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a b s t r a c t

In this paper, we present a geometric framework to solve two common attitude estimation problems:
(i) a geometric problem using measurement of two reference directions, and (ii) a geometro-
kinematic problem using measurement of a single reference direction and rate measurement. Both
the aforementioned problems may be formulated as angle optimization problems, which can then
be solved to obtain exact closed-form solutions. Since the proposed framework preserves the special
nonlinear geometry associated with the space of attitudes, and since we present analytic solutions,
the proposed framework yields faster and more accurate solutions than those that are based upon
linearization techniques. Furthermore, the framework may be extended beyond traditional output
error least-squares, to accommodate other practical, but unconventional, optimality metrics. Of special
note, we may generalize the classic vector Triad solution, which uses a primary and a secondary
measurement, to one with multiple secondary measurements. Lastly, the presented method can be
used to derive previous solutions under a single unifying framework, and thus establishes how they are
related to each other in a fundamental way. The geometric framework has been verified in simulations
as well as experiments.

© 2021 Published by Elsevier Ltd.
1. Introduction

The attitude of a rigid body is the orientation of a frame fixed
n the body, with respect to a second reference frame. The second
rame provides a reference for the attitude specification; it is
ypically chosen to be one fixed to the local ground, the Sun,
tationary with respect to fixed stars etc; the choice is usually
bvious from the context. We shall use the term ground-frame to
enote the second reference frame in a general sense, while using
he term body-frame for the frame fixed in the rigid body.

The problem of rigid body attitude estimation assumes two
rominent and distinct flavours based upon the nature of the
vailable measurements: (1) a purely geometric problem that uti-
izes body-frame measurements of directions fixed in the ground-
rame, and (2) a geometro-kinematic problem that additionally
ncorporates information about the attitude dynamics in the form
f an angular velocity measurement, again with respect to the
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ground-frame. Within each flavour, we have different error for-
mulations that lead to different solution methodologies. Two
popular formulations for each flavour are shown in the two
columns of Table 1.

The first problem of estimating the attitude by measuring
reference directions in a body-fixed frame, has been treated abun-
dantly in literature. One of the earliest, and arguably most intu-
itive, solution was Black’s vector Triad attitude estimator (Black,
1964). A least squares formulation of the problem in terms of
measurement errors was posed by Wahba in Wahba (1965).
Multiple solutions have been reported for Wahba’s problem: us-
ing polar decomposition (Farrell & Stuelpnagel, 1966), an SVD
method, Davenport’s q-method (Keat, 1977), the Quaternion esti-
mator (QUEST) (Markley & Mortari, 2000), a factored-quaternion
algorithm (FQA) (Yun, Bachmann, & McGhee, 2008), etc. Although
both Davenport’s q-method and QUEST use the quaternion rep-
resentation of attitude, the quadratic error formulation in terms
of measured quantities leads the problem to ultimately reduce
to an eigenvalue–eigenvector problem. In this form, given the
vast array of tools available for linear problems, the estimation
problem is readily solved. This advantage is, however, associated
with the accompanying weakness that it is not straightforward to
incorporate non-quadratic-output-error costs in the problem.

Relatedly, the advent of small unmanned vehicles has moti-
vated the development of solutions that depend upon minimal

measurement resources in order to reduce the weight and cost of
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able 1
olutions for the problem of rigid body attitude estimation. The left column
onsiders a purely geometric problem; the right column additionally considers
inematics.
Using direction measurements Using angular velocity and

direction measurements

(a) Vector Triad estimation
(Black, 1964): Uses orthogonal
vector triad formed out of two
non-collinear vectors. Utilizes
complete information from one
measurement, and partial
information from the other.

(a) Extended Kalman filter
(Lefferts, Markley, & Shuster,
1982): Linearizes attitude
dynamics and assumes small
attitude corrections. Filter gains
derived analytically for quadratic
output error optimality.

(b) Output error least squares
(Keat, 1977; Shuster & Oh,
1981): Minimizes squared
error of direction
measurements vs. predictions
from estimated attitude.

(b) Nonlinear complementary
filter (Mahony, Hamel, & Pflimlin,
2008): Nonlinear observer that is
(almost) globally asymptotically
stable on SO(3). Involves ad-hoc
gain tuning.

the sensor payload. This interest is partly fuelled by the availabil-
ity of cheap commercial-off-the-shelf inertial measurement units
(IMUs) that contain MEMS-based gyroscopes and accelerometers.
In particular, it is of considerable interest to estimate the attitude
using a single direction measurement, possibly supplemented
by a rate measurement, thus leading us to the second of the
stated problems. The second problem is most frequently solved
using an extended Kalman filter (EKF) (Lefferts et al., 1982) or
one of its several variants (Andrle & Crassidis, 2015; Markley,
2003; Stovner, Johansen, Fossen, & Schjølberg, 2018). The EKF
provides a point-wise attitude estimate and does not require gain
tuning. However, resulting from linearization of an intrinsically
nonlinear problem, this solution is not robust to large changes in
the attitude state (Bar-Itzhack, 1996).

More recently, some solutions have been reported in lit-
rature which use nonlinear observers or filters to solve the
eometro-kinematic problem (Bar-Itzhack, 1996; Batista, Sil-
estre, & Oliveira, 2011; Choukroun, Bar-Itzhack, & Oshman,
004; Grip, Fossen, Johansen, & Saberi, 2012; Mahony et al.,
008; Martin & Sarras, 2018; Trumpf, Mahony, Hamel, & Lage-
an, 2012). These solutions have typically used an appropriate
rror signal in negative feedback to estimate the attitude. The
olutions in Bar-Itzhack (1996) and Mahony et al. (2008) are
uite general, and while having been developed for multiple
irection measurements, they extend smoothly to the case of a
ingle direction measurement. The solutions presented in Batista,
ilvestre, and Oliveira (2012) and Grip et al. (2012) are more
pecific to the availability of single direction measurements. A
ommon characteristic in this group of solutions is the use of
egative feedback from an error signal to estimate the attitude
nd an (a-priori) unknown gain, that needs to be tuned in order
o achieve satisfactory estimator performance. The final word
n rigid body attitude estimation has not been spoken yet, as
videnced by recent articles such as Andrle and Crassidis (2015),
erkane and Tayebi (2019), Izadi and Sanyal (2016) and Stovner
t al. (2018).
In contrast to the reported approaches available in literature,

his paper analyzes the attitude estimation problems from a
eometric perspective. Despite the abundance of work on attitude
stimation, very few provide the geometric insight behind the
olution. The works in Black (1964) and Mortari (1998) are among
he few that do. This paper endeavours to follow their lead and
erive the attitude estimator with a strong grounding in the
undamental geometry associated with attitude estimation. In the
rocess, we obtain a unifying geometric framework that yields
olutions to both the geometric and the geometro-kinematic
roblems, while overcoming some of the shortcomings in pre-
iously reported solutions. The proposed geometric framework
2

extends the estimation method beyond the traditional output
error least squares (Section 4.1.1), to geometric least squares
(Section 4.1.2), hard geometric constraints (Section 4.1.3), and
also a completely novel generalization of the classic Triad es-
timator with multiple secondary measurements (Section 4.1.4).
The analytic solutions do not resort to gain-tuning to yield the
optimal attitude estimates at every time step. Besides the math-
ematical elegance of having an analytic solution, this also has
several applications in autonomous guidance, navigation, and
control systems: it enables the deployment of frugal single-
vector-measurement sensor-suites, and the zero-latency accuracy
of the solution is useful in multiple-vector-measurement suites in
overcoming sudden failures or intermittent losses in some of the
components without leading to large transient errors that could
potentially cause system breakdown.

A brief outline of the paper is as follows. We begin by in-
troducing the geometric approach and formulating the stated
problems in the language of mathematics in Section 2. Section 3.1
presents the solution to the geometric problem, and relates it
to the existing solutions from literature, while the subsequent
Section 3.2 does the same for the geometro-kinematic problem.
A filtering method is introduced in Section 4 to address the issue
of measurement noise and bias. This is followed by verification of
the theory using simulations and experiment in Sections 5 and 6.

2. Notation and problem statement

In this section, we introduce our notation, describe the ge-
ometry associated with direction measurements and formulate
the attitude estimation problems as well-posed mathematical
problems.

The attitude of the rigid body with respect to a reference
ground-frame shall be represented using a unit quaternion, in-
dicated using a circle accent denoting unit magnitude, e.g. p̊ =

p0 p1 p2 p3]T , q̊ = [q0 q1 q2 q3]T . . ., such that p̊T p̊ = q̊T q̊ =

. . = 1, so p̊, q̊ ∈ S3, the unit 3-sphere. The first component
is the scalar component, while the remaining three components
are the vector components of the quaternion. The product of two
quaternions p̊ and q̊ shall be denoted as p̊⊗ q̊. Let p = [p1 p2 p3]T ,
nd q = [q1 q2 q3]T be the vector components of p̊ and q̊. The
roduct p̊ ⊗ q̊ is defined as

˚ ⊗ q̊ =

[
p0
p

]
⊗

[
q0
q

]
=

[
p0q0 − pTq

p0q + pq0 + p × q

]
. (1)

The above multiplication rule (1) is in fact valid for any arbitrary
(possibly non-unit) quaternions. In the case of 3-vectors, they are
expanded to a 4-vector by prefixing with a scalar component of
zero, when invoked as quaternion operands.

A reference direction, denoted in bold as h̊, k̊, . . ., shall be
defined as a unit magnitude 3-vector that points in a specified
direction in Euclidean space. Examples include the direction of
fixed stars relative to the body, the Earth’s magnetic field, grav-
itational field etc. The components of any such direction may be
measured in any three-dimensional orthogonal coordinate sys-
tem. In the context of our problems, two obvious choices for the
coordinate system are the ground-frame coordinate system (rela-
tive to which the rigid body’s attitude is to be determined), and
the body-frame coordinate system. We assume the availability
of measurement apparatus to obtain the direction’s components,
g̊, h̊, k̊, . . . , ů, v̊, ẘ, . . . ∈ S2

⊂ R3, in the ground- and body-
frames. Since directions have unit magnitude, we use a circle-
accent similar to unit quaternions to denote them. Additionally,
as noted under (1), the components of a direction may be prefixed
with a zero and treated as a 4-component unit quaternion, when
the context demands so.
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A rotation quaternion q̊ transforms the components of a vector
between the ground-frame components h̊ and the body-frame
omponents v̊ as:

˚ = q̊ ⊗ v̊ ⊗ q̊−1 or q̊ ⊗ v̊ = h̊ ⊗ q̊ , (2)

where the h̊ and v̊ are zero-prefixed 4-vectors. Eq. (2) expresses
the direction measurement constraint as a linear equation in q̊
ubject to an implicit nonlinear normalization constraint q̊T q̊ = 1.
n attitude quaternion q̊ = [q0 qT ]T is thus related to the rotation
atrix C as:

= (q20 − qTq)13×3 + 2qqT + 2q0[q×], (3)

where 1m×n is the m × n identity matrix, and [q×]p is the vector
product q × p. The axis–angle formalism is related to q̊ as:

q̊ =

[
cos(Φ/2)
sin(Φ/2)n̊

]
, (4)

for a rotation through Φ about the direction n̊. Subsequently in
this document, we shall use the notation c(·) and s(·) to denote
the cosine and sine functions for brevity. The attitude quaternion
evolves according to the kinematic equation

˙̊q =
1
2
q̊ ⊗ ω =

1
2
[q̊⊗]ω =

1
2
[⊗ω]q̊, (5)

where the angular velocity ω ∈ R3 is prefixed with a zero, as
escribed under (1). The symbols [q̊⊗] and [⊗ω̊] denote the left
nd right quaternion multiplication matrices.
The quaternion formalism leads to an elegant division algebra

or rotations by furnishing simple algebraic operations for inver-
ion as conjugation (q̊ = [q0 qT ]T ⇒ q̊−1

= [q0 −qT ]T ), the
omposition of sequential rotations as quaternion multiplication,
nd interpolation between rotations as geometric interpolation.

.1. Geometry of direction measurement

A rotation quaternion (or, for that matter, any rotation rep-
esentation) has three scalar degrees of freedom. A body-frame
easurement v̊ of a reference direction has 3 scalar components,

that are related to the ground-frame measurement h̊, in terms
of the rotation quaternion. However, we also know that the
measurement would preserve the magnitude of the direction, i.e.,
h̊T h̊ = v̊T v̊ = 1, so there is one scalar degree of redundancy
in our measurement v̊ and only two scalar degrees of informa-
tion. Reconciling with this redundancy, we can therefore isolate
the attitude from a three-dimensional set of possibilities to a
single-dimensional set.

The redundancy can be visualized as shown in Fig. 1. Consider
a minimal rigid body formed by a triangular patch with one point
on the axis of rotation. The measurement of a single reference
direction h̊ in the body-frame confines the body’s attitude to
form a conical solid of revolution about h̊: those and only those
attitudes on the cone would yield the same components v̊ (if
none of the three points were on the axis, it would be a cylinder
of revolution, but the cone is easier for subsequent visualiza-
tions). We shall refer to the set of attitude quaternions consistent
with a measurement as the feasibility cone Vh corresponding to
that measurement v̊, i.e., the measurement confines the attitude
quaternion q̊ to lie in Vh. From the previous discussion, Vh is one-
dimensional and q̊ has effectively a single degree of freedom. We
shall repeatedly draw intuition from the geometry in Fig. 1 to

guide us in the solutions to the stated problems. b

3

Fig. 1. Possible attitudes of a minimal rigid body B formed out of three
non collinear points (represented by the triangular patch) consistent with a
measurement of a single reference direction h̊. The subspace is a cone of
revolution Vh about the direction being measured.

2.2. Problem 1. Estimation from measurements of two reference
directions

Let the components of two reference directions h̊ and k̊ be
˚ = [v1 v2 v3]

T and ẘ = [w1 w2 w3]
T in the body-frame,

and h̊ = [h1 h2 h3]
T and k̊ = [k1 k2 k3]T in the ground-

frame respectively. As described above, each reference direction
measurement provides two scalar degrees of information regard-
ing the attitude of the rigid body. It is immediately clear that
the problem is overspecified, and we have more equations than
unknowns. Geometrically, we have two feasibility cones Vh and
Wk, with the plane of the body intersecting along a line, but with
different roll angles for the body about this line. Thus there is
no exact solution to this problem in general, unless some of the
measurement information is redundant or discarded.

The approach in this paper is to first determine two solutions
˚ and p̊, one each lying on each of the feasibility cones Vh and Wk
orresponding to the measurements v̊ and ẘ, and closest to the
ther cone in a geometric sense of presenting the smallest angle
f deviation. The two estimates q̊ and p̊ form the Triad solutions,
nd can subsequently be filtered appropriately to obtain the final
ttitude estimate.
The first problem can therefore be stated as: given the measure-

ents v̊ and ẘ in a rotated body-frame, of two reference directions
ith ground-frame measurements h̊ and k̊, we would like to de-
ermine two estimates of the rotated system’s attitude quaternion
˚ ∈ Vh closest (in a geometric sense) to Wk and p̊ ∈ Wk closest (in a
eometric sense) to Vh, where Vh and Wk are the respective feasibility
ones.

.3. Problem 2. Estimation from rate measurement and measure-
ent of single direction

Suppose we have a body-frame measurement ω = [ω1 ω2 ω3]
T

f the angular velocity ω of the rigid body, and that we also
ave a body-frame measurement v̊ = [v1 v2 v3]

T of a reference
irection h̊. The components of h̊ in the ground-frame are also
nown, say h̊ = [h1 h2 h3]

T . The problem is to derive an
ptimal estimate of the body’s attitude q̊(t) on the basis of the
air of measurements ω(t) and v̊(t), and knowing h̊. In order to
etermine this estimate, we shall first integrate the kinematics to
ind a dead-reckoned estimate p̊ for the attitude, and then find the
ttitude q̊ on the feasibility cone Vh closest (in a geometric sense)
o the dead-reckoned attitude p̊. The sequence of corrections
rom p̊ to q̊ may also be used to determine any constant bias
n the angular velocity measurement under certain excitation
onditions as described later.
The second problem can therefore be stated as: given the
ody-frame measurement v̊ of a single reference direction with
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round-frame measurement h̊, and an attitude estimate p̊ obtained
by integrating the body’s angular velocity ω relative to the ground-
frame, from a known initial condition, we would like to estimate
the rotated system’s attitude quaternion q̊ ∈ Vh, the feasibility cone
corresponding to the body-frame measurement v̊, which is closest (in
geometric sense) to p̊.

.4. Nature of measurements

The reference direction measurements are assumed to have
oise in each of the components, but that they are subsequently
ormalized for unit magnitude before being passed on to the atti-
ude estimator. This is the most common situation in practice. The
onvention of using directions rather than vectors seems to have
riginated from the initial work on spacecraft attitude estimation
sing star trackers. Any deterministic errors in the measurement
re also assumed to be compensated for, e.g. acceleration com-
ensation in gravity sense, local field compensation in magnetic
ield sense. The issue of acceleration compensation is addressed,
or example, by the authors in Mitikiri and Mohseni (2019b).
owever, that treatment is outside the scope of this work, since it
ses approximate dynamical relations, and is specific to a certain
lass of robots. In contrast, the attitude estimation presented in
his work is based upon geometry and kinematics, and applicable
o a wider variety of problems.

