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ABSTRACT

Periodic vortex streets, often considered as a model
for the organized structures observed in the wake
of two-dimensional (2D) bluff bodies, are revisited.
After the generation of the shear layers the forma-
tion of the vortices is mainly an inviscid process. An
intrinsic scaling for the formation of vortex streets
is found based on the invariants of motion for 2D
inviscid flows; namely the kinetic energy, impulse,
circulation and the translational velocity of the vor-
tex system. We show that in the frame of reference
of the invariants of motion the intrinsic shedding
Strouhal number St defined based on the invariants
of motion and the aspect ratio of the vortex street x
(the ratio of the lateral distance to the streamwise
distance between the centers of vortices) are liter-
ally the same. The formation of the vortex street
is a manifestation of Kelvin’s variational principle.
Using the computational results from Saffman and
Schatzman'® for the inviscid vortex streets of vortex
patches we estimate values of the nondimensional en-
ergy and circulation of the vortex system for a wide
class of vortex patches. A relaxational explanation
of the vortex shedding is also offered. In this picture
the bluff body is considered as a source of provid-
ing the system with invariants of motion. After the
formation of the shear layers the system will relax
toward its final equilibrium state where the forma-
tion of a vortex street is mandated by the invariants
of motion for the two-dimensional Euler equations.
Similar to the vortex ring pinch-off process it is spec-
ulated that the characteristics of the vortex system
can be modified by modification in the rate of gen-
eration of invariants of motion. The two main meth-
ods for modifying a vortex system are the dynamical
changing of the speed and the lateral spacing of the
generated shear layers during the formation of cir-
culation regions. This is often achieved by periodic
streamwise and lateral oscillations of the bluff body.

Copyright © 2001 by the author. Published by the Amer-
ican Institute of Aeronautics and Astronautics, Inc. with per-
mission.
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1 INTRODUCTION

The wake of the two-dimensional bluff bodies in a
uniform stream usually shape into a regular pat-
tern of two parallel staggered rows of vortices for
a large range of Reynolds numbers; see for example
Williamson? and the references in there. Vortices
which are formed at the two points of separation
on the bluff body, are seen to be shed off regularly
in an alternating fashion, as shown in figure 1, in
which Uy, is the uniform velocity of the approach-
ing stream, and Uy is the translational velocity of the
vortex street with respect to the free stream. It is ap-
parent that viscosity does not play an essential role
in the formation of the vortex street once the shear
layers have been developed. This is supported by in-
vestigations on the inviscid evolution of infinite par-
allel vortex layers with small periodic disturbances
(see Aref and Sigga® and the references in there);
the Karman vortex street seems to be the generic
result in such inviscid calculations. Furthermore,
it has long been experimentally observed that the
Strouhal number does not change significantly for a
wide range of Reynolds numbers (e.g. see Roshko?).

The double trail of vortices formed alternately on
both sides of a cylinder was modeled by von Kar-
man® as a regular pattern of point vortices in invis-
cid flows. von Karman not only analyzed the sta-
bility of a system of vortex streets, but also estab-
lished a theoretical link between the vortex street
configuration and the drag coefficient onn the body.
He studied both the symmetric and antisymmetric
configurations of a double row of point vortices. He
showed that the only configuration that does not ex-
hibit linear instability is for an antisyminetric con-
figuration (see figure 1) with a vortex spacing of
ke = sinh™1/7 ~ 0.28. See Lamb® and Saffman”’
for a review of the stability analysis including the
effect of finite core size and three dimensional in-
stability. It should be noted that these analyses do
not address the issue of formation of vorticity on
the body. However, they suggest that if such vor-
tex streets are formed they should be observed for a
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Figure 1: Vortex street behind a bluff body. Note that for an observer traveling with the vortices the velocity
at infinity is U;, and the cylinder moves away from the vortices at a relative velocity of Uy, — Us.

reasonable distances downstream.

Vortex streets are the two-dimensional (2D) coun-
terpart of an array of axisymmetric vortex rings.
Our results here is a natural extension of the re-
laxational idea developed in Mohseni,® Mohseni and
Gharib,? and Mohseni et al.10 A brief review of the
vortex ring pinch-off process in axisymmetric flows
is presented in section 2.

In this paper an intrinsic scaling for a regular vor-
tex street based on the main invariants of motion
of the 2D Euler equations is introduced. The rele-
vant quantities are then nondimensionalized based
on these scales. This scaling fits well with Kelvin’s
variational principle. Saffman and Schatzman! 1!
and Schatzman!? studied the steadily translating so-
lutions of vortex streets consisting of vortex patches
(vortices of finite area and uniform vorticity) as the
simplest extension of von Karman’s point vortex
model. Saffman and Schatzman!! mathematically
addressed the question of whether constant vortic-
ity structures of finite extent can stabilize a vortex
street. They found numerical solutