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ABSTRACT
Mach wave radiation in a turbulent fully expanded
supersonic jet is revisited. Our goal is to deter-
mine the extent to which predictions for the ra-
diated sound that are based on linearized analysis
agree with solution of the full nonlinear equations.
To this end, we solve the linearized Navier-Stokes
equations (LNS) with precisely the same mean flow
and inflow disturbances as a previous direct numer-
ical simulation (DNS) of a turbulent M = 1.92 jet.1
We restrict our attention to the first two azimuthal
modes, n — 0 and n = 1, which constitute most
of the acoustic field. The direction of peak radiation
and the peak Strouhal number matches the DNS rea-
sonably well, which is in accord with previous exper-
imental justification of the linear theory. However,
it is found that the sound pressure level predicted
by LNS is significantly lower than that from DNS.
Thus, linear theory misses a substantial component
of the noise. In order to investigate the discrepancy,
the behavior of individual frequency components of
the solution are examined. Near the peak Strouhal
number, particularly for the azimuthal mode n = 1,
the amplification of disturbances in the LNS closely
matches those from the DNS data. However, away
from the peak frequency (and generally for the az-
imuthal mode n — 0), the DNS data shows amplifi-
cation rates roughly comparable to those at the peak
Strouhal number, while those from the linear com-
putations are damped.

1 INTRODUCTION
In the last three decades one of the important devel-
opments in turbulent research was the recognition
of large scale turbulent structures in free shear flows
(see Brown and Roshko2). There is now a large body
of evidence that connects the evolution of linear in-
stability waves and large scale structure.3"5 Fur-
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thermore, theoretical6 and experimental7 evidence
suggests that the noise generated by large coherent
structures constitutes the principal part of the su-
personic turbulent mixing noise, which is thought
to be Mach wave radiation that occurs when large
structures convect at supersonic speed relative to the
ambient.

Prediction of supersonic mixing noise has followed
these ideas closely since the development of a linear
stability noise models for mixing layers8 and jets.6
These theories use matched asymptotic expansions
(MAE), to expanded the near-field solution of the
linearized flow equations with the spreading rate as
a small parameter and match this expansion to a
global solution to the wave equation in the far field.
Tarn and Burton6 show that the peak Strouhal num-
ber of the radiated sound and the directivity pattern
of the most amplified linear mode match the jet noise
measurements of Troutt and McLaughlin.7

Unfortunately, the noise amplitude predicted by
a linear theory is directly proportional to the am-
plitude of the fluctuations at the nozzle lip which
are typically unknown. A rigorous prediction of the
noise amplitude based on actual nozzle disturbances
has never been performed. So to predict noise, ad-
ditional assumptions about the excitation of linear
modes are required. For example, the stochastic
wave model developed by Tarn and Chen9 consid-
ers a single instability wave at any given frequency
as representative of the energy carrying wave compo-
nent (that is, it neglects the continuous spectrum of
convected disturbances). They argue that the insta-
bility wave spectrum of the jet may be regarded as
being generated by the stochastic white noise excita-
tion at the nozzle lip region. Thus the amplitude of
instability waves are set by matching the turbulent
kinetic energy of the flow at the nozzle lip.

Several important questions regarding the
stochastic wave model have yet to be addressed
are: (1) how important is the continuous spectrum
of disturbances, either by itself or in combination
with the instability modes; (2) to what extent
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do nonlinear interactions regulate the growth and
decay of the instability waves; and (3) is the linear
mechanism of Mach wave generation the dominant
sound source, or is sound generated by interactions
of waves significant?

Recently, a turbulent unheated jet at a Mach
number of 1.92 was computed using Direct Numer-
ical Simulation (DNS) by Freund, Lele & Moin.1

Though the Reynolds number was low (Re — 2000),
it was shown that the directivity and SPL were sim-
ilar to higher Reynolds number jets with similar
convective Mach numbers. This DNS provides a
detailed database that can be used to address the
above questions. In a related paper, Colonius and
Freund10 used the database to show that there was
quantitative agreement between the acoustic field di-
rectly computed in the DNS and that found by solv-
ing the wave equation with a Lighthill source term
that was computed from the DNS data.