The angular velocity is not of unit magnitude, in general. Its
easurement is also assumed to have noise in each of the com-
onents. Besides the noise, the angular velocity may also have
constant (or slowly time-varying) bias error. Compensation

f a quasistatic gyroscopic bias using the geometric approach
as originally addressed by the authors in Mitikiri and Mohseni
2019a) and is incorporated in this paper.

The kind of noise in the measurements has typically been as-
umed to be zero-mean, Gaussian noise (Choukroun, Bar-Itzhack,
Oshman, 2006; Crassidis, Markley, & Cheng, 2007), and we shall
rimarily follow the same convention in this paper.

. Geometric framework for attitude estimation

Before diving into the solutions, we shall state a few simple
esults in preparation of the main results.

emma 1. The Euclidean distance ∥q̊−1̊∥ of an attitude quaternion,
˚ = [cΦ/2 sΦ/2n̊T

]
T , from the identity element, 1̊, is a positive

efinite and monotonic function of the magnitude of the principal
ngle of rotation Φ .

roof. This is a simple consequence of the trigonometric half-
ngle identities.

q̊ − 1̊∥2
= (cΦ/2 − 1)2 + s2Φ/2 = 4 sin2(Φ/4),

which is a positive definite monotonic function of |Φ| for Φ ∈

[−2π, 2π ]. A corollary is that the distance ∥q̊ − p̊∥ between two
attitude quaternions is a positive-definite, monotonic function of
the angle corresponding to the quaternion q̊−1

⊗ p̊ that takes q̊
to p̊. □

We next provide two particular solutions for the simpler prob-
lem of estimating the attitude quaternion using a single reference
direction measurement, in Lemma 2. Recall the algebraic con-
straint q̊ ⊗ v̊ = h̊ ⊗ q̊ imposed by a direction measurement on
the attitude quaternion q̊, where h̊ and v̊ are the components of
a direction in the ground and body-frames respectively.
4

Lemma 2. Suppose the components of a reference direction are
given by h̊ and v̊ in the ground- and body-frame respectively. Let
Φ = acos v̊T h̊, c = cosΦ/2 =

√
(1 + v̊T h̊)/2 and s = sinΦ/2 =

(1 − v̊T h̊)/2. Then, two particular solutions for the body’s attitude
re given by (Davenport, 1968):

˚n =

⎡⎣ c

s
v̊ × h̊

∥v̊ × h̊∥

⎤⎦ , r̊x =

⎡⎣ 0
v̊ + h̊

∥v̊ + h̊∥

⎤⎦ . (6)

Proof. These two solutions are orthogonal in quaternion space,
and correspond to the smallest and largest single axis rotations
in [0, π] that are consistent with the direction measurement in
three-dimensional Euclidean space. Geometrically, the first is a
rotation through acos(v̊T h̊) about (v̊ × h̊)/∥v̊ × h̊∥, the second is a
rotation through π about (v̊ + h̊)/∥v̊ + h̊∥. Noting that ∥v̊ × h̊∥ =

sinΦ = 2sc , and ∥v̊ + h̊∥ = 2c , direct substitution of r̊n and r̊x for
q̊ may be seen to satisfy the constraint of (2). As a clarification,
when v̊ → h̊, r̊n and r̊x are assumed to take the obvious limits, 1̊
nd h̊, and when v̊ → −h̊, they are assumed to take the obvious
imits, ı̊ and ȷ̊, where [h̊ ı̊ ȷ̊] is an orthogonal vector triplet. In the
atter case (v̊ + h̊ → 0), the orthogonal triad is non-unique, but
ertain to exist. □

The two special solutions can be rotated by any arbitrary angle
bout the reference direction h̊ and we would still lie within the
easibility cone, as shown in the next lemma.

emma 3. If q̊ lies in the feasibility cone Vh of the measurement
˚ for the reference direction h̊, then so does any attitude quater-
ion obtained by rotating q̊ through an arbitrary angle about h̊.
onversely, all attitude quaternions lying on the feasibility cone are
elated to each other by rotations about h̊.

roof. Let Φ be any angle, and let p̊ be q̊ rotated through Φ about
h̊, i.e.,

˚ =

[
c
sh̊

]
⊗ q̊ ,

here c = cosΦ/2 and s = sinΦ/2. Again, substituting p̊ for q̊
in (2) shows that p̊ also satisfies the measurement constraint if q̊
does.

Conversely, q̊−1
⊗h̊⊗q̊ = v̊ = p̊−1

⊗h̊⊗p̊ implies that p̊⊗q̊−1
⊗h̊

equals h̊ ⊗ p̊ ⊗ q̊−1, i.e., the rotation p̊ ⊗ q̊−1 commutes with the
xis h̊. This implies that p̊⊗ q̊−1 is a rotation about h̊ itself, which
roves the claim. □

We already see from Lemma 3 that we have a one dimen-
ional infinity of possible solutions for the attitude quaternion if
e have a single reference direction measurement. In order to
btain a unique solution, we could add either another direction
easurement (geometric problem), or include an angular velocity
easurement (geometro-kinematic problem).

.1. Attitude estimation from two direction measurements

We now derive a unique solution for the attitude quaternion
hen we have measurements of two reference directions and
ould like to incorporate both of them in deriving the attitude
stimate. Let v̊ and ẘ be the body-frame components of reference
irections h̊ and k̊ (h̊, k̊ ∈ S2 contain the ground-frame compo-
ents of the same two vectors) respectively. Suppose the rotation
uaternion is estimated to be p̊ = [p0 p]T on the basis of v̊, and
t is independently estimated to be q̊ = [q0 q]T on the basis
f ẘ, both estimates being obtained by applying, for example,
emma 2.
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The estimates p̊ and q̊ are each indeterminate to one scalar
egree of freedom as shown in Lemma 3: a rotation about the
orresponding vectors h̊ and k̊ respectively. Let these rotations
e parameterized by the quaternions r̊p = [c1 s1h̊]T and r̊q =

c2 s2k̊]T respectively where ci = cosΦi/2 and si = sinΦi/2 for
∈ {1, 2}. The problem is to determine the optimal values of Φ1
nd Φ2 so as to minimize the displacement from the rotated r̊p⊗p̊
o r̊q ⊗ q̊.

˚p ⊗ p̊ =

[
c1
s1h̊

]
⊗

[
q0
q

]
=

[
c1q0 − s1qT h̊

c1q + s1q0h̊ + s1h̊ × q

]
,

r̊q ⊗ q̊ =

[
c2
s2k̊

]
⊗

[
p0
p

]
=

[
c2p0 − s2pT k̊

c2p + s2p0k̊ + s2k̊ × p

]
. (7)

e could either minimize ∥r̊p ⊗ p̊− r̊q ⊗ q̊∥2, or equivalently from
emma 1, maximize the first component of (r̊p ⊗ p̊)−1

⊗ r̊q ⊗ q̊.
n order to keep the reasoning straightforward, we choose the
ormer. So we need to minimize the cost function

(Φ1, Φ2) = (c1q0 − s1qT h̊ − c2p0 + s2pT k̊)2

+ ∥c1q + s1(q0h̊ + h̊ × q) − c2p − s2(p0k̊ + k̊ × p)∥2 ,

= 2 + 2l1c1c2 + 2l2s1s2 + 2l3c1s2 + 2l4s1c2 , (8)

here l1 = −q0p0 − qTp, l2 = (−q0pT + p0qT − (q × p)T )h̊ ×

˚ − (q0p0 + qTp)h̊T k̊, l3 = k̊T (q0p − p0q + q × p), and l4 =

˚ T (p0q− q0p+ p× q), are known quantities. Now minimizing the
ost function with respect to the independent pair of variables
1 + Φ2 and Φ1 − Φ2 yields

Φ1 − Φ2
Φ1 + Φ2

]
= 2

[
atan2(l3 − l4, −(l1 + l2))
atan2(−(l3 + l4), l2 − l1)

]
. (9)

q. (9) can be solved for Φ1, and Φ2, and that completes the
olution. The above derivation can be summarized in the form
f the following theorem:

heorem 4. If p̊ and q̊ are any two special attitude estimates
or a rotated system, derived independently using the body-frame
easurements v̊ and ẘ of two linearly independent ground-frame
irections h̊ and k̊ respectively, then the optimal estimate incorpo-
ating the measurement ẘ in p̊ is r̊p ⊗ p̊, and the optimal estimate
ncorporating the measurement v̊ in q̊ is given by r̊q ⊗ q̊, where
˚p = [c1 s1h̊]T and r̊q = [c2 s2k̊]T , ci = cosΦi, si = sinΦi, and
Φ1 and Φ2 are given by (9).

