 
0 − 8 πλφ0

�

A B = 

8 π2 sin (φ0 ) 
2 + (−π(4 πφ0 − 2 λ + 4 λφ2 

0 − 4 φ2 
0 + 2)) sin (2 φ

�

B B = [(8 λφ0 − 8 φ0 − 8 φ0 π
2 + 8 πφ2 

0 − 8 πλφ2 
0 ) sin (φ0 ) 

2 + (2 π −
+(4 πφ0 − 4 π2 ) sin (2 φ0 ) + 8 φ0 π

2 − 16 πφ2 
0 − 8 λφ3 

0 + 8 φ3 
0 

C B = 

−8 π sin (φ0 ) 
2 + (4 πφ0 − 2 λ + 4 λφ2 

0 − 4 φ2 
0 + 2) sin (2 φ0 ) +

�

 B = 

(8 − 8 λ) sin (φ0 ) 
4 + (8 πφ0 + 8 λφ2 

0 − 8 φ2 
0 ) sin (φ0 ) 

2 

�
, 

� = (φ0 (8 λ − 8) − 8 πλ) sin (φ0 ) 
2 + ((4 λ − 4) φ2 

0 + 8 πφ0 − 2 λ −
+(λ − 1) sin (4 φ0 ) + (8 − 8 λ) φ3 

0 + (8 λπ − 16 π) φ2 
0 + 8 π2 φ
0 0 
here λ = μB /μA denotes the viscosity ratio. Solving the system

f equations created by the boundary conditions above yields the

tream function, velocity, pressure, and vorticity is given by 

ψ 0 = rU[ A cos (θ ) + B sin (θ ) + Cθ cos (θ ) + Dθ sin (θ )] , 

u 0 r = 

1 

r 

∂ψ 

∂θ
= U [ −A sin (θ ) + B cos (θ ) + C[ cos (θ ) − θ sin (θ )] 

+ D [ sin (θ ) + θ cos (θ )] 

] 
, 

 0 θ = −∂ψ 

∂r 
= −U[ A cos (θ ) + B sin (θ ) + Cθ cos (θ ) + Dθ sin (θ )] , 

p 0 = 

2 μU 

r 
[ C cos (θ ) + D sin (θ )] , 

ω 0 = 

2 U 

r 
[ C sin (θ ) − D cos (θ )] . 

or each fluid A, B, C , and D are constant coefficients given by 

φ0 + φ2 
0 + πλφ0 ) 

, 

2) sin (2 φ0 ) 

 (φ0 ) 
2 

, 

π( sin (4 φ0 ) − λ sin (4 φ0 )) 
, 

) sin (2 φ0 ) 
2 

λφ2 
0 ] / �, 

 (4 φ0 ) − sin (4 φ0 ) 
, 

2 + 2) sin (2 φ0 ) 

ote that the coefficients are a function of the contact angle, φ0 ,

nd viscosity ratio, λ, only. 

ppendix C. Complex contour integrals with singularities on 

he contour 

The contour integrals considered in this paper typically contain

ingularities that are simultaneously on the contour and at a cor-

er. In this section, we demonstrate how Cauchy’s residue theo-

em is affected by singularities on the boundary based on §1.5 of

strada and Kanwal (2012) . 

Consider the analytic function W = 1 / (z − ξ ) and the closed

ontour C that defines an interior region, S I , and an exterior re-

ion, S O . The solution to the complex contour integral of W along

he path C is given by 

 

C 

W dz = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 π i, ξ ∈ S I , 
0 , ξ ∈ S O , 
π i, ξ ∈ C along a smooth segment of C , 

φi, ξ ∈ C and at a corner , 

here the four cases correspond to the location of ξ , as shown in

ig. C.9 . In the first two cases, the singularity lies inside the con-

our ( ξ ∈ S I ) or outside the contour ( ξ ∈ S O ) and Cauchy’s residue

heorem yields a solution of 2 π i Res (W ) and 0, respectively. If ξ
ies on a smooth segment of C , then the Sokhotski-Plemelj theorem

tates that the integral will equal π i Res (W ) , which in this case is



12 P. Zhang and K. Mohseni / International Journal of Multiphase Flow 132 (2020) 103398 

Fig. C9. (a) ξ lies inside the contour in the region S I (b) ξ lies outside the contour in the region S O (c) ξ lies on the path C along a smooth segment (d) ξ lies on the path 

C at a corner point. 
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π i . If ξ lies on C and at a corner, then the Sokhotski-Plemelj theo-

rem states that the integral will equal φi Res (W ) = φi, where φ is

the angle of the corner. 
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