In the present paper, we compare these DNS
results with numerical solutions of the Linearized
Navier-Stokes (LNS) equations, with the mean flow
taken directly from the DNS and with precisely the
same inflow disturbances. This provides, then, the
first direct assessment of nonlinearity in determining
the amplitude of the radiation. The paper is orga-
nized as follows. In the next section, the computa-
tional technique and issues relating to signal analy-
sis of the data are briefly described. A more detailed
account of these issues is available elsewhere.11 Re-
sults are presented and discussed in section 3, and a
summary of our conclusions is given in section 4.

2 COMPUTATIONAL TECHNIQUE
A linearized Navier-Stokes solver was developed that
uses the mean flow quantities, grid distribution and
inflow boundary conditions, including an identi-
cal specification of incoming turbulent disturbances,
from the Freund et al.1 simulation. It uses a sixth-
order compact Fade scheme in axial and radial di-
rection and a Fourier spectral method in the az-
imuthal direction, and a fourth-order Runge-Kutta
algorithm to advance the solution in time.

It is currently not computationally feasible to si-
multaneously simulate the nozzle flow as well as
the small-scale turbulence and the far-field acous-
tic waves by DNS. Therefore, inflow conditions were
used to mimic the behavior of the shear layer a short
distance downstream of the nozzle, and we use the
identical specification as input to the LNS computa-
tions. The inflow condition developed by Freund12

is based on an auxiliary DNS computation of a pe-

riodic (temporally evolving) jet.13'14 This simula-
tion had a streamwise period of 21jR, where R is the
jet radius at the inlet. In order to decorrelate the
turbulence of the incoming flow, the amplitude of
the two-dimensional spectral components of the in-
coming disturbances were randomly jittered by an
amount of 5% of their amplitude. The decorrelation
of the small scale (high frequency) turbulence statis-
tics within the computational domain was verified a
posteriori. For some of the low frequency results
presented in this paper, remnants of the 21R peri-
odicity remain in the DNS data. This is expected in
free shear layers that are known to be sensitive to
initial conditions, and will take them a long distance
for large scales to decorrelates in flow direction. In
the LNS calculations, such correlation persists in-
definitely since there is no exchange of energy with
smaller scales. We note that while the details of
the results here are affected by this correlation, the
conclusions remain valid since we are comparing the
relative evolution of two flows with identical inflow
disturbances.

The flow parameters in the LNS calculations are
set to their corresponding values in the DNS calcu-
lation. These are:

Pr = 0.7,

=

= 0.89,

= = 1 92

The isentropic convective Mach number15 for these
conditions is Mc — 0.99, the momentum thickness
of the incoming shear layer is 0.1.R, and the com-
putational domain extends 13.3jR in the radial di-
rection and 36.R in the axial direction, see figure 1.
The computational mesh for the DNS calculation
had 640 x 270 x 128 points in the axial, radial, and
azimuthal directions, respectively. We found that in
LNS calculations full resolution in the axial direc-
tion and half resolution in the radial direction pro-
vided results that were essentially identical to those
computed with the DNS resolution. Since the acous-
tic field from DNS was dominated by the first two
azimuthal modes (see below) we use only 4 points
in the azimuthal direction, noting that higher az-
imuthal modes are completely decoupled in linear
computations.

To avoid problems with the polar coordinate
singularity, the centerline treatment proposed by
Mohseni and Colonius16 is used, where singular co-
ordinates are redefined so that data is differentiated
smoothly through the pole, and we avoid placing a
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buffer zone

-10

Figure I: Computational domain and buffer zones.

grid point directly at the pole. This eliminates the
need for any pole equation. In this technique the lo-
cations of radial grids in the LNS computational do-
main are placed half way between the grid points of
the DNS calculations. For this reason, a fourth-order
compact Fade mid-point interpolation formula was
used to transform all the flow data, inflow boundary
conditions and mean flow distributions in the DNS
calculations to the radial grids of the LNS calcula-
tions.