Proof. The proof follows from the construction leading to Eqs. (7),
(8), and (9). Refer to Fig. 2. □

Remark 4.1 (Degeneracy When Measuring the Same Reference Di-
rection). When h̊ = k̊, we obtain l1 = l2 and l3 + l4 = 0. So, we
btain a unique solution for Φ1−Φ2, but Φ1+Φ2 is indeterminate,

and the solution is again the original pair of degenerate feasibility
cones around the direction h̊ = k̊.

Remark 4.2 (Relation to the Triad Attitude Estimate (Black, 1964)).
The attitude estimates r̊p ⊗ p̊ and r̊q ⊗ q̊, where r̊p = [c1 s1h̊]T

and r̊q = [c2 s2k̊]T , are the same as the Triad solution in litera-
ture (Shuster & Oh, 1981). Each of them individually yields an es-
timate that is competely consistent with a primary measurement,
but only partially consistent with a secondary measurement.

Corollary 5. The rotation from the Triad estimate r̊p ⊗ p̊ to r̊q ⊗ q̊
in Theorem 4 is about an axis perpendicular to both h̊ and k̊.

Proof. Let p̊′
= r̊p ⊗ p̊ and q̊′

= r̊q ⊗ q̊ be the optimal Triad
estimates. Let us now optimize upon these optimal estimates.
That should return no required corrections, i.e. r̊ ′

= r̊ ′
= 1̊. This
p q

5

Fig. 2. A visual depiction of the solutions presented in Theorems 4 and 6. The
image on the left shows the two solutions r̊p ⊗ q̊ (dotted triangle) and r̊q ⊗ p̊
dashed triangle) of Theorem 4. The figure on the right shows the solution q̊
solid triangle) of Theorem 6 obtained by projecting the integrated attitude p̊
dashed triangle) onto the feasibility cone of direction measurement b.

s equivalent to saying Φ ′

1 = Φ ′

2 = 0. This in turn is equivalent to
′

3 = l′4 = 0, or h̊T (p′

0q
′
−q′

0p
′
+p′

×q′) = k̊T (q′

0p
′
−p′

0q
′
+q′

×p′) = 0.
ut then q′

0p
′
−p′

0q
′
−p′

×q′ is just the vector portion of q̊′
⊗ p̊′−1,

he rotation taking the optimal Triad estimate p̊′ to q̊′ in the
round-frame. □

.2. Attitude estimation from rate measurement and single direction
easurement

We first utilize the angular velocity measurement ω that de-
ermines the evolution of the attitude in time. The kinematic dif-
erential equation for the quaternion is the linear (in the attitude
˚ ) first order ODE:

˙̊ =
1
2
q̊ ⊗ ω =

[⊗ω]q̊
2

. (10)

In continuous time, the integration of (10) for a constant ω gives
a dead-reckoned attitude estimate

p̊(t + T ) = exp([⊗ω]T/2)q̊(t). (11)

ecall that, as stated in Section 2 under (1), 3-vectors are ex-
anded to a 4-vector by prefixing with a scalar component of
ero, when invoked as quaternion operands. For a time-varying
, the state transition matrix replaces the exponential. In discrete
ime, denoting the integrated estimate as p̊(i + 1), the above
quation takes the form

˚ (i + 1) = q̊(i) +
T
2
q̊(i) ⊗ ω(i) + O(∥ωT∥

2) , (12)

here T is the time step from the previous estimation of q̊(i) to
the current estimation p̊(i + 1). In the subsequent derivation, we
shall omit the time argument of p̊, as there is no ambiguity.

We next write down the constraints imposed by the measure-
ment upon the attitude quaternion q̊ = [c sn̊T

]
T

= [c sn1 sn2
sn2]

T , where c = cos(Φ/2) and s = sin(Φ/2) are functions of the
rotation angle Φ , and n̊ is a unit vector along the rotation axis
with components n̊ = [n1 n2 n3]

T in the ground-frame. The con-
straint is given in (2). Converting the quaternion multiplication to
matrix notation, (2) can also be written as:[

−sn̊T v̊

cv̊ + s[n̊×]v̊

]
=

[
−sh̊T n̊

ch̊ + s[h̊×]n̊

]
,

.e.,
[

−s(h̊ − v̊)T n̊
c(h̊ − v̊) + s[(h̊ + v̊)×]n̊

]
= 0 ,

here [n̊×] denotes the cross product matrix associated with the
-vector n̊. Expanding the vectors,⎡⎢⎣0 −f1 −f2 −f3

f1 0 −g3 g2
f2 g3 0 −g1

⎤⎥⎦
⎡⎢⎣ c
sn1
sn2

⎤⎥⎦ = 0 , (13)
f3 −g2 g1 0 sn3
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here f = h̊ − v̊ and g = h̊ + v̊ ,

so that f1g1 + f2g2 + f3g3 = f Tg = h̊T h̊ − v̊T v̊ = 0 .

While it is not obvious, (13) has a double redundancy, so the
system of four linear equations actually has rank 2 and nullity
2. This can be seen by considering the solution:

q̊ =

⎡⎢⎣ c
(−cf2 + sn3g1)/g3
(cf1 + sn3g2)/g3

sn3

⎤⎥⎦ , (14)

where sn1 and sn2 are solved in terms of c and sn3 using the inner
two row equations in (13). Substituting these in the outer two
rows of (13) satisfies them trivially, so these two rows do not
yield any additional information. This makes sense as we have not
yet imposed the normalization constraint that n2

1 +n2
2 +n2

3 = 1 (c
and s, representing cosΦ/2 and sinΦ/2, are already assumed to
satisfy c2+s2 = 1). And we are anyway to end up with one degree
of freedom in q̊ if using the direction measurement constraint
alone, as discussed in Section 2.

The predicted estimate p̊ is then aligned with the direction
measurement to yield the attitude estimate q̊. The alignment is
realized as a minimum angle rotation. The displacement of the
vector-aligned quaternion estimate, q̊ in (14), from the integrated
estimate, p̊ in (10), can be expressed as the difference of p̊−1

⊗ q̊
from 1̊. But minimizing the distance of a quaternion from the
unit quaternion is the same as minimizing the rotation angle
Φ (Lemma 1), which is, in turn, the same as maximizing the
scalar component of the quaternion, cos(Φ/2). Note that, the
quaternions p̊−1

⊗ q̊ and −p̊−1
⊗ q̊ affect the same rigid body

rotation in 3-dimensional Euclidean space, but minimizing the
distance of one from 1̊ maximizes the distance of the other in
quaternion space. So we just extremize the distance, rather than
specifically minimize it. Once we have the solution set, we can
check which solution corresponds to a maximum and which to a
minimum, and choose the latter.

We therefore need to extremize the scalar component of p̊−1q̊,
where p̊ = [p0 p1 p2 p3]T is the attitude estimate obtained
by integrating the angular velocity ω as given in (10) and q̊ is
expressed in terms of c/s and n3 as in (14), while enforcing the
constraint in (2). This can be accomplished by using the method
of Lagrange multipliers to define a cost function that invokes the
error norm as well as the constraint. Below, we have multiplied
the cost function by the constant g3 and the constraint by g2

3 ,
noting that the solution is unaffected by such a scaling:

J(Φ, n3) = g3[p̊−1
⊗ q̊]0 + λg2

3 (n
2
1 + n2

2 + n2
3 − 1)

= (cp0 + sn3p3)g3 + (−cf2 + sn3g1)p1 + (cf1 + sn3g2)p2

+ λ

(
n2
3g

Tg + 2
cn3

s
(f1g2 − f2g1) +

c2

s2
(f 21 + f 22 ) − g2

3

)
= c(g3p0 + f1p2 − f2p1) + sn3gTp

+ λ

(
n2
3g

Tg + 2
cn3

s
(f1g2 − f2g1) +

c2

s2
(f 21 + f 22 ) − g2

3

)
,

here p denotes the vector portion of p̊. Now we set the first
rder partial derivatives of J to 0:

= ∂Φ J = −s(g3p0 + f1p2 − f2p1) + cn3gTp

+

(
−

2λ
s2

)( c
s
(f 21 + f 22 ) + n3(f1g2 − f2g1)

)
, (15)

= ∂n3J = sgTp + 2λgTgn3 + 2λ
c
s
(f1g2 − f2g1), (16)

= ∂λJ = n2
3g

Tg − g2
3 +

2cn3

s
(f1g2 − f2g1)

+
c2

(f 2 + f 2). (17)

s2 1 1 i

6

This yields, for the ratio κ = c/sn3:

κ =
p0gTg + pTg × f̊⎛⎝ p0(g1f2 − g2f1) +

∑
1,2

pi(gig3 − fif3)

+p3(f 21 + f 22 + g2
3 )

⎞⎠
. (18)

Fortuitously, c/s = cot(Φ/2) is therefore just proportional
o n3, and upon expressing c/s in terms of n3 in the normaliza-
ion constraint ((17)), the resulting equation becomes extremely
imple to solve:
2
3 = gTgn2

3 + 2κ(f1g2 − f2g1)n2
3 + κ2n2

3(f
2
1 + f 22 ) ,

r

3 =
g3√

gTg + 2κ(f1g2 − f2g1) + κ2(f 21 + f 22 )
, (19)

c
s

=
κg3√

gTg + 2κ(f1g2 − f2g1) + κ2(f 21 + f 22 )
. (20)

The other components of the attitude quaternion can be obtained
using the inner two rows of (14). Thus we obtain the following
theorem.

