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Abstract

Recent efforts in soft-body control have been hindered by the infinite dimensionality of soft bodies. Without restricting the

deformation space of soft bodies to desired degrees of freedom, it is difficult, if not impossible, to guarantee that the soft

body will remain constrained within a desired operating range. In this article, we present novel modeling and fabrication

techniques for leveraging the reorientation of fiber arrays in soft bodies to restrict their deformation space to a critical

case. Implementing this fiber reinforcement introduces unique challenges, especially in complex configurations. To

address these challenges, we present a geometric technique for modeling fiber reinforcement on smooth elastomeric sur-

faces and a two-stage molding process to embed the fiber patterns dictated by that technique into elastomer membranes.

The variable material properties afforded by fiber reinforcement are demonstrated with the canonical case of a soft, circu-

lar membrane reinforced with an embedded, intersecting fiber pattern such that it deforms into a prescribed hemispheri-

cal geometry when inflated. It remains constrained to that configuration, even with an additional increase in internal

pressure. Furthermore, we show that the fiber-reinforced membrane is capable of maintaining its hemispherical shape

under a load, and we present a practical application for the membrane by using it to control the buoyancy of a bioinspired

autonomous underwater robot developed in our lab. An additional experiment on a circular membrane that inflates to a

conical frustum is presented to provide additional validation of the versatility of the proposed model and fabrication

techniques.
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1. Introduction

The advantages of soft robots have rapidly been gaining

the attention of the robotics community, as evidenced by

this journal’s special edition, among others. Their appeal

lies in the ability of compliant bodies and components to

offer more robust and adaptable performance than tradi-

tional rigid systems. Flexible robotic structures are less

prone to critical failure, as they can deform to accommo-

date critical loads while maintaining the ability to return to

an operational state (Laschi et al., 2016; Manti et al., 2016;

Rus and Tolley, 2015; Trivedi et al., 2008). Similarly, a

deformable body can collapse down to fit through narrow

openings in order to reach normally inaccessible locations.

When it comes to tasks such as grasping and tactile sen-

sing, a compliant manipulator allows for a much more sen-

sitive touch by deforming to fit the geometry of objects

(Galloway et al., 2016; Polygerinos et al., 2017). Soft skins

have shown tremendous promise as sensors and tools for

haptic feedback (Tavakoli et al., 2017). Soft robotic ele-

ments are also inherently safer for human–robot

interactions, or for robots studying and manipulating sensi-

tive biological systems. For a review of the current state of

the art in soft robotic systems please refer to Trivedi et al.

(2008), Rus and Tolley (2015), Manti et al. (2016), and

Laschi et al. (2016).

Deformable robotic platforms allow for a level of versa-

tility and adaptability unrivaled by rigid systems, which

could be integral to the next generation of intelligent, adap-

table robots (Trivedi et al., 2008). Traditional robotic sys-

tems are built with a series of rigid elements connected
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through different types of joints, thus having a finite num-

ber of degrees of freedom (DOFs) defining the system con-

figuration. An elastic body, on the other hand, can deform

to desired shapes, having an infinite number of DOFs asso-

ciated with a continuous deformation space. This increase

in versatility comes with additional challenges, however,

associated with actuation and structural stability. For rigid

robots, a single, high-strength actuator can be applied to

each DOF to provide complete control authority over that

DOF. If a traditional actuator is applied to a flexible body,

however, it will often only cause local deformation at the

location where the force/torque is applied. Furthermore, the

robot will likely be subjected to external loading during

operation, which may cause undesired deformation.

Therefore, soft robots and systems require novel distributed

actuation and sensing techniques for proper operation.

Many researchers in the soft robotic community have

sought inspiration for these new techniques from systems

already found in nature, because biological systems have

learned to successfully incorporate compliant elements,

including soft structures with no rigid elements whatsoever.

There is a class of biological structures, without rigid sup-

port, known as muscular hydrostats (Kier, 1992). Muscular

hydrostats are structures composed of interwoven muscle

fibers that provide both actuation and structural support in

three-dimensional space. These structures include elephant

trunks, mammalian tongues, and cephalopod mantles,

arms, and tentacles, to name a few. Muscular hydrostats

serve as an excellent model for the possible realizations of

soft robotic components, but octopus and squid mantles, in

particular, help to illustrate how fiber reinforcement can be

utilized to control the deformation space of soft bodies.

The mantle is a muscular hydrostat that extends like a

hood over cephalopods and creates an internal fluid cavity

used for jet propulsion. The octopus mantle is composed

of three orthogonal muscle groups, namely radial, longitu-

dinal, and circumferential (Gosline and DeMont, 1985).

Figure 1 shows a section of the octopus mantle and the dif-

ferent muscle groups. The octopus mantle is amazingly

versatile, allowing it to perform jetting, enlarge to scare

predators, and even squeeze through openings much

smaller than the octopus body size (Mather et al., 2010); in

fact, the size of a hole an octopus can squeeze through is

only limited by its rigid beak. The squid mantle, though

similar, is encased on either side by an array of helical,

interwoven, inextensible collagen fibers known as tunics,

as depicted in Figure 1. The angle between fibers in squid

tunics is surprisingly consistent, even across different spe-

cies (Wainwright et al., 1976; Ward and Wainwright,

1972). The inextensibility of the tunic fibers couples strains

in the circumferential and longitudinal directions, effec-

tively reducing the deformation space of the squid mantle

to a family of cylindrical shells. We have shown that within

this limited deformation space, tunic fiber angles observed

in squid maximize the propulsive jet volume flux for a

given circumferential contraction (Krieg and Mohseni,

2012). The limited deformation space also allows squid to

prioritize muscle groups. As the deformation of the squid

mantle in the axial direction is limited by the tunic fibers, it

does not require longitudinal muscle groups to oppose this

extension. As a result, more of the muscle in the mantle

can be dedicated to the circular muscle groups, providing

more power to contract the mantle and expel a jet with

higher velocity (Bone et al., 1981). This specialized mantle

structure gives squid impressive jetting capabilities, result-

ing in the fastest swimming speeds of any marine inverte-

brate (Anderson and Grosenbaugh, 2005; O’Dor and

Webber, 1991).

In the context of this article, the two mantle structures

(Figure 1) exemplify how fiber reinforcement in soft

Fig. 1. Schematics of squid mantle tissue dominated by circular muscle fibers with both inner and outer tunics (left) and octopus

mantle tissue with circular, radial, and longitudinal muscle tissue (right).
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structures creates a trade-off between versatility and

increased performance of a specialized action. Various

groups have exploited fiber-reinforcement techniques to

accomplish similar goals. Cacucciolo et al. (2016) used

fiber reinforcement to create a nonlinear, bending fluidic

actuator, focusing on using the fiber reinforcement to max-

imize bending angle. Fiber reinforcement has been used in

dielectric actuators to restrict deformation in one direction

and improve actuation along the planar direction perpendi-

cular to the fibers (Lu et al., 2012; Shian et al., 2015).

Huang et al. (2012) created a fiber-reinforced cylindrical

dielectric elastomer actuator (DEA) that restricts circumfer-

ential expansion to improve axial actuation strains.

Bolzmacher et al. (2006) used fiber reinforcement to main-

tain prestrain in a wearable DEA. Fabrics have been used

as dense fiber meshes in pneumatic actuators (Cappello

et al., 2018) and synthetic, 3D camouflaging skins that can

inflate to various predefined shapes (Pikul et al., 2017).

Some fiber-reinforcement schemes have been used to pro-

duce twisting deformations (Ceron et al., 2018; Fang et al.,

2011).