2.1 Signal Processing Techniques

In this section methods for extracting frequency
spectra from the LNS and DNS data are considered.
Due to the different nature of data in each case, dif-
ferent methods are used:

Discrete Fourier Transform: Since the quasi-
periodicity is quite evident in the LNS calculations
the Fourier spectra were calculated using standard
discrete Fourier methods. Apart from the aperiodic-
ity imposed on the inflow boundary condition, ape-
riodic behavior of the data can be caused by many
other factors, including existence of signals with fre-
quencies too low to be represented over a specific
duration of signal and also signals with frequencies
higher than the Nyquist frequency of the sampled
data. The approximate spatial periodicity of the in-
flow data can be translated into temporal periodicity

with a period Ta^/R = 21 (assuming a convection
speed of unity, which is appropriate at these flow
conditions). The total duration of the LNS data
was to STdoo/R- The LNS calculations are at an
almost periodic state after the first flow through the
entire computational domain. Our numerical exper-
iments show that even one period of the LNS data
is enough to accurately calculate the spectra at the
smallest frequency, fR/a^ = 1/21, and increasing
the period Ta^/R did not change the results.

The LNS data is sampled every time step to avoid
aliasing. The resulting sampling rate was fR/a^ =
100, which is well above the maximum frequency
considered in this study.

Lomb-Scargle Periodogram: While the direct
Fourier transform was quite accurate for calculat-
ing the frequency spectra of the evenly sampled data
from the LNS computations, it would not be reliable
in the case of DNS data because of several computa-
tional issues. Though the DNS data is quasi-periodic
near the inflow, it is fully aperiodic further down-
stream. Thus, imposing a periodicity here would
contaminate the high frequencies. In addition, the
DNS data were computed with a variable time step,
and there were a few short-duration patches of miss-
ing DNS data. There are 2496 samples between com-
putational times 156-R/aoo and 352/2/aoo, constitut-
ing more than 9 periods of the inflow forcing. This
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is sufficient to show that the data is more than suf-
ficient for the frequencies of interest.

An efficient technique that can be applied to un-
equally sampled data, which also includes regular
time-series with missing values is the Lomb-Scargle
periodogram.17'18 While a Fourier transform de-
composes the time-series into a fundamental peri-
odicity and a number of harmonics, a periodogram
shows the power of each of these periodicities and
was developed to detect weak periodic signals in
noisy data. The fast algorithm for computing the
the Lomb-Scargle spectrum of Press et a/.19 was
used.

Since the sampling theorem applies only to evenly
sampled data, the Nyquist frequency is not defined
for the unevenly sampled DNS data. Nevertheless,
an average Nyquist frequency can be defined as

1

where At is the average sampling interval. Usu-
ally choosing the maximum frequency of interest to
be this average Nyquist frequency results in a con-
servative choice of frequency range. The average
Nyquist frequency for the available DNS data is al-
most ISaoo/.R, and is well above the highest frequen-
cies considered in this study.
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Figure 2: SPL of DNS at r = 12. ( ———) total; (
----) n — 0 mode zero; ( —-— ) n = 1 mode; (
- - - - - - - - ) both n — 0 and 1 modes; ( — --— ) all other
modes.

3 RESULTS
3.1 Sound Pressure Level
We begin by computing the sound pressure level
(SPL) of the DNS and LNS data at r = 12#, which
is the maximum extent of the DNS. The results of
this computations are presented in figures 2 and 3
for both DNS and LNS.