Theorem 6. If the angular velocity of a rigid body is integrated to
yield an attitude quaternion estimate p̊, then the estimate q̊ ∈ Vh
ying in the feasibility cone of measurement v̊ which is closest to p̊,
is given by Eqs. (14), (18), (19), (20).

Proof. The proof follows from the construction leading to (14),
where n3, c , and s are determined from (18), (19) and (20). Refer
o Fig. 2. □

emark 6.1 (Solution When Reference Direction is Aligned with
-Axis). A common application of the presented solution would
e to an aerial robot that uses an accelerometer to measure
he gravity vector (after acceleration compensation). Since the
round-frame’s z-axis is aligned with the reference direction h̊,
e have f = [(−v1) (−v2) (1 − v3)]T and g = [v1 v2 (1 + v3)]T .
qs. (18), (20) now simplify to:

=
c
sn3

=
(1 + v3)p0 − v1p2 + v2p1
v1p1 + v2p2 + (1 + v3)p3

, (21)

q̊ =

⎡⎢⎣ c
sn1
sn2
sn3

⎤⎥⎦ =
1√

2(1 + κ2)(1 + v3)

⎡⎢⎣ κ(1 + v3)
κv2 + v1

−κv1 + v2
(1 + v3)

⎤⎥⎦ , (22)

here we have used the fact that (1 + v3)2 + v2
1 + v2

2 = 2(1 +

3). While the introduction of the auxiliary variable κ in (18),
19), (20) seems adhoc, its role is more clearly visible now. It
arameterizes the feasibility cone Vh in terms of the two special

solutions provided in Lemma 2:

q̊ =
κ r̊n + r̊x
√
1 + κ2

=
(r̊n r̊Tn + r̊x r̊Tx )p̊

∥(r̊n r̊Tn + r̊x r̊Tx )p̊∥
. (23)

emark 6.2 (Relation to the EKF (Lefferts et al., 1982)). A filtered
ttitude estimate q̊f can be obtained by projecting the integrated
stimate, p̊, onto the feasibility cone corresponding to a filtered
irection measurement vf , to yield the vector aligned estimate
˚ of Theorem 6. The predict-step in Theorem 6 is identical to
hat in the EKF, especially multiplicative EKF (MEKF): we just
ntegrate the dynamics of the state from the previous time step.
ote that the MEKF accommodates nonlinearity in the dynamics
n the prediction step, and so it is okay for the attitude dynamics
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o be bilinear in the state (attitude) and input (angular velocity).
he MEKF elegantly accounts for the quaternion normalization by
sing an auxiliary error state variable (δq(a) in Markley (2003))
hat is almost always close to the identity in practice.

It is the update step where the geometric method shows better
ccuracy in relation to the MEKF. For the update step, the MEKF
ssumes that the auxiliary error variable lies in the plane tangent
o the identity. The solution in this paper does not make this
pproximation, and incorporates the geometry of the attitude
pace into the solution.

The following corollary follows from Theorem 6.

orollary 7. The correction that takes the integrated estimate p̊ into
he feasibility cone Vh is essentially a rotation about an axis that is
rthogonal to the reference direction h̊.

roof. With the simplifying choice for the ground-frame z-axis
that leads to (22), the proof is simple. The correcting rotation
r̊ = q̊ ⊗ p̊−1 in the ground-frame coordinate system is:

r̊ =
1√

2(1 + κ2)(1 + v3)

⎡⎢⎣ κ(1 + v3)
κv2 + v1

−κv1 + v2
(1 + v3)

⎤⎥⎦ ⊗

⎡⎢⎣ p0
−p1
−p2
−p3

⎤⎥⎦ .

o, using the expression for κ in (21), and expanding the mul-
iplication rule in (1), we obtain the component r3 = 0. In the
eneral case of an arbitrary h, the proof is more tedious, but still
alid (Mitikiri & Mohseni, 2018). The underlying reason for this
esult is just that a rotation about any other axis would have
n unnecessary component about h̊, and that would make the
orrection to reach Vh suboptimal. □

An elegant expression for the corrected attitude estimate q̊ in
erms of the integrated estimate p̊ and direction measurement v̊
f a single vector is:

˚ =
p̊ − h̊ ⊗ p̊ ⊗ v̊

∥p̊ − h̊ ⊗ p̊ ⊗ v̊∥
. (24)

q. (24) is directly consistent with the measurement constraint
˚ ⊗ q̊ = (h̊ ⊗ p̊ + p̊ ⊗ v̊)/∥h̊ ⊗ p̊ + p̊ ⊗ v̊∥ = q̊ ⊗ v̊, so it lies on
the feasibility cone by definition. At the same time, the correction
q̊ ⊗ p̊−1 in the ground-frame coordinate system is about an axis
perpendicular to h̊ as required by Corollary 7. If we call p̊⊗v̊⊗p̊−1

as h̊p, then

h̊T (q̊ ⊗ p̊−1) = h̊T (1̊ − h̊ ⊗ h̊p)/∥ . . . ∥ = 0.

For a rigorous derivation of (24) from (23), the reader is referred
to Mitikiri and Mohseni (2018).

Remark 7.1 (Relation to the Explicit complementary filter (ECF)
(Mahony et al., 2008)). The ECF in Theorem 5.2 in Mahony et al.
(2008) may be realized out of Theorem 6 by noting that the
correction quaternion in the body-frame is given by:

p̊−1
⊗ q̊ =

1̊ − p̊−1
⊗ h̊ ⊗ p̊ ⊗ v̊

∥p̊ − h̊ ⊗ p̊ ⊗ v̊∥
=

1̊ − v̊p ⊗ v̊

∥p̊ − h̊ ⊗ p̊ ⊗ v̊∥
, (25)

here, v̊p = p̊−1
⊗ h̊⊗ p̊ is the expected measurement of h in the

ody-frame, if p̊ was already the correct attitude. On the other
and, the correction from the integrated estimate can be obtained
y including a correction term ωc in the angular velocity such
hat:
q̊ − p̊
T

=
1
2
p̊ ⊗ ωc + O(∥ωcT∥

2),

where ωc is the equivalent correction required in the angular
velocity over a time-step T . Let v̊T v̊ = 2c2 − 1. For small
p

7

corrections, v̊p ≈ v̊, and so the incremental correction angular
velocity is given to first order by:

ωc ≈
2
T

[
p̊−1

⊗ q̊ − 1̊
]

≈
1
T

[
0

v̊ × v̊p

]
,

whose vector portion is exactly the same as that reported in
Theorem 5.2 in Mahony et al. (2008), with the gain kP equal to
he time step 1/T . Note that this also ensures that Theorem 5.2
n Mahony et al. (2008) is dimensionally consistent: kP must have
imensions of reciprocal time. For values of kP larger than 1/T ,
e obtain a larger correction ωc , and a larger weight for measure-
ent v̊ in the final filtered estimate. The projection of Eqs. (23) or

24) induces all the error in the direction measurement v̊ onto the
attitude estimate q̊. In practice, v̊ itself is determined by optimally
filtering between the predicted measurement v̊p and the sensor
measurement, as described in Section 4.2.

We finally show that the projection from the integrated es-
timate p̊ to q̊ on the feasibility cone Vh leads to progressively
maller angular deviations from all attitudes on the feasibility
one. This result will be used in establishing the relation between
he geometric attitude estimation and Wahba’s problem.

orollary 8. As the attitude of a rigid body rotates from p̊ outside
he feasibility cone corresponding to a direction measurement v̊ of
h̊, onto q̊ on the feasibility cone, the angle to any fixed attitude r̊ on
he feasibility cone monotonically reduces.

roof. Let p̊′ lie on the path of projection from p̊ to q̊, it must be
btained as a rotation through an angle xΦ , where Φ < π is the
ngle from p̊ to q̊ and x ∈ [0, 1], about an axis k̊ that is orthogonal
o h̊ in the ground-frame coordinate system (Corollary 7):

˚ ′ =

[
cx
sxk̊

]
⊗ p̊,

here cx = cos(xΦ/2) and sx = sin(xΦ/2). The attitude q̊
orresponds to x = 1. Since r̊ lies on the feasibility cone, we must
lso have:

˚ =

[
cr
sr h̊

]
⊗ q̊,

here cr = cos(Φr/2) and sr = sin(Φr/2), for some Φr ∈

−π, π]. Then, the scalar component of r̊ ⊗ p̊′−1 is crc1−x, which
rogressively increases as x goes from 0 to 1, and the angle there-
ore monotonically reduces from acos (crc1−x) to Φr
(Lemma 1). □

4. Noise filtering and bias compensation

4.1. Interpolation with measurements of two directions

Consider the two attitude estimates obtained using Theorem 4
upon the body-frame measurements v̊ and ẘ of the ground-
frame directions h̊ and k̊. We shall use p̊ and q̊ (instead of the
longer expressions r̊p ⊗ p̊ and r̊q ⊗ q̊ as used in Theorem 4,
Remark 4.2, and Corollary 5) to denote the Triad solutions. As
described under Remark 4.2, p̊ and q̊ utilize complete information
rom one of the direction measurements and partial information
rom the other. We now propose a mechanism to interpolate
etween the two Triad estimates in order to filter out noise
n the individual measurements. The geometrically interpolated
uaternion, q̊f , from p̊ to q̊ is given by any of the following four
quivalent expressions (Dam, Koch, & Lillholm, 1998):

˚ f = p̊ ⊗ (p̊−1
⊗ q̊)x = q̊ ⊗ (q̊−1

⊗ p̊)1−x

= (p̊ ⊗ q̊−1)1−x
⊗ q̊ = (q̊ ⊗ p̊−1)x ⊗ p̊ . (26)

The interpolation ratio x is now chosen to perform a desired
weighting of the two Triad estimates p̊ and q̊ in the final result.
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.1.1. Output error least-squares a.k.a. Wahba’s problem (Keat, 1977)
Let the Triad estimates again be denoted as p̊ and q̊. From

orollary 5, we know that the rotation q̊ ⊗ p̊−1 is about an axis
rthogonal to both the ground-frame directions h̊ and k̊:

˚ ⊗ p̊−1
=

[
cΦ/2

sΦ/2(h̊ × k̊)T/∥h̊ × k̊∥

]
,

or some Φ . Next, let q̊f be the solution to Wahba’s problem, that
inimizes the loss function

= α∥q̊f ⊗ v̊ ⊗ q̊−1
f − h̊∥2

+ β∥q̊f ⊗ ẘ ⊗ q̊−1
f − k̊∥2,

ith weights α, β . Now q̊f must lie on the feasibility cone con-
aining p̊ and q̊. Otherwise, we could move it towards the cone
o as to reduce both the errors ∥q̊f ⊗ v̊ ⊗ q̊−1

f − h̊∥2 and ∥q̊f ⊗

˚ ⊗ q̊−1
f − k̊∥2 in the loss function (Corollary 8). So, if q̊f ⊗ p̊−1

nd q̊ ⊗ q̊−1
f rotate the body through Φp and Φq about h̊ × k̊,

hen we must have Φp + Φq = Φ . The loss function would be
α(1 − cosΦp) + 2β(1 − cosΦq). Thus the solution to Wahba’s
roblem maximizes α cosΦp +β cosΦq, subject to Φp +Φq = Φ:

α sinΦp + β sin(Φ − Φp) = 0[
tanΦp
tanΦq

]
=

[
sinΦ/(α/β + cosΦ)
sinΦ/(β/α + cosΦ)

]
.

he interpolated estimate q̊f may be derived as the rotation
hrough Φp about h̊ × k̊ from p̊, or −Φq about h̊ × k̊ from q̊.

.1.2. Geometric least-squares
As an alternative to the cosine-maximization in Wahba’s prob-

em resulting from an output error least-squares formulation, one
ould specify a cost function that is quadratic directly in the
ngular deviations:

= αΦ2
p + βΦ2

q subject to Φp + Φq = Φ,

here Φp and Φq are the angular deviations of the estimated
ttitude q̊f from the Triad estimates p̊ and q̊, and Φ is the angular
eviation between p̊ and q̊. This yields the optimal solution

= ∂Φp(αΦ2
p + β(Φ − Φp)2) = 2αΦp − 2β(Φ − Φp),

⇒

[
Φp
Φq

]
=

Φ

α + β

[
β

α

]
.

n advantage in this formulation is that the optimal angle of
otation Φp from p̊ to q̊f is monotonic with respect to the devia-
ion Φ from p̊ to q̊. This monotonic response may not hold in an
utput error least-squares formulation (refer to Fig. 3). The non-
onotonic behaviour is more likely if the ratios of the weights
/β ≫ 1. Since we may assume that Φ ∈ [−π +π ], and the
ptimal solution q̊f is sure to lie in between p̊ and q̊, there is
o need to wrap the cost function arguments to lie in between
−π +π ].

.1.3. Incorporating hard inequality constraints
In some applications, it is desirable to impose hard constraints

pon the estimated attitude (Kalabic, Gupta, Di Cairano, Bloch, &
olmanovsky, 2014; Singh, Bortolami, & Page, 2010). Since the
resented solution is geometric in nature, it is straightforward
o include geometric constraints on the solution using Barrier
yapunov functions (BLFs) (Tee, Ge, & Tay, 2009) for bounded so-
utions. Such a strategy can easily be employed in our framework,
n contrast with the linear algebraic solutions which are more
uitable to handle quadratic forms. The interpolation factor x from
p̊ to q̊ is now determined as the argument that minimizes a cost
function that contains a BLF:

x = argmin(αf (x) + βg(1 − x)), (27)

x∈[0,1] p

8

Fig. 3. Spherical linear interpolation between p̊ and q̊ using an output error
least-squares could lead to non-monotonic behaviour. Let p̊ be at P . As q̊ moves
on the unit sphere S3 beyond Q , its linear interpolation at F would move farther
from P , but its normalization onto the unit sphere, q̊f at N , would move closer
to P . In particular, when q̊ is opposite to p̊, q̊f returns back to p̊!.

Fig. 4. A generalized (1 + n)-measurement Triad attitude estimation using a
primary measurement of g and secondary measurements of hi in the body-
frame. The primary measurement yields a special attitude estimate p̊ on the
feasibility cone Ug , and the secondary measurements yield Triad solutions q̊i
in conjunction with the primary measurement. The interpolated attitude q̊f (not
displayed in the figure for clarity) lies on Ug between q̊1 and q̊2 so as to minimize
an appropriate cost functional.

where f (x) is a BLF (such as, for example, sec(πx/2)) with a
minimum at the Triad estimate p̊, and g(1 − x) is an appropriate
convex function with a minimum at q̊. The optimal x may be
obtained using straightforward calculus for a given f and g as the
solution of

α
df
dx

⏐⏐⏐⏐
x
− β

dg
dx

⏐⏐⏐⏐
1−x

= 0.

4.1.4. A generalized 1 + n-measurement triad
As a final demonstration of the power of the geometric

method, we show how one may generalize the Triad method to
the case of multiple secondary direction measurements. Suppose
we are given the body-frame measurements ů, v̊i of the ground-
frame directions g̊ , h̊i, i ∈ {1, . . . , n}, and the problem is to
determine the attitude which is completely consistent with the
primary measurement (ů of g̊), and partially consistent with a
iltered version of the remaining secondary measurements (v̊i of
˚ i) (see Fig. 4).

Let p̊ be any attitude (e.g. r̊n in Lemma 2) lying on the feasi-
ility cone Ug corresponding to the primary measurement. Cor-
esponding to each of the secondary measurements, there exists
unique Triad solution q̊i on Ug which may be obtained from p̊
y a rotation through Φi about g̊ in the ground-frame (Lemma 3
nd Theorem 4). We shall now optimize the attitude in order to
ave the minimum square output error. As seen previously, this
riterion is equivalent to cosine maximization.
Let the optimal attitude be q̊, which is obtained by rotating

˚ ˚
through Φ about g in the ground-frame. The optimal attitude
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ould have a residual output error with respect to each of the
econdary measurements. If we define the predicted output as

˚ pi = p̊−1
⊗ h̊i ⊗ p̊,

and the reconstructed input as

h̊qi = q̊ ⊗ v̊i ⊗ q̊−1,

hen the square output error in the ith measurement is (affinely)
elated to the cosine h̊T

i h̊qi of the angle between h̊i and h̊qi. Noting
that g̊T h̊i = ůT v̊pi, g̊T h̊qi = ůT v̊i, and using the spherical law
of cosines, this cosine may be expressed in terms of the scalar
parameter Φi − Φ and other known quantities as

h̊T
i h̊qi = ůT v̊piůT v̊i + cΦi−Φ

√
1 − (ůT v̊pi)2

√
1 − (ůT v̊i)2.

weight αi on the ith output square error is therefore trans-
ormed as a weight

i = αi

√
1 − (ůT v̊pi)2

√
1 − (ůT v̊i)2,

multiplying the cosine cΦi−Φ (the first term is independent of the
variable of optimization). Now optimizing upon the parameter Φ

yields

tanΦ =

∑
i βisΦi∑
i βicΦi

, (28)

here

Φi =
(ů × v̊pi)T (ů × v̊i)
∥ů × v̊pi∥∥ů × v̊i∥

=
v̊T
piv̊i − ůT v̊piůT v̊i

∥ů × v̊pi∥∥ů × v̊i∥
,

sΦi =
ůT v̊pi × v̊i

∥ů × v̊pi∥∥ů × v̊i∥
,

re the trigonometric ratios for the residual angle from p̊ to the
ptimal Triad estimate corresponding to the ith measurement.
With a geometric least-squares formulation, there is no ana-

ytic solution, but the solution may be obtained by numerically
olving

=

∑
i

[
βiϕi sin(Φi − Φ)

sinϕi

]
.

or Φ , where cosϕi = h̊T
i h̊pi.

4.2. Filtering with angular velocity measurement

The updated estimate q̊ in Theorem 6 was derived as a hard
projection from the predicted estimate p̊ onto the feasibility cone,
Vh, corresponding to the direction measurement v̊ of h̊. This hard
projection is the best estimate only if the direction measurement
was perfect and noiseless. In a real situation with non-zero noise,
we would like to incorporate some kind of filtering that weighs
the noise in the direction measurement against the noise in the
angular velocity measurement.

In a Kalman filter framework, the filtering during the update-
step is typically implemented on the state estimate, as this is the
most intuitive interpretation in linear systems. The translation to
the space of attitude quaternions is straightforward, but ineffi-
cient. Since the direction measurement v̊ confines the state to
the corresponding feasibility cone Vh, the interpolation between
the integrated estimate p̊ and the corrected estimate q̊ is com-
putationally expensive to account for the yaw-degeneracy in the
covariance matrix. An equivalent and more elegant alternative is
to consider interpolating between the predicted direction mea-
surement v̊p = p̊−1

⊗ h̊⊗ p̊ and the actual measurement v̊m (sub-
script m denoting the noisy measurement). The two approaches
are shown in Fig. 5.
 t

9

Fig. 5. Left: Traditional Kalman filtering translated to attitude estimation in-
volves interpolating between the integrated attitude estimate p̊ and a feasibility
cone Vh of attitudes corresponding to a noisy direction measurement. The
3-sphere attitude space has been projected on a 2-sphere for visualization pur-
poses (by, for example, ignoring the roll component). Right: A computationally
efficient alternative for addressing the yaw-degeneracy in the feasibility cone Vh
is to filter the direction measurement v̊m with respect to its predicted value v̊p .

The filter for the direction measurement could be imple-
mented geometrically on a unit 2-sphere by assuming spherical
Gaussian noise, as done in Section 4.1.2, or 4.1.3. If the noise
is relatively small, as is quite common in practice, the filter is
implemented by linearizing as

v̊ = (Vm + Vp)−1(Vmv̊p + Vpv̊m), (29)

here Vm and Vp are covariance matrices corresponding to the ac-
ual direction measurement v̊m and the predicted direction mea-
urement v̊p. The covariance matrix V of the fused measurement
n the latter case is:

Vm + Vp)−1(VmVpVm + VpVmVp)(Vm + Vp)−1. (30)

he covariance matrix Vp of the predicted measurement may be
xpressed as

p = ∇pv̊pΠ (∇pv̊p)T . (31)

here Π is the covariance matrix of the predicted attitude esti-
ate p̊, and the gradient ∇pv̊p is given by[
(p0h̊ + h̊ × p) (pT h̊ + ph̊T

− h̊pT + p0[h̊×])
]
. (32)

An expression for the covariance matrix Π of the integrated
estimate p̊ may be obtained from the kinematic equation (12) for
small time-steps.

Π = Ξ +
T 2

4

[
q0 −qT
q q0 + [q×]

]
W

[
q0 qT
−q q0 − [q×]

]
, (33)

here Ξ and W are the covariances of the attitude estimate q̊ at
he previous time step, and the angular velocity measurement ω.

We now analyse the effect of measurement noise on the up-
ated quaternion q̊. Continuing to assume relatively small, zero-
ean, Gaussian noise in the measurements, it can be shown (Mi-

ikiri & Mohseni, 2018) that perturbations p̊ and v̊ in the predicted
stimate and direction measurement cause a variation δq̊ in the
pdated estimate given by

q̊ = (1 − q̊q̊T )(r̊n r̊Tn + r̊x r̊Tx )δp̊ , (34)

nd

q̊ = −
1
2
q̊ ⊗ v̊ ⊗ δv̊ . (35)

qs. (12), (34), (35) can be used to derive an equation for the
volution of noise in the integrated and vector-aligned estimates.

.3. Gyroscopic bias estimation

We shall now consider compensating for the effects of gyro-
copic bias on the geometric attitude estimation as done in Mi-
ikiri and Mohseni (2019a). The angular velocity of the body is
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easured to have components ω̂ in the body-frame. This is the
ypical scenario in most applications, where the gyroscope is part
f an Inertial Measurement Unit (IMU) that is fixed with respect
o the body. However, the measured angular velocity ω̂ has an
rror with respect to the true quantity ω. The angular velocity
easurement error is assumed to be an Ornstein–Uhlenbeck pro-
ess, with mean ω, time-constant τ , and random-walk increments
˜ :

ˆ = ω + ω + ω̃. (36)

Since the gyroscopic bias is exponentially autocorrelated with a
time constant τ that is much larger than the time-step T between
measurements, this error manifests as a relatively low frequency
source in comparison to the Gaussian noise considered in the
previous section. The slow variation enables the design of an ob-
server that could estimate the noise as well as compensate for it.

As described in Mitikiri and Mohseni (2019a), a constant bias
ω may be estimated using the equation∑

j

(v̊jv̊
T
j − 13×3)ω =

∑
j

2rj/T . (37)

or a direction measurement v̊j at the jth time-step, and where rj
s the vector portion of the correction quaternion r̊ = p̊−1

⊗ q̊.
n the absence of any other measurement errors, a fixed bias
rror may be completely estimated using (37) on two linearly
ndependent direction measurements.

In case of a time varying bias ω + ω̃, we would modify (37) to
ssign different weights to the terms in the summation, so as to
orm a filter. Such an estimator may be expressed in terms of the
atrices Ai and bi, defined inductively, as shown below:

i = (1 − T/τ )Ai−1 + (T/τ )(v̊iv̊
T
i − 13×3),

bi = (1 − T/τ )bi−1 + 2ri/τ ,

Ai(ω + ω̃i) = bi, (38)

ith the initial conditions A0 = 0, b0 = 0.
While (38) is sufficient to estimate the bias when the

persistency-of-excitation condition is met, it may fail when the
body stops rotating if we have the measurements of a single
vector. The failure upon loss of excitation occurs as v̊i approaches
a limit, and the matrix Ai gradually approaches the now constant
v̊iv̊

T
i − 13×3 over time, thus becoming singular. Failure may be

avoided under such circumstances by updating only the compo-
nents of Ai and bi that have additional information in the new
measurements, as done in the following estimator design:

Ai = (v̊iv̊
T
i )Ai−1

+ (13×3 − v̊iv̊
T
i )((1 − T/τ )Ai−1 − (T/τ )),

bi = (v̊iv̊
T
i )bi−1 + (13×3 − v̊iv̊

T
i )(1 − T/τ )bi−1 + 2ri/τ ,

Ai(ω + ω̃i) = bi, (39)

. Simulation results

.1. Generalized (1 + n)-measurement Triad

As shown in Section 4.1.4, it is possible to apply the geometric
ethod to generalize the Triad method to the situations when we
ave one primary, and n secondary, measurements. The solution

in (28) is verified by simulations for the case when n = 2. For
this experiment, the primary measurement is of the unit vector
in the z-direction of the ground-frame, and has an rms noise of
0.02 rad. The secondary measurements are of [1 0 1]T/

√
2 and√

3/4 3/4 1/2] in the ground-frame, and both have an rms
noise of 0.2 rad. Since the primary measurement has an accuracy
that is an order better than the secondary measurements, a least-
squares solution would be almost completely consistent with the
10
Fig. 6. A generalized Triad solution for several secondary measurements in
conjunction with a primary measurement. When the primary measurement is
much more accurate than the secondary measurements, the generalized Triad
solution of (28) is almost identical to the solution obtained using Davenport’s
q-method in such situations. Attitude estimation using the generalized Triad is
subscripted using an f and plotted using solid lines, while the estimation using
the q-method is subscripted by D and plotted using dashed lines.