These studies have almost exclusively used fiber reinfor-

cement to prevent deflection along the axes of the fibers,

only scratching the surface of the passive control over

deformation that can be achieved with customized fiber

reinforcement. In contrast to the fiber-reinforcement tech-

niques presented in the literature, we propose creating

arrays of intersecting fibers such that any deformation

within the plane of those arrays requires fiber reorientation,

resulting in a coupling of orthogonal components of strain,

similar to the effect of fibers in the squid mantle, that can

be tailored to any desired relative strain relationship. The

end result is the ability to create nearly any desired space of

possible deformations, both increasing desired output for a

given actuation and allowing soft actuator density to be

weighted toward a desired specialized action, since antago-

nistic actuation forces are not needed to prevent unwanted

deformation. As an additional benefit, the custom arrays of

reinforcing fibers also result in highly nonlinear stress–

strain (stiffness) relationships in soft composite structures

that can be customized for given robotic applications to

increase structural stability in a final desired configuration.

Typical investigations into modeling the effect of fiber

reinforcement on elastomers focus on determining the

material properties at a macroscopic scale, similar to the

approach used for calculating material properties in compo-

sites (Agarwal and Broutman, 1980). Lou and Chou (1988,

1990) used a strain energy approach for Eulerian and

Lagrangian strains. Clark (1987) discussed a bimodular

approach to modeling zig–zag fibers. Peel (1998) used

experimentally determined material properties to model the

stress–strain characteristics without directly characterizing

the fiber reorientation’s effect on the results. In general,

these studies considered the composite to be a single homo-

geneous material with a highly nonlinear elastic modulus,

owing to fiber reorientation, and then characterized that

modulus empirically.

Krieg and Mohseni (2017) took a different approach to

modeling highly flexible planar composites by treating the

fibers and elastomeric matrix as independent systems that

interact through a local stress balance directly affected by

fiber orientation. This allowed the nonlinear elastic modu-

lus of the combined system to be calculated with high

accuracy over a large range of deformation. It was experi-

mentally shown that custom fiber reinforcement increased

planar expansion in a desired direction to 14 times that of

an unreinforced sample for an equivalent compression of

the thickness, which has the ability to drastically improve

the performance of soft actuators like DEAs. The analytical

stress–strain model was used to simulate energetics in the

soft structure, showing a reduction in required deformation

work by as much as 83% for optimal fiber configurations

and a high modulus ratio compared with no reinforcement

or parallel reinforcing fibers.

In this study, we extend the analysis for passive deforma-

tion control beyond the planar case and present a technique

for using custom arrays of reinforcing fibers to control the

3D deformation space of a soft, elastomer membrane. We

develop a technique for modeling the effect of fiber reinfor-

cement on soft membranes, demonstrate the improvements

in geometric stability of a fiber-reinforced membrane over

that of an unreinforced membrane, subject them both to var-

ious loads to evaluate their behavior, validate the model for

the simple cases of inflated spheres and conical frustums

(Figure 2), and use a fiber-reinforced membrane to aid in

the buoyancy control of an autonomous underwater vehicle

(AUV) developed in our lab (Krieg et al., 2011; Krieg and

Mohseni, 2010). This platform has been used regularly in

our group as a technology demonstrator (Krieg et al., 2018)

and testing platform to analyze different AUV control stra-

tegies and novel distributed sensing techniques (Krieg

et al., 2019). Interestingly, the AUV also uses a bioinspired

jetting propulsion system (Krieg and Mohseni, 2008) that

utilizes flexible internal cavities that are reinforced with

helical metallic fibers to prevent unwanted radial expansion

during the pulsation cycles. Similar techniques could be

Fig. 2. Fiber-reinforced membranes designed to inflate to a

hemisphere (a) and a conical frustum (b).
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used in a variety of other applications, including improving

soft actuator performance, creating soft pumps and valves,

enabling advanced haptic feedback, or reducing the com-

plexity of packing the airbags used in cars or to soften the

landing of Mars rovers.

We begin by presenting our model of fiber geometry in

Section 2, followed by a description of the fabrication pro-

cess of the fiber-reinforced membranes designed after that

model in Section 3. The experiments designed to test the

validity of our modeling and the robustness of our fabrica-

tion technique are then presented in Section 4, and their

results are reported in Section 5. Finally, we discuss the

implications and intricacies of our findings in Section 6

and conclude with Section 7.

2. Modeling

Following the methods presented by Krieg and Mohseni

(2017), who solved the kinematics of fiber-reinforced elas-

tomeric sheets with two intersecting sets of fibers to derive

analytical nonlinear stress–strain models, this article takes

the first step toward extending the modeling of fiber arrays

to arbitrary, convex fiber-reinforced surfaces.

A simple approximation of a surface in three-

dimensional space is the tangent to a point on that surface.

If the tangents do not vary with respect to the point chosen,

the surface is a planar sheet. Expressions for fiber reorien-

tation and associated stiffness variations were derived for

this case in Krieg and Mohseni’s work. Adding the next

level of complexity, a single second-order term, or curva-

ture, can be added to the approximation while maintaining

constant parallel tangent lines perpendicular to the plane of

principal curvature, forming a cylinder. The introduction of

an additional second-order term gives the curvature in both

principal directions on a surface to form a general, three-

dimensional curved surface.

In this section, we establish techniques for modeling the

fiber reorientation on a convex curved surface using gener-

alized curvilinear coordinates and focusing on the reorien-

tation of these components with respect to the constant

magnitude of a differential fiber length. We then present

this technique to solve for the canonical cases of a sphere,

where both principal curvatures are equal, and compare it

with the simpler cases of a circular conical frustum and a

planar sheet to show how this modeling would be applied

to a variety of geometries.

2.1. General formulation

First, the nature of the constraint applied by the fibers must

be considered. The tensile modulus of the fiber is chosen to

be several orders of magnitude greater than that of the elas-

tomer matrix. With such a large difference, the fibers are

considered inextensible with all deformation occurring in

the elastomer, resulting in significant fiber reorientation. In

addition, the fibers are considered to have a negligible con-

tribution to bending stiffness. These assumptions are

established by Krieg and Mohseni (2017) for a planar sheet,

and they can be used to establish a mathematical relation-

ship between fiber inextensibility and reorientation. To

accomplish this for three-dimensional shapes, we first con-

sider the fiber length, which is defined as a curve along the

surface of the membrane.

The fiber length can locally be considered a vector on

the surface of the elastomer with a constant magnitude

L =

Z
C

jdsj ð1Þ

where the differential fiber length, ds, can be defined in

terms of general orthogonal curvilinear coordinates,

ds=
∂s

∂x1

dx1 +
∂s

∂x2

dx2 +
∂s

∂x3

dx3 ð2aÞ

= h1dx1e1 + h2dx2e2 + h3dx3e3 ð2bÞ

hi =
∂s

∂xi

����
���� ð2cÞ

where hi are the scale factors, dxi are the components in

each base direction, and ei are the unit base vectors. This

provides a relationship between the components of the dif-

ferential fiber length. The problem is simplified consider-

ably if a coordinate system is chosen that defines one of the

components to be normal to the surface, as the fibers are

fixed to the surface and therefore contain no normal com-

ponent, as shown in Figure 3. This can be seen in Krieg and

Mohseni’s work, where Cartesian coordinates were used

with the z-axis normal to the plane; therefore, there was no

fiber component along this axis. In a cylindrical system, the

radial component is normal to the tangent plane and fiber

components are along the polar and longitudinal axes. A

spherical system also accomplishes this if the fibers are

completely defined using the polar and azimuthal angles.