There are several features to note in these figures.
First, the acoustic field of the DNS data is domi-
nated by modes zero and one. When all other modes
are excluded, the total SPL is reduced by only 1.5
dB. This confirms the predictions from linear stabil-
ity theory (LST) that the acoustic field of a cold jet
(and relatively cold jets) is dominated by the first
two modes.20 Because of this, we limit our atten-
tion in what follows to only the first two modes.
Second, in agreement with predictions from LST,20

the azimuthal mode n = 1 in the LNS calculation
contributes the most to the total SPL and is clearly
the dominant part of the generated noise. However,
the same trend is not observed in the DNS data. The
maximum SPL of the DNS data for n = 0 alone is
actually higher than that of mode n• = 1 and cannot
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-) sum ofFigure 3: SPL at r = 12. For DNS: ( -
modes n = 0 and 1; ( —--) n = 0; ( —-— ) n = 1,
and for LNS: (—•—) sum of modes n — 0 and 1;
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be ignored, while in the LNS calculations consider-
ing only n — 1 provides a reasonable estimate for the
total SPL. Contrary to LNS and LST calculations,
the radiation from mode n — 0 in the DNS peaks
further downstream than it does for mode n — 1.
This can be interpreted to mean that the apparent
location of the sound sources of mode n — 0 of the
DNS calculation is concentrated further away from
the nozzle. Since the inflow data for both LNS and
DNS are exactly the same, this effect cannot be at-
tributed to any artificiality of the inflow forcing.

In both LNS and DNS, the acoustic field is highly
directional. For n — 1 the general directivity profile
is well captured, while its amplitude is underesti-
mated by as much as 4dB at r = 12. The agreement
is poorer for n = 0, where LNS data is less intense by
as much as about 15 dB. Because azimuthal mode
n = I contributes the most to the total SPL of the
LNS calculations, the total directivity of the LNS
data does follow the directivity of the total SPL from
the DNS calculation closely. However, the maximum
SPL of the sum of modes n = 0 and n = 1 is un-
derestimated by as much as 8 dB in the LNS calcu-
lation. It is clear that some noise mechanism is not
represented by the linear equations.

Note that these amplitude comparisons are per-
formed outside the jet, but only at r = 12R. Shocks
in the sound field1 will increase dissipation of the
noise so one might expect a somewhat better agree-
ment at a larger distance from the jet, but this can
not explain the 8 dB difference at r = 12.

3.2 Instantaneous Fields

Instantaneous pressure fields of the DNS and LNS
data for n = 0 and 1 are shown in figure 4. There
is a region of agreement between DNS and LNS for
both n = 0 and n = I in a region close to the in-
flow boundary. This region of extends further down-
stream for n — 1 than it does for n = 0, which is con-
sistent with the better match in amplitude discussed
in the previous section, but gradually deteriorates
further downstream. Disagreement is expected, es-
pecially in the near field, since these instantaneous
observations contain all frequencies, and the DNS
data has a broader spectrum. This is evident in
the DNS data of figures 4(a,c,e) where smaller scales
are observed that are absent in the LNS calculations
of figure 4(b,d,f). Consequently, around the end of
the potential core the LNS calculation is not a good
representative of the fluctuations in the DNS data.
However, it appears that on an instantaneous basis,
the LNS qualitatively captures that sound radiation

that mainly originates from near the nozzle.
It seems that the highest amplitude Mach wave

radiation for n — 0 of the LNS data originates from
an area close to the inflow boundary (close to the
nozzle exit) while for n — I it radiates from a re-
gion around x « 7R and extends beyond the end
of the potential core. This clearly affects the di-
rectivity of the near acoustic field for n — 0 and 1.
While a distant far-field observer will not distinguish
this shift in the location of the apparent source, it
is clear at r = 12R, as seen in figure 3, where the
SPL of the zero azimuthal mode of the LNS data at
r — 12R peaks earlier that that of mode one. Thus
LNS computations provide a picture consistent with
linear stability theory. On the other hand, the DNS
appears to have contributions from both the shear
layer region, and from a region near the end of the
potential core.