Fig. 7. Filtering using Eqs. (23) or (24) as described in Section 4.2 to obtain a
filtered attitude estimate. The roll and pitch angles are prescribed to be sinusoids
of amplitude π/9 rad. Left: The proposed geometric solution yields a perfect
oll and pitch estimate φf and θf for a perfect direction measurement using
qs. (29) and (30). An optimally tuned MEKF develops errors in the update step
φK and θK in the figure) despite the perfect direction measurement. The angular
elocity measurement generates 0.04 units rms noise at each time-step. Right:
ith more realistic noise of 0.001 units in the direction measurement and the

ame noise through the angular velocity measurement, the inaccuracy in the
EKF becomes less perceptible relative to the other errors. The rms error of

he geometric filter is nearly half that of the MEKF (1.1e−6 vs. 2e-6 sq-units)
ven in this case.

rimary measurement. Thus, the generalized Triad solution is a
imple alternative to the least-squares solution in this scenario
see Fig. 6).

.2. Validation of Theorem 6

The next group of simulations verify the result of Theorem 6,
nd Remark 6.2.
The attitude estimate q̊ of Theorem 6 can be filtered to reduce

he noise, as described in Section 4.2. The improvement with
he geometric filter is visually best perceived when there is no
oise in the direction measurement (Fig. 7 left). In this situation,
he geometric filter determines the required update exactly using
23) or (24). The MEKF suffers from a slight loss of accuracy in
he update step when the Kalman gain is determined and the
orrection linearized (the approximations leading to (158) in Lef-
erts et al. (1982) or (47) in Markley (2003)). In a more practical
ituation (Fig. 7 right) with the direction measurement having
noise of 0.001 units, the geometric filter yields half the noise
ariance (1.1e−6 vs. 2e−6 sq-units) as the MEKF, on account of
he better algorithmic accuracy in the update step. In both cases,
he angular velocity measurement is modelled to contribute a
hite noise of 0.04 rad each time step. The difference between
he MEKF and the proposed filter becomes less significant as
he angular velocity measurement becomes less noisy, and the
orrection quaternion approaches unity. For example, when the
oise in the angular velocity measurement is only 0.01 rad each



Y.B. Mitikiri and K. Mohseni Automatica 128 (2021) 109494

e

p
a
s
e
a

t
f
v

5

w
T
l
t
o
p
w
w
d
p
f
t
u
i
i
f
b
i

5

b
U
a
b

Fig. 8. A comparison of the estimator in Theorem 6 against the ECF in Mahony
t al. (2008). The ECF estimate (φ̂M , θ̂M ) has larger residual errors unless we use

the optimal gain suggested in this paper in a two-step estimation. Left: The ECF
with gains recommended in Mahony et al. (2008). Right: the ECF using the gain
derived in Remark 7.1 in two-step estimation.

Fig. 9. Left: Failsafe estimation of a time-varying gyroscopic bias using (39). The
true time-varying bias is plotted using dashed lines, while the estimates ê are
lotted using solid lines. Excitation is ceased midway through the experiment
t t = 40 s. The estimator then continues to track the bias orthogonal to the
ingle direction measurement. Right: Failsafe attitude estimation upon loss of
xcitation. Again, the estimates are shown as solid lines, while the true values
re shown as dotted lines.

ime step (this case is not shown in above figure), the geometric
ilter yields almost the same error variance as the MEKF (1.1e−6
s. 1.1e−6 sq-units).

.3. Optimal gains for the ECF using Remark 7.1

The attitude estimator in Theorem 6 (φ̂f and θ̂f ) is compared
ith the ECF of Mahony et al. (2008) (φ̂M and θ̂M ) in Fig. 8.
he true attitude angles are denoted φ and θ . The angular ve-
ocity measurement contributes an rms noise of 0.1 rad/s each
ime step, while the direction measurement has an rms noise
f 0.01 rad. The geometric filter with the optimal gain matrix
rovides nearly 6-fold superior accuracy compared to the ECF
ith a gain of 1 (the gain recommended in Mahony et al. (2008)),
hile the proposed geometric filter uses an optimal gain matrix
erived out of the noise parameters and the time step. Equivalent
erformance may be obtained with both the solutions only upon
ollowing a two-step attitude estimation in the ECF, first filtering
he direction measurement as described under Section 4.2, and
sing the gains suggested in Remark 7.1. The two-step estimation
s essential so as to ensure that the angular velocity correction ωc
s with respect to the filtered direction measurement vf obtained
rom the first step, and that the subsequent vector-measurement
ased correction is expressed in the body-frame obtained after
ntegrating the angular velocity in the first step.

.4. Gyroscopic bias estimation

In order to verify the estimation of a time-varying gyroscopic
ias as proposed in Section 4.3 we model it as an Ornstein–
hlenbeck process centred about [−0.08 0.16 −0.32] rad/s
nd with an auto-correlation time constant τ = 1 s. The rigid
ody is rotated in a sinusoidal motion, φ = (9π/9) sin(π t/4) and
11
Fig. 10. On the left, a schematic of the 4 Degree of freedom Model Positioning
System (MPS) described in Linehan, Shields, and Mohseni (2014). The MPU9250
mounted on the PCB (green in the picture on the right) and being tested on the
MPS. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

θ = (4π/9) sin(π t/2) until t = 40 s, after which all motion is
ceased.

In Fig. 9 on the left, the bias estimates track the low-frequency
component in the time-varying bias error. The estimator runs at
100 Hz (T = 0.01 s in (39)). In the figure on the right, it can
be seen that the estimated attitude does not drift while the body
is rotating (persistent excitation). Once rotation ceases, the yaw
estimate begins to drift but the roll and pitch estimates continue
to track the true values in spite of the bias errors. It may be noted
that the estimation algorithm does not break down upon loss of
excitation. Instead, it continues to update the bias the best that it
can using measurements of a single direction.

6. Experimental validation of geometric attitude estimation
using rate and single direction measurement

This section provides experimental verification for the geo-
metric attitude estimator by using a recently developed autopilot
in our group, which is equipped with an IMU, the MPU9250,
and is described in Bingler and Mohseni (2017). The autopilot
is mounted on an inhouse designed model positioning system
(MPS) that can independently prescribe roll, pitch, plunge and
yaw manoeuvres on a test module (see Fig. 10).

The roll motion has an amplitude of 5π/6 and a period of 4 s.
The pitch motion has the same period, and an amplitude of 4π/9.
The encoder on the MPS provides the true angles at 1 kHz, while
the attitude estimator on the MPU9250 provides estimates at
90 Hz. The estimated roll and pitch angles are plotted along with
the true values in Fig. 11. The residual errors in estimating the roll
and pitch angles can be attributed to experimental errors. Also
shown in the zoomed insets is the high-accuracy, zero latency
tracking from the direction measurements to the attitude estima-
tion. This may be compared with the larger errors using the ECF.
As shown in Remark 7.1, the ECF is an approximation of the exact
geometric estimation that is associated with latency on account of
a feedback based correction mechanism. In this experiment, the
ECF was used with a gain kP equal to 1, as suggested in Mahony
et al. (2008).

7. Conclusion

We have reported a geometry-based analytic solution for the
problem of attitude estimation using two reference direction
measurements, and using a rate measurement and a measure-

ment of a single reference direction. The presented approach
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Fig. 11. Top: Attitude estimation for a pure sinusoidal roll manoeuvre on a real
system. Bottom: Attitude estimation for a pure sinusoidal pitch manoeuvre on
a real system. The solid black lines are the true roll and pitch angles, φ and θ ,
eturned by the encoder, the dash–dot red curves are their estimates using the
ccelerometer directly as φs = atan2(gy/gz ) and θs = asin(−gx/∥g∥), and the
reen dashed curves for φ̂ and θ̂ using Theorem 6 presented in this paper after

the filtering described in Section 4. The dash–dot blue curve shows the attitude
estimate obtained using the ECF with the filter gains suggested in Mahony et al.
(2008). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

leads to a unified framework to derive, as special cases,some pop-
ular solutions: namely, the Triad solution (Black, 1964), Wahba’s
formulation (Wahba, 1965), the extended Kalman filter (Lefferts
et al., 1982), and the ECF (Mahony et al., 2008). A useful next
step would be to extend the geometric solution to consider three
direction measurements, and the geometro-kinematic problem to
two direction measurements.
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