For more complex systems, a local coordinate system can

Fig. 3. Schematic of a general, fiber-reinforced curved

membrane, where e1 is the surface normal, e2 is fixed tangent to

one of the fibers, and the other fiber lies between e2 and e3.
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be used to determine reorientation and then be transformed

into a global system.

As stated previously, the constant magnitude of a differ-

ential fiber length provides a relation between its compo-

nents which can be used to determine the reorientation of

the fibers. First, the magnitude of the differential fiber

length defined in (2) is considered. If we define the first

component along the surface normal, we obtain

dL

dg
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

dx2

dg

� �2

+ h3

dx3

dg

� �2
s

ð3Þ

where dL = dsj j and g is a general parameter that defines

the surface. We next need to define the remaining bases to

describe the components of the differential fiber length. By

fixing one coordinate direction tangent to one of the fibers,

which we refer to as the fixed fiber, we are able to solve for

the movement of the second fiber, which we refer to as the

reorienting fiber, in terms of the first. As the membrane

deforms, the fibers restrict deformation along their length,

and the membrane is only able to expand through fiber

reorientation, which takes place to maximize the planar area

encapsulated by the fibers. The differential area between

two sets of fibers is

dA = ds1 × ds2j j ð4aÞ

= ds1j j ds2j j sinc ð4bÞ

where the subscripts of ds are used refer to the different

fiber sets. Here dA goes to a maximum when c, the angle

between the two fibers, goes to p=2. This is the critical con-

figuration, where any additional deformation requires fiber

extension, as the planar area of the elastomer has already

been maximized. Following that the maximum area occurs

when the fibers are locally orthogonal and that the surface

bases lie tangent to the fibers in this configuration, we next

assume that the fibers do not slide past each other. Owing

to this, the differential length of the fiber with respect to

the parameter g will be constant throughout all stages of

deformation and can be solved for from one of the known

stages. If the desired configuration is chosen such that the

two sets of fibers are locally orthogonal, the expression for

differential fiber length with respect to g simplifies to

dL

dg
= h3

dx3

dg

����
f

ð5Þ

where f refers to the final configuration associated with the

critical angle. Then by applying this relationship to the orig-

inal fiber length equation shown in (3), we obtain an equa-

tion for fiber reorientation at any configuration as

h3

dx3

dg

����
f

 !2

= h2

dx2

dg

� �2

+ h3

dx3

dg

� �2

ð6aÞ

dx2

dg
=

1

h2

h3

dx3

dg

����
f

 !2

� h3

dx3

dg

� �2

2
4

3
5

0:5

ð6bÞ

which relates the two surface components of the fiber and

can be used to describe the kinematics of the fiber-

reinforced membrane. If the desired configuration is cho-

sen as anything other than an orthogonal fiber mesh,

Equations (5) and (6) must simply be modified to account

for the additional differential terms.

This technique allows us to describe the kinematics of

fiber reorientation that govern the deformation space of the

reinforced membrane. For specific geometries, a constraint

can often be defined that simplifies the closed-form solu-

tion of the model. In Sections 2.2 and 2.3, we illustrate this

concept by defining desired membrane geometries that we

use as the critical cases of fiber reorientation. To accom-

plish this, we define an orthogonal mesh of fibers on the

desired surface. Deformation of the membrane past this

critical configuration would require fiber extension, which

is limited by the fibers’ high tensile strength. In the follow-

ing sections, several special cases are presented where the

membranes deform from a flat membrane to their final

desired configuration.

2.2. Special case: sphere

To demonstrate an example of the kinematic modeling

described above, we assume a simple case of a system with

two equal principal curvatures, which is that of a sphere.

As such, we adopt a spherical coordinate system to describe

the symmetry associated with this configuration with radius

R, polar angle f, and azimuthal angle u, shown in Figure 4.

By applying this to (3), we obtain

dL

dg
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

du

dg

� �2

+ R
df

dg

� �2
s

ð7Þ

where the polar radius r = R sinf.

If we choose to define the desired configuration to be a

hemisphere at the critical case of fiber reorientation, we

can establish one set of fibers as major arcs along the polar

angle f. To complete the fiber mesh, a set of fibers needs

to be applied in the orthogonal direction, which form rings

along the azimuthal angle u. This layup can be seen in an

intermediate stage of inflation in Figure 4. We want the

hemisphere to be formed by inflation of a flat circular

membrane. This leads us to orient the fiber circles along

the u direction to be concentric with the outer edge of the

clamped membrane, making the rings have constant polar

radii through all stages of deformation. This makes r a

convenient parameter to describe the geometry, so we set

g = r. In addition, while transitioning between the flat

plate, which can be treated as a spherical cap with an infi-

nite radius, and the hemisphere, we assume that the mem-

brane maintains the geometry of a spherical cap at every
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point of inflation. This allows for a kinematic description

of the membrane’s geometry to be established without

requiring knowledge of the stresses experienced by the

membrane. Justification for this approximation can be

found in the Appendix. We can then characterize the polar

angle f and its spatial derivative as

f = sin�1 r

R

� �
, ð8aÞ

df

dr
=

1

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

R

� 	2
q ð8bÞ

As shown in (5), the magnitude of the differential fiber

length with respect to the parameter g can be defined by its

final configuration. This corresponds to when the fibers

form major arcs along the f direction. Presenting this math-

ematically, we obtain

dL

dr
= R

df

dr

����
f

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r

a

� 	2
q ð9Þ

where a is the inner radius of the membrane clamp ring

(shown in Figure 12), which is the radius of the final hemi-

sphere, R.

Finally, the unknown component of the reorienting fiber

can be solved for by applying the relations established in

(8b) and (9) to (7) and rearranging the expression to give

du

dr
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1�(r
a
)
2 � 1

1�(r

R
)
2

q
r

ð10Þ

Then, solving for u as a function of parameter r simply

requires integration,

u = u0 +
a

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

a

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r

R

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� r

a

� 	2
� 1

1� r

R

� 	2

s

F sin�1 r

a

� �
,

a

R

� �2
� �

ð11Þ

where F(c,m) is the incomplete elliptical integral of the

first kind, see Abramowitz and Stegun (1972).

As the membrane is treated as a spherical cap, we can

solve for the radius R used in (11) from the volume

V =
1

3
p R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2
p� �2

2R +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2
p� �

ð12Þ

Here V ranges from 0 in the planar configuration to the

critical volume of the inflated membrane, which can be

determined by setting the radius of curvature to a

V =
2

3
pa3 ð13Þ

Once the radius R is determined with (12) and used to

solve for u ((11)) and f ((8a)), the previous analysis pro-

vides the spatial configurations of the fibers at all inflation

levels, which can be used to determine the configuration

needed to fabricate a flat membrane.

2.3. Special case: conical frustum

In addition to the spherical membrane, a membrane that

deforms to a conical frustum from a flat plate has also been

designed to demonstrate the versatility of the proposed

model. The modeling for this new geometry progresses in

a similar fashion to that of the spherical membrane, so the

first steps are the adoption of an appropriate basis and the

definition of the differential fiber length. For a circular con-

ical frustum, cylindrical coordinates provide a convenient

coordinate system (Figure 5); however, unlike the case of

the spherical membrane, the fibers can have components in

all three coordinate directions. To limit the final, critical

case, circular rings along the u direction, similar to the

spherical membrane, are used in conjunction with radial

fibers which form the conical surface. As such, the expres-

sion for the differential fiber length of the reorienting fibers

is

dL

dr
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + r

du

dr

� �2

+
dz

dr

� �2
s

ð14Þ

Similar to the approach taken in the spherical case where

an approximation of the geometry during intermediate

stages assumed a spherical cap, an approximation of the

conical frustum provides information on the fiber reorienta-

tion in the conical case. As the membrane forms a circular

Fig. 4. Schematic of the fiber-reinforced spherical membrane at

an intermediate stage of inflation. The circular set of fibers that

act along the u direction restrict the polar radius r, whereas the

second set of fibers straighten to form major arcs along the f

direction, resulting in hemispherical geometry at full inflation.