3.3 Amplification of individual frequency compo-
nents

The comparison of the sound pressure levels and in-
stantaneous pressure levels in the last two sections
showed that the linearized computations radiate less,
especially from the axisymmetric mode, n — 0. In-
stantaneous pressure contours showed that the in-
tense Mach wave radiation from a region near the
end of the potential core in the DNS was not cap-
tured by the LNS. However, linear instability modes
are only expected to model the largest scales. Be-
cause the DNS jet is at a low Reynolds number, too
low to have an appreciable inertial range in the tur-
bulence cascade, we do not expect significant con-
tribution to the noise from other than the largest
scales. Nevertheless, it remains unclear whether the
discrepancies noted in the previous sections are due
to the generation of higher frequencies in the DNS,
which despite i-ts low Reynolds number does have
broad-banded turbulence spectra, or whether there
is error even at low frequencies. For this reason
the DNS and LNS data were time transformed as
discussed in section 2. The spatial development of
the pressure disturbances at various Strouhal num-
bers (fD/Uj) in the DNS calculation is compared
with the LNS calculation in figures 5 and 6* for
r — IR and r — 47?. We see that at all frequen-
cies the amplitudes agree at the inflow boundary, as
expected since identical inflow forcing was used for
both cases. Excellent prediction of the growth is ob-

*p = (p2 _ j _ p 2 ^ i / 2 ^ where pr and pi are the amplitudes of
the Fourier coefficients of the real and imaginary parts of the
first azimuthal mode, respectively.
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x/R

(a) DNS, n = 0

x/R

(b) LNS, n = 0

x/R

(c) DNS, real part of n — I

x/R

(d) LNS, real part of n - I

x/R

(e) DNS, imaginary part of n — 1

x/R

(f) LNS, imaginary part of n — 1

Figure 4: Instantaneous perturbation pressure field from DNS and LNS at time 222, normalized with
10 contour levels between -0.00225 and 0.00225.
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Figure 5: Amplitude of the Fourier coefficient for perturbation pressure field for n = 0, normalized with
POOG&, for (a) St = 0.048 (b) St = 0.095 (c) St = 0.143 (d) St = 0.191 (e) St = 0.238 (f) 5* = 0.286 (g)
St = 0.333 (h) St = 0.381 (i) St = 0.429. (—•—), DNS at r = 1; (—••-), LNS at r = 1; ( ———), DNS at
r = 4; (———), LNS at r = 4.
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Figure 6: Amplitude of the Fourier coefficient for perturbation pressure field for n — 1, normalized with
Poofl&>» for (a) St = 0.048 (b) St = 0.095 (c) St = 0.143 (d) St = 0.191 (e) St = 0.238 (f) St = 0.286 (g)
St = 0.333 (h) St = 0.381 (i) St = 0.429. (—•—), DNS at r - 1; (—+-), LNS at r - 1; ( ———), DNS at
r = 4; (———), LNS at r = 4.
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served for mode n = 1 at St = 0.143 (figure 6 c),
which is near the peak, and reasonable agreement
is seen at similar Strouhal numbers in the range
0.0952 <St< 0.1905. But in most cases, the fluctu-
ations from LNS start to decay closer to the inflow,
and with significantly lower amplitude than the cor-
responding fluctuations from DNS. In all cases, the
agreement between DNS and LNS is better for n = 1
than it is for n = 0, which is consistent with the in-
stantaneous and root-mean-square results presented
above.

Another general trend in figure 6 is that the higher
frequencies of the LNS calculation saturate earlier
than the lower frequencies, an effect which is consis-
tent with linear stability theory, but not evident in
the DNS.

The observation that turbulence near the end of
the potential core is responsible for a portion of the
Mach wave radiation is not new. It was observed
experimentally by Troutt and McLaughlin,7 where
the near acoustic field suggested that there were
two distinct sources at a given frequency, one orig-
inating from the shear layer region, the other fur-
ther downstream. In the present low Reynolds num-
ber simulation, the shear layers are initially thick
enough frequencies above St — 0.4 are damped im-
mediately, which we believe obscures this two-source
effect. The noise from the shear layers and from fur-
ther downstream cannot be clearly distinguished.

4 DISCUSSION AND SUMMARY
In this study we have critically evaluated the lin-
ear theory of Mach wave radiation in a perfectly ex-
panded supersonic jet. The relative directivity of
the noise radiation predicted by linear computation
was very similar to that obtained using DNS, but
the noise radiated by the first two modes in the lin-
earized computation was substantially weaker. For
example, in the near acoustic field at a distance of
6 jet diameters from the jet center line, the sound
pressure level in the linearized computation was as
much as 8 dB smaller in the linear solution. The
first azimuthal mode, which is dominant in the lin-
ear theory, agreed better with the DNS than the ax-
isymmetric mode which was substantially under pre-
dicted. In order to assess the origin of the discrep-
ancy, frequency spectra were computed from both
the DNS and LNS data. At the peak Strouhal fre-
quency, particularly for n = 1, the amplification of
disturbances in the LNS matched that of the DNS
data. However, for other frequencies the DNS data
showed amplification rates comparable to those of

the peak Strouhal number, whereas in the LNS data
the disturbances away from the peak Strouhal num-
ber were damped. Except near the peak frequency,
the peak perturbations at a particular frequency in
the DNS data occurred further downstream than for
the LNS data, corresponding to a region around and
beyond the end of the potential core.

Until present, evidence supporting the linear the-
ory of Mach wave radiation was indirect: the gen-
eral agreement of the directivity of the Mach wave
radiation and its peak Strouhal number. In addi-
tion, the study of Troutt and McLaughlin7 showed
that the initial growth rates of the jet instabilities
and the wavelengths of the coherent disturbances
are in good agreement with linear stability theory
predictions. While strikingly successful in predict-
ing these important qualitative aspects of the noise,
the present comparison shows that the noise process
in not well modeled quantitatively by linear theory
even if no further approximations, such as a slowly
spreading mean flow, are made. Nonlinear effects
are not only present, but they dominate the acous-
tic field for the axisymmetric mode n = 0, and con-
tribute significantly to the n — I mode at frequencies
different from that of the peak radiation. While the
present analysis is restricted to low Reynolds num-
ber, there is no reason to expect that nonlinear ef-
fects and the discrepancy between the far-field sound
pressure level and linear stability predictions, would
be less important at high Reynolds number. Fur-
ther, the missing noise in the linear theory must be
attributed to nonlinearity, since inflow disturbances
and the mean flow were exactly the same in both
our linear and nonlinear calculations. However, we
are not able to ascertain, based on the present re-
sults, whether it is due to a failure of linear theory to
correctly predict the amplification of disturbances in
the near field, or whether it is nonlinear mechanisms
for sound radiation (or both).

It is not surprising that the directivity of the
acoustic field near the peak Strouhal number is in-
sensitive to the details of the source process. Indeed,
the growth and decay of any constant frequency con-
vecting disturbance will produce such radiation, al-
beit at an amplitude which depends critically on
the growth and decay rates of the disturbance with
streamwise distance. The present results show that
except for the most amplified linear modes, the dom-
inant sources arise further downstream and as the
result of a nonlinear process, even though they pro-
duce similar overall directivity to the purely linear
modes. This result suggests that linear theory for
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Mach wave radiation should be used with caution.
It may help explain why attempts to control the
sound either by direct forcing of the flow, geomet-
rical changes to the nozzle, or modification of any
co-flow, may result in smaller reductions than would
be predicted based on linear theory.

In order to complete the theory of Mach wave ra-
diation from supersonic jets, and thereby produce a
realistic model on which future noise control efforts
could be based, future studies should concentrate
on elucidating the mechanism by which nonlinear
effects generate sound in the region near the end of
the potential core.
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