The origin is set at the center of curvature and not the center of

the clamped edges of the circular membrane to keep the radial

coordinate normal to the surface.
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conical frustum in both the initial planar and final critical

configurations, the membrane is approximated to maintain

this shape through every stage of inflation. From this geo-

metry, the differential component of the fiber length along

the longitudinal axis can be defined as

z =
h

a� b
a� rð Þ ð15aÞ

dz

dr
=
�h

a� b
ð15bÞ

where a is the inner radius of the membrane clamp ring

and b is the radius of the innermost ring along the angle u,

as shown in Figure 5. From the desired final configuration,

we know that there is no component of the radial fiber act-

ing along the u direction; therefore, the differential fiber

length with respect to r through all stages of inflation can

be defined as

dL

dr
=

dz

dr

����
f

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

hf

b� a

r
ð16Þ

where hf is the height in the final configuration. By com-

bining (15b) and (16) and solving for the unknown fiber

component,

du

dr
=

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

f � h2

(a� b)2

s
ð17Þ

u = u0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

f � h2

(a� b)2

s
ln r ð18Þ

we have the last coordinate needed to describe the fiber

position during every level of inflation. This includes the

initial configuration, which is solved by setting h = 0 and

is used to determine the layup used in Section 3.

2.4. Special case: planar sheet

Our previous examples focused on extending the analysis

used for planar sheets to arbitrary curved surfaces, but the

same techniques used for arbitrary curvatures can be

applied to the simplified kinematics of a sheet which main-

tains its planar geometry when deformed. In addition to

describing how a flat membrane would deform, modeling

for a planar sheet would provide a first-order approxima-

tion and linearization for a general manifold around a

point. As such, we can look into the characteristics of the

planar sheet to approximately predict how the material will

perform for a curved surface. For this case, Cartesian coor-

dinates are adopted, with scale factors equal to 1, which

simplifies (3) to

dL

dg
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2

dg

� �2

+
dx3

dg

� �2
s

ð19Þ

For straight fibers, such as those used by Krieg and

Mohseni (2017), the differential components of the fiber

lengths do not vary in space, and the magnitude of the dif-

ferential fiber length is purely a function of its planar com-

ponents. This allows (19) to be simplified and for the

global kinematics to be defined by a single quantity c, the

acute angle between the fibers. Defining e2 along the fiber,

the components of a differential length of the second fiber

become a projection of dL,

dx2 = dL � cosc ð20aÞ

dx3 = dL � sinc ð20bÞ

where c is the angle between the two fibers. This projection

reaches a maximum at the critical angle p=2,

dL = dx3jf ð21Þ

By rotating the coordinate system such that the coordi-

nates act between the nodes of the quadrilateral element

formed, as shown in Figure 6, we are able to obtain the

principal strains in the material. Determining the distance

between the nodes of a differential element along the

x-axis, we obtain

lx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dL� dx2)

2 + dx2
3

q
ð22aÞ

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dL2(1� cosc)2 + dL2 sin2 c

q
ð22bÞ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dL2 1� coscð Þ

p
ð22cÞ

Fig. 5. Schematic of the geometry of a conical frustum at an

intermediate stage of inflation. The circular set of fibers that act

along the u direction restrict the radius r, whereas the second set

of fibers straighten to form the sides of the conical frustum. The

conical frustum’s height, h, base radius, a, and top radius, b, are

also shown.
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By a similar process, the distance between the nodes of a

differential element along the y-axis can be determined,

leading to

ly =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dL2 1 + coscð Þ

p
ð23Þ

Defining the strains as the displacement between the ini-

tial and current configurations with respect to the initial

configuration, the strains become

ex =
1� cosc

1� cosc0


 �0:5

� 1 ð24aÞ

ey =
1 + cosc

1 + cosc0


 �0:5

� 1 ð24bÞ

where c0 is the initial angle between the fibers. These are

the exact kinematic expressions obtained by Krieg and

Mohseni (2017), which are then used to determine the non-

linear stress–strain response of the material.

Ultimately, any deformation of these soft structures will

be the result of some external loading, such as stresses

imposed by soft actuators. As an example, consider a DEA

with conductor plates oriented parallel/tangent to the sur-

face, which will create compressive stress in the normal

direction resulting in planar expansion. By introducing a

term for the total compression of the soft material, which is

coupled to the material Poisson ratio, the two planar com-

ponents of strain were related to the third component of

strain in the sheet normal direction (Krieg and Mohseni,

2017), and reinforced sheets were shown experimentally to

produce planar expansion in a desired direction up to 14

times that of an unreinforced sheet, matching well with the

kinematic model associated with fiber reorientation.

As the sheet is compressed, the fiber angle increases to

account for planar expansion, and the elastic modulus of

the entire composite structure increases significantly. In

order to model the nonlinear stress–strain relationship in

fiber-reinforced sheets under large deformations analyti-

cally, Krieg and Mohseni (2017) considered the elastomeric

matrix and fiber arrays as independent systems that interact

through local stresses in the planar directions to create the

constrained deformations. The unreinforced elastomer is an

isotropic, homogeneous material, meaning that compres-

sing a sheet of the elastomer results in an outward strain in

each of the planar directions as governed by the material’s

Poisson ratio. When the sheet is reinforced by fiber arrays,

the planar strains are instead governed by the fiber orienta-

tion, as described previously. The stresses transferred

between the fibers and elastomeric matrix in the planar

directions can then be calculated as the stresses required to

create the reinforced sample strains.

Figure 7 shows the stress–strain relationship for several

flat, fiber-reinforced sheets with different initial fiber

angles, along with the analytical model for the total stress

and strain. The analytical modeling shows excellent agree-

ment with measured stress and strain data, validating the

methodology. As a first-order approximation, small regions

of a general 3D sheet can be considered planar to solve for

local stress–strain relationships, assuming that the charac-

teristic size of that region is small compared with the radii

of curvature. Then, the local stress–strain relationship can

be integrated over the entire surface to obtain the macro-

scopic relationship. It should also be noted that there is a

significant increase in elastic modulus as the fiber angle

approaches the critical value. This stiffening associated

with fiber reorientation is important because the structure

will be easily deformed while in a resting state, but in the

final configuration, fiber-reinforced sheets will attain much

higher structural stability. In Sections 4.3 and 4.4, we dis-

cuss specific applications of a fiber-reinforced sheet that

deforms into a hemisphere when pressurized, namely using

the device as either a flexible buoyancy bladder or as an

appendage interacting with external loading. In both

Fig. 6. Schematic of a differential fiber element in a planar sheet

with a fiber angle denoted by c. Fiber lengths are equal to define

the x–y coordinate system, but due to the equivalence of

parallelogram elements proven in Section 2.5 of Krieg and

Mohseni (2017), this model is valid for any parallelogram with

angle c.

Fig. 7. Stress–strain relationship for the soft composite sheets

with various initial fiber angles, taken from Figure 11 of Krieg

and Mohseni (2017). The solid lines in are calculated from the

analytical stress–strain model in Krieg and Mohseni (2017).
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applications, the drastic increase in stiffness at the final

configuration aids in the desired application. The increase

in stiffness prevents rupture of the buoyancy bladder at

increased depths and also helps maintain the desired shape

even under significant external loading.

3. Fabrication

Fabrication of the membranes tested in this study was con-

ducted in two main steps: fiber layup (Section 3.1) and

two-stage elastomer molding (Section 3.2).

3.1. Fiber layup

The fiber-reinforcement patterns for the membranes

designed for this study were prepared on 3D-printed molds

(3D Systems ProJet MJP 2500 Plus). The mold designed

for the spherical final configuration is shown in Figure 8.

Extruded posts trace the path of each fiber, whose orienta-

tion was determined based on the modeling in Section 2.

The maximum fiber density is determined by the ability to

lay out these posts without them crossing the path of

another fiber. Small extrusions jut out from each post to

raise the fiber off the base of the mold, ensuring that elasto-

mer will encase as much of the fiber as possible during the

molding process. If the fibers make contact with the base

of the mold, it is likely that they will delaminate while

removing the membrane from the mold, ruining the sample

in the process. The larger posts on the outer edge result in

holes for clamping screws and serve as an anchor point for

each of the radial fibers.

Cotton fibers were chosen to enhance bonding with an

elastomer matrix. Ecoflex 30 elastomer (Smooth-On, Inc.)

was chosen as the matrix of the composite owing to its

combination of large strain at rupture (allowing for large

deformations) and stiffness (to prevent issues with clamp-

ing). The fibers are arranged as seen in Figure 8, with cir-

cular fibers shown in orange and radial fibers shown in

blue. An additional, outermost circular fiber lies under the

clamp to provide extra, more uniform stiffness for a proper

seal with the clamp base (see Section 4.1 and Figure 8).

While the radial fibers have anchor points to aid in the

layup process, the circular fibers do not have anything to

hold them in place. Therefore, they are laid down first so

the radial fibers can hold them in place once the layup is

completed. Each circular fiber was pre-tied with a simple

noose knot before being placed on the mold base (Figure

9(b)) and tightened around its respective guide posts. The

two ends of the fiber were then tied with a square knot

before being trimmed as short as possible. Finally, the knot

was coated with a cyanoacrylate glue (Loctite Ultragel

Control) to prevent untying at high membrane stresses

(Figure 9(c)).

Looming the radial fibers is significantly less difficult

than looming the circular fibers. For each fiber, a knot was

tied around the anchor at one end of a fiber profile (Figure

9(e)). While maintaining tension in the fiber, the fiber was

pulled around the proper guide posts before tying the same

knot on the opposite anchor point (Figure 9(f)). Care was

taken to ensure that the fiber was fully extended before

tying the final knot and trimming loose ends (Figure 9(g)).

The fiber-layup method presented here differs from pre-

vious work that has utilized various methods for laying-up

fibers, such as molded cavities for fiber alignment

(Galloway et al., 2013), rubber cement for fiber adhesion

(Bishop-Moser et al., 2012), linear fiber layups on elasto-

meric tapes (Huang et al., 2012), embroidered fibers with

soluble supports (Ceron et al., 2018), or loomed fibers

encased in injection-molded elastomer (Krieg and Mohseni,

2017), in that it provides a rigid support structure for laying

arbitrary, planar, curved fiber patterns. Existing processes

do not provide a stable base for tensioning planar, curved

fibers in soft elastomers while sufficiently preventing devia-

tion from the desired curve, which is necessary for the sam-

ples in this article. Without this tension to ensure that the

cotton fibers are taut, the fibers could potentially retain

some extensibility, which invalidates the fiber inextensibil-

ity assumption made in Section 2.

3.2. Two-stage molding process

Molding of the fiber-reinforced membranes took place in

two stages. For each stage, the Ecoflex 30 elastomer was

thoroughly mixed and degassed in a vacuum chamber

before being poured. Each mold was also sprayed with

Universal Mold Release (Smooth-On, Inc.) to aid in remov-

ing the membrane from the mold. The first stage embedded

the completed fiber layup (Figure 9(h)) in elastomer. After

pouring the elastomer over the fibers, the mold (Figure 10)

was placed back into the vacuum chamber to pull elastomer

between the cotton threads of the fibers. This helped to

ensure proper bonding between the elastomer and the

fibers. After degassing, a thick acrylic disk was placed over

the open surface of the mold, the mold and disk were

flipped upside down to allow any residual bubbles to rise

Fig. 8. CAD model of membrane mold base for spherical

configuration fiber layup (a) and completed fiber-reinforcement

mesh (b). The outermost circular fiber is included to provide

extra stiffness in the completed membrane at the clamping

surface.
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to the surface that is filled in stage 2, and a weight was

placed on top while the elastomer cured.

The second stage started with the output of the first

stage and the stage 2 mold, both shown in Figure 10. The

pattern seen on the surface of the half-completed membrane

is the negative of the guide posts, anchor points, and clamp

holes. This molding stage brought the membrane to its final

thickness and filled in all of the cavities left by the guide

posts while leaving holes for the clamp screws and anchor

points. After placing the first half of the membrane into the

stage 2 mold, cleaning the surface of the sample with rub-

bing alcohol, and pouring elastomer in, the sample was

again placed in the vacuum chamber to ensure that any sig-

nificant air pockets remaining in the fibers and the guide

post negatives were removed. Once degassing was com-

plete, another acrylic disk was placed over the open side of

the mold, a weight was placed on top, and the sample was

allowed to cure. The unreinforced membrane was fabricated

by completely filling the stage 2 mold without completing

stage 1. Once complete, the membranes measured 114 mm

in diameter and 5 mm in thickness. After inflation to the

critical case, the spherical and conical membranes will

reach heights of 4.7 cm and 7.0 cm, respectively.

It is important to note that the bonding surface between

the stage 1 and 2 molds was designed to be parallel to the

direction of maximum strain during inflation. It also

includes many small elastomer protrusions that fill the

guide post negatives after the second molding stage. These

features prevent separation of the two layers at high strains,

even with the use of the mold release during the molding

process.

4. Experimental setup and procedure

In this section, we provide an overview of our inflation

experiment setup and procedure in Section 4.1 and describe

our data processing techniques for the inflation experiment

Fig. 9. Step-by-step fiber layup. The fiber pattern is traced by extruded guide posts on a 3D-printed mold shown in (a). Circular fibers

are placed around their respective guide posts (b), tightened, trimmed, and glued (c), resulting in a total of five circular fibers to restrict

radial deformation (d). Radial fibers are tied to an anchor point (e), routed around their guide posts (f), tightened, and trimmed (g). This

completes the fiber layup with five circular fibers and four radial fibers to restrict the final radius of curvature of the membrane (h).

Fig. 10. Stage 1 mold with height offset ring installed (left) and

stage 2 mold with the output of the stage 1 mold inserted (right).

At the beginning of stage 2, the surface of the membrane is

covered with holes from the guide posts in the stage 1 mold.

These are filled in the stage 2 molding process. Fibers are not

shown in this image.
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in Section 4.2. We then describe the external and internal

loading tests in Section 4.3 and explain our practical testing

of the membrane in a bioinspired AUV in Section 4.4.

4.1. Inflation experiment

To validate our model, both the inflated volume of the

membrane and the fiber orientation were measured at vari-

ous stages of inflation. To accomplish this, the sample

being tested, whether reinforced with fibers or not, was

connected to a facility compressed air line with a simple,

mechanical pressure regulator. As the applied pressure

was increased by adjusting the regulator, a 20–250 kPa

absolute pressure sensor (MPXHZ6250AC6T1, Freescale

Semiconductor) sampled by a 16-bit ADC (MAX1167

BEEE + , Maxim Integrated Products) controlled by an

Arduino Mega 2560 provided an average value for the

pressure over a 1 second interval. While the pressure was

averaged, pictures were taken of the membrane from the

front (to show the fiber pattern) and side (to calculate vol-

ume) using 8 MP digital cameras (Figure 11).

The membrane was fixed to our setup for pressure testing

using the clamping assembly shown in Figure 12. A quick

connect tube fitting for 8 mm tube was threaded into a 0.25

in thick laser-cut (ULS PLS6MW, 50 W CO2 laser) delrin

base. Blind holes were drilled into the base for dowel pins,

which were placed at the end of each fiber to prevent the

fiber from pulling the membrane out of the clamp. This also

ensured that the fibers maintained the correct orientation

during clamping and testing. A 3.2 mm thick ring with an

inner diameter of 9.37 cm was used to clamp down on the

edge of the membrane. Helicoil inserts in the base mated to

12 4–40 screws to ensure a strong and even clamping force.

4.2. Image processing

Both the volume and fiber orientation measurements

required simple image processing using color thresholding

to complete. Volume analysis for both reinforced and

unreinforced samples is described first, followed by the

determination of the fiber orientation.

4.2.1. Volume analysis. Matlab was used for image analy-

sis to determine the volume of the inflated membrane at

each pressure step. Images from the experiments

were taken and altered for ease of processing using

GIMP. The known diameter of the clamp was used as a

reference length and is denoted by the green rectangles in

Figure 13. In images where the largest diameter of the

membrane was equal to the interior diameter of the

clamp, the volume of the inflated membrane was calcu-

lated as a spherical cap,

Vspherical cap =
1

6
ph(3a2 + h2) ð25Þ

where a is the inner radius of the clamp and h is the height

of the membrane (see Figure 13).

The unreinforced membrane expanded to a spheroidal

profile in some images, necessitating a slightly different

volume calculation:

Vspheroid =
4

3
pa2b1 ð26Þ

where a is the semi-major axis (measured using the blue

rectangle) and b1 is the semi-minor axis, minus a spheroi-

dal cap

Fig. 11. Experimental setup for membrane inflation tests. The

membrane was connected to a compressed air source and

subjected to various pressures. An Arduino averaged data from a

pressure sensor to provide pressure feedback. Two digital cameras,

one above the membrane and another in front of the membrane,

captured images of the membrane at each pressure step.

Fig. 12. Exploded view of membrane clamping assembly.

Compressed air can be released under the membrane to inflate it

once it is clamped down. Twelve screws and a clamp ring

provide an even clamping force on the membrane. Stainless steel

dowel pins provide anchor points for the radial fibers and help to

align the membrane on the clamp base.
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Vspheroidal cap = pa2 h2(3b1 � h)

3b2
1

ð27Þ

where h is the height of the spheroidal cap (see Figure 13).

The image-based volume analysis was validated by mea-

suring the mass of water pumped into the membrane at var-

ious pressures. This additional experiment confirmed that

lens distortion did not introduce significant errors into the

volume analysis.

4.2.2. Fiber orientation comparison. Image analysis for

the fiber orientation comparison was performed using a

combination of GIMP and Matlab. After correcting for lens

distortion using the circular fibers (which remain a constant

diameter during the experiment) as a reference, a fiber from

each image was traced to allow for easier color threshold-

ing. Tracing the fibers allows for the angle, u, of the fiber

in each experimental image to be determined as a function

of r. This function can then be directly compared with the

theoretical fiber pattern using the experimental membrane’s

volume as the input to the model. To obtain a metric for

comparison, the coefficient of determination for the spatial

variation between the fiber patterns was established as

follows:

u =
1

n

Xn

i = 1

ui ð28aÞ

SSt =
Xn

i = 1

(ri � ui � ri � u)2 ð28bÞ

SSr =
Xn

i = 1

(ri � ui � ri �Yi)
2 ð28cÞ

R2 = 1� SSr
SSt

ð28dÞ

where ui is the measured azimuthal angle at ri, Yi is the

theoretical azimuthal angle from (11) evaluated at ri, SSr
is the residual sum of squares, and SSt is the total sum of

squares. In addition to the coefficient of determination, the

mean absolute error (in degrees) is also calculated

MAE=
1

n

Xn

i = 1

ui �Yij j ð29Þ

4.3. Load experiment

While the inflation test proves our ability to alter the defor-

mation space of the elastomer membrane, it does not reveal

how the membrane will behave when placed under a load.

This load could come from an external force or from the

fluid used to inflate the membrane. Here, we seek to deter-

mine the behavior of both the unreinforced and spherical

fiber-reinforced membranes under both of these loads.

4.3.1. External loading. An external load was exerted on

the inflated membrane perpendicular to the clamp base by

a 5.84 kg aluminum block, shown in Figure 14. The mem-

brane was inflated to the point where it pushed the block

against a stabilizing fixture. The internal pressure of the

membrane at this point was recorded and a picture was

taken for analysis. Both membranes were also inflated to

the same hemispherical shape before being loaded by the

same aluminum block to directly compare their shape

change.

Fig. 13. Images prepared for computer volume analysis. The

horizontal, green rectangles were superimposed on the clamp,

which has a known diameter and was used as a length reference.

In (a), the overall shape of the fibers maintained a spherical

profile, so the volume of the inflated membrane was calculated

as a spherical cap using the vertical, red rectangle as the height

of the cap (labeled h). In images where the elastomer expanded

between the fiber array, the vertical, red rectangle was drawn to

the top of the fiber pattern, as shown here. When the

unreinforced control sample reached a spheroidal profile owing

to its higher strain (b), the volume was calculated as an oblate

spheroid minus a spheroidal cap. The pixel-tall blue rectangle

was used to measure the major axis of the ellipsoid (a), and the

two red rectangles were used to measure the minor axis (b1) and

height of the spheroidal cap (h = b1 � b2).

Fig. 14. Test setup for external loading test. A 5.84 kg block

was lifted up to a brace by the test sample. The inflation pressure

was recorded while a photo was taken to show the differences in

loaded geometry.
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4.3.2. Internal loading. An internal load was exerted on

the membrane tangent to the clamp base by inflating the

membrane with water. Images were taken at various pres-

sures to compare the loaded membranes’ geometry.

4.4. Buoyancy experiment

To demonstrate this fiber-reinforcement technique’s utility

in a practical application, we implemented it on our group’s

submersible buoyancy test cylinder, shown in Figure 15.

Previously, we filled or emptied an inextensible plastic

swim bladder with water to change the density of the test

cylinder and cause it to ascend or descend in the water col-

umn (Sholl and Mohseni, 2019). This technique has several

disadvantages, including an inability to control the shape of

the bladder, which can kink itself or push into other compo-

nents, and an inability measure the volume of the bladder,

which maintains the same pressure as the internal cavity of

the test cylinder throughout operation. While the volume of

the bladder can be estimated by integrating the flow rate in

and out of the bladder or calculating it from the acceleration

of the cylinder, such measurements are relatively inaccurate

when conducted with small, inexpensive components. If the

volume of the bladder is unknown, so is the applied control

force resulting from the mass of water inside the bladder.

Using the fiber-reinforced membrane instead of an inexten-

sible plastic bladder addresses both of these issues by pro-

viding a predictable volume for a given pressure differential

and ensuring a more predictable geometry of the bladder at

different orientations and volumes. In addition, fiber rein-

forcement helps to prevent rupture in the membrane, which

could occur more easily in an unreinforced membrane. We

plan to integrate the fiber-reinforced buoyancy bladder into

our bioinspired AUVs, the CephaloBot (Krieg et al., 2011)

and daughter vehicle (Song et al., 2016).

For this test, the buoyancy test cylinder inflated the

fiber-reinforced membrane with ambient pool water using a

gear pump (Greylor PQ-12DC) to a maximum mass of 0.14

kg. The controller (Sholl and Mohseni, 2019) utilized a 100

kPa differential pressure sensor (Freescale Semiconductor

MPX5100DP) to determine the membrane’s inflation pres-

sure. A 3D-printed attachment for a 25 kPa differential

pressure sensor (Freescale Semiconductor MPXV7025DP)

was used to monitor the flow rate in and out of the mem-

brane. Depth was measured using a 1 atm gage pressure

sensor (Honeywell FP2000).

5. Results

Here we present the results of our inflation experiment in

Section 5.1 and use them to validate our mathematical

model in Section 5.2. We also show the deformations of

the spherical membrane produced by external and internal

loading in Section 5.3 and the performance of our buoy-

ancy test cylinder using a spherical fiber-reinforced bladder

in Section 5.4.

5.1. Inflation experiment results

The inflated volume of each membrane is shown as a func-

tion of pressure in Figure 16. Whereas the spherical fiber-

reinforced membrane appeared to reach an asymptote cor-

responding to the critical volume of 215.1 cm3 by its maxi-

mum inflation at 30.10 kPa, the conical fiber-reinforced

membrane could only reach 81.8% of its theoretical maxi-

mum volume of 254.1 cm3 before the fibers ripped the elas-

tomer matrix at 42.69 kPa, and the unreinforced membrane

expanded exponentially at as little as 4.78 kPa.

Fig. 15. Buoyancy test cylinder with fiber-reinforced membrane

as a buoyancy bladder. Pumping water in and out of the bladder

changes the density of the device as a whole, causing it to ascend

or descend in the water column.

Fig. 16. Membrane internal volume as a function of applied

inflation pressure for an unreinforced membrane and a spherical,

fiber-reinforced membrane. The fiber-reinforced sample appears

to reach an asymptote corresponding to the maximum theoretical

volume of 215.1 cm3 as the pressure increases, whereas the

unreinforced membrane expands exponentially at low pressures.
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Figure 17 shows both the unreinforced and fiber-

reinforced membranes at various stages of inflation. As

expected, the radial fibers straightened throughout the

inflation process for both fiber-reinforced membranes.

While the circular fibers in both samples successfully pre-

vented radial expansion, the membranes did not reach their

fiber-imposed volume limits owing to the stiffness of the

elastomer, resulting in the curved portions of fiber at maxi-

mum inflation, especially in the conical case.

5.2. Comparison with model

The error between the theoretically-calculated and

experimentally-observed fiber patterns can be found in

Table 1 and Figure 18. With the exception of the last, near-

critical-volume test case of the spherical membrane, the

model and experiment show good agreement with an aver-

age R2 value of 0.982 (62:598) for the spherical membrane

and 0.995 (61:568) for the conical membrane.

5.3. Load test results

Here, we report the results of our internal and external load

tests on spherical fiber-reinforced and unreinforced

membranes.

5.3.1. External loading. Both the unreinforced and the

spherical fiber-reinforced membranes were capable of lift-

ing and supporting the test mass at 11.93 and 31.32 kPa,

respectively. As shown in Figure 19(a) and (b), the unrein-

forced membrane was forced to compensate for the lack of

sufficient internal pressure by expanding its contact area

with the aluminum block to lift it. This need to expand the

contact area resulted in the membrane significantly deform-

ing from a hemispherical shape. Owing to the higher pres-

sure in the fiber-reinforced membrane, it was able to lift

the aluminum block while maintaining a hemispherical

geometry.

Figure 19(c) and (d) show the unreinforced and spheri-

cal fiber-reinforced membranes after being inflated to the

hemispherical configurations in Figure 17(c) and (g),

respectively, and loaded with the aluminum block. The

unreinforced membrane started at 3.29 kPa and increased

to 10.99 kPa after loading, whereas the spherical fiber-

reinforced membrane increased from 7.61 to 17.82 kPa.

5.3.2. Internal loading. Images from the internal loading

test are shown in Figure 20. The unreinforced membrane

can be inflated to a larger volume than the spherical fiber-

reinforced membrane, so it was possible to make the mem-

brane deform in the direction of gravity at larger volumes

(4.42 kPa in Figure 20(a)). When filled with water to 3.60

kPa, the unreinforced membrane exhibits nearly identical

geometry to the spherical fiber-reinforced membrane at

13.17 kPa in Figure 20(b). The spherical fiber-reinforced

membrane, on the other hand, did not exhibit any

observable deformation as a result of the internal load at

the maximum possible volume.

5.4. Buoyancy test results

The performance of the buoyancy test cylinder fitted with a

spherical fiber-reinforced membrane buoyancy bladder is

shown in Figure 21. The cylinder settled to within 10 cm

of the depth setpoint of 1.6 m within 20 s of the start of its

decent. After the 30 s mark, the system exhibited a mean

error of 4.4 cm.

6. Discussion

Figures 16 and 17 strongly suggest that our initial claim to

the ability to restrict the deformation space of a soft mem-

brane is valid. The unreinforced membrane’s volume expo-

nentially increases at low pressures, making accurate

control of the inflated membrane’s volume and shape diffi-

cult. The fiber-reinforced samples, on the other hand, are

clearly restrained to their predefined profiles. While there is

elastomer expansion between the fibers at higher pressures

(see Figure 17(h) and (l)), the overall shape and volume of

the membranes can still be controlled. In addition, this

expansion between the fibers can be reduced by increasing

the fiber density.

The model presented in Section 2 does not consider the

stiffness of the elastomer. In the unreinforced case, there is

relatively uniform deformation in the membrane as a result

of its uniform material properties and loading. However,

when fiber reinforcement is introduced, a deformation gra-

dient is developed within the membrane as a result of local

reorientation of the fibers. These gradients result in signifi-

cantly higher required pressures to actuate a fiber-

reinforced membrane to a given volume than are required

for an unreinforced membrane, as shown in Figure 16.

The differences in the curves shown in Figure 16 speak

to the advantages of a fiber-reinforced elastomeric mem-

brane for controls applications. If the membrane is used as

a buoyancy bladder in an AUV, as demonstrated in this arti-

cle, fiber reinforcement greatly increases the range of pres-

sures that can be used for volume control over that of the

unreinforced membrane. Small changes in the applied pres-

sure in an unreinforced membrane can cause the volume to

exponentially increase, which is an issue for small, inaccu-

rate pumps. As many pumps that meet the performance

requirements for an active buoyancy system and the strin-

gent power and space requirements imposed on AUV com-

ponents are incapable of accurate volume control without

other equipment, the ability to control and sense the volume

of the buoyancy bladder using pressure alone is a major

advantage over non-elastomeric and unreinforced elasto-

meric bladders.

While the wider pressure range used for inflation of a

fiber-reinforced membrane has its advantages, it also

makes actuating the membrane to its critical design case

without failure of either the membrane or the clamp much
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Fig. 17. Unreinforced and fiber-reinforced membranes at various stages of the inflation test. A side view of the unreinforced

membrane is shown in (a)–(d), a side view of the fiber-reinforced spherical membrane is shown in (e)–(h), a front view of the

spherical fiber-reinforced membrane is shown in (i)–(l), a side view of the conical fiber-reinforced membrane is shown in (m)–(p), and

a front view of the conical fiber-reinforced membrane is shown in (q)–(t). The internal pressure is increased from 0 kPa to a maximum

of 4.78 kPa for the unreinforced membrane, 24.60 kPa for the spherical fiber-reinforced membrane, and 42.69 kPa for the conical

fiber-reinforced membrane. Note that as the pressure increases, the radial fibers straighten, bringing the membranes closer to their

final configurations.

192 The International Journal of Robotics Research 40(1)



more difficult. Owing to the geometry of the fiber layups

designed for this article, the elastomer towards the edges of

the membrane must deform significantly more than the

elastomer in the center of the sample. This results in unmo-

deled deviations from the predicted fiber pattern close to

the critical case (e.g., Figure 18(d)) and increased stress

and deformation at the clamping surface. These stress con-

centrations lead to failure of the conical membranes before

they can approach the critical case, but they can be miti-

gated in the future either by choosing a softer elastomer

matrix or by modeling the stress–strain relationship within

the membrane to design fiber patterns that minimize stress

concentrations.

As shown in Table 1, the volume recorded at 0% infla-

tion pressure is 36 cm3. This is due to the clamping force

that is exerted around the edge of the membrane to main-

tain a seal against the base. The clamp causes stress con-

centrations in the elastomer around it, resulting in a slight

deformation of the membrane away from the base.

As shown in Figure 21, the buoyancy test cylinder does

not initially overshoot the depth setpoint. The controller

gains were intentionally tuned for this behavior to avoid hit-

ting the bottom of the testing pool. In addition, the error

and behavior past 30 s are likely due to custom flow sensor

errors at low flow rates and interactions between the buoy-

ancy test cylinder and its tether. Flow sensor errors can be

mitigated with further revisions to the sensor geometry, and

tether-induced errors will be eliminated once the buoyancy

system is employed on the CephaloBot AUV.

Fig. 18. Comparison between modeled and experimental fiber reorientation for the spherical membrane (top) and the conical

membrane (bottom). Inflated volume increases for both samples from left to right. The theoretical fiber paths are superimposed upon

images of the membranes from the inflation test. Note that the largest errors are in (d), where the spherical membrane approaches its

critical volume.

Table 1. Errors between theory and experiment for each of the

images shown in Figure 17. The ideal volume is calculated based

on the image processing in Section 4.2 and is normalized to the

volume of the designed critical case. Pressure data is normalized

to the maximum tested pressure, R2 values are calculated using

(28), and MAE is calculated using (29). As the volume of the

spherical membrane increases, so does its error, likely due to stress

concentrations within the elastomer that prevent the membrane

from deforming to the desired shape. The conical membrane

exhibits relatively consistent, low errors, further suggesting that the

most significant errors only occur near the critical fiber angle,

when stress concentrations are highest for the samples presented.

Fiber
pattern

Normalized
ideal volume

Normalized
pressure

Fiber
R2

Mean
absolute
error

Spherical 16.7% 0.0% 0.998 2.278

32.7% 8.6% 0.992 2.358

63.1% 36.8% 0.956 3.158

91.7% 81.7% 0.670 6.198

Conical 13.1% 0.0% 0.998 1.358

34.5% 20.8% 0.998 1.518

66.1% 51.6% 0.991 2.068

81.8% 100.0% 0.994 1.338
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While we only present deformation of these soft mem-

branes as a result of increasing the differential pressure

across the membrane, many different actuation methods

could be utilized. For example, the same effect could be

achieved by inducing a stress within the membrane. Such a

stress could be created by a DEA to generate a pressure dif-

ferential across the membrane, as we have demonstrated

previously in unreinforced elastomers (Sholl et al., 2019).

This pressure could be used as an adhesive force, as in a

suction cup, or to pump fluids. In addition, the proposed

method of fiber reinforcement is not dependent on the fiber

material chosen, so long as it is nearly inextensible in the

desired range of actuation forces. Enhanced geometric feed-

back could therefore be provided by replacing the cotton

fibers used in this article with fiber-optic fibers, as used in

Galloway et al. (2019).

As this soft membrane is able to start in a completely flat

configuration, stretch to a desired shape, and maintain that

shape under a load, it could also be used as an easy-to-pack

solution for vehicle airbags. This is especially important for

spacecraft applications, where reducing the weight and size

of a system can lead to a large reduction in cost.

7. Conclusions

In this article, we have mathematically shown and experi-

mentally proven that it is possible to design a pattern of

fibers that will restrict the deformation of an elastomer

membrane to a critical point of expansion. The stiffness of

the membrane at that critical point is greatly increased,

enabling the soft membrane to both support a load and

maintain its shape in the process. Given these characteris-

tics, fiber reinforcement of this kind could provide a tech-

nique for more accurately predicting and controlling soft-

body deformation.

Future work involves expanding the model for use in

more generalized cases. By focusing on the reorientation of

a differential element of the fiber, it should be possible to

describe the reorientation of a particular fiber configuration

on any smooth surface, providing a technique for creating

complex three-dimensional soft skins that could be used to

control the deformation space of larger soft robotic systems.

In addition, the modeling could be expanded to include the

stress–strain characteristics of fiber-reinforced membranes,

Fig. 19. Unreinforced (a,c) and spherical fiber-reinforced (b,d) membranes under a 5.84 kg aluminum block. Note that the reinforced

membrane holds its hemispherical shape while the unreinforced membrane is significantly deformed by the weight of the aluminum at

both high (a,b) and low (c,d) respective pressures.

Fig. 20. Unreinforced (a) and spherical fiber-reinforced (b)

membranes filled with water at 4.42 kPa and 13.17 kPa,

respectively. While the unreinforced membrane is capable of

holding a larger volume of water, much more precise control

over the pressure differential is required to control that volume

and the overall geometry of the membrane. To bring the

unreinforced membrane in (a) to the same geometry as (b), the

pressure only needs to be reduced by 0.82 kPa. The spherical

fiber-reinforced membrane, on the other hand, exhibits a larger

change in pressure with respect to a change in volume.

Fig. 21. Buoyancy test cylinder performance using a spherical

fiber-reinforced membrane as a buoyancy bladder. The mean

error past 30 s is 4.4 cm.
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which would allow us to better predict how stress concen-

trations will influence fiber reorientation in the membrane

as it deforms.
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Appendix. Intermediate stage validation

When solving for the reorientation of the fiber-reinforced

membranes presented in this article, an approximation of

the membranes’ curvature was required to solve for the

reorientation of the fibers at intermediate stages of infla-

tion. These intermediate stages were assumed to maintain a

spherical cap geometry for the spherical membrane and a

conical frustum geometry for the conical membrane.

For the spherical case, the membrane must maintain a

spherical cap geometry with an infinite radius of curvature

in the initial (planar) case and a radius of curvature equal to

the radius of the membrane in the critical (hemispherical)

case. Owing to the additional fact that the unreinforced

membrane maintains a spherical cap profile during inflation

up until a hemispherical geometry (Figure 17(a)–(c)), a

spherical cap assumption was made for the spherical

fiber-reinforced membrane. We validate this assumption

in Figure 22(a)–(c). A similar assumption was made in

the conical case, where a conical frustum geometry was

assumed for the intermediate stages. Overlays of this

assumption can be seen in Figure 22(d)–(f). Both assump-

tions exhibit good agreement with the experimental

results.

Fig. 22. Comparison of the fiber-reinforced membranes with their associated spherical cap and conical frustum geometric

assumptions. The approximation of the overall membrane shape at intermediate levels of inflation shows good agreement with the

experimental results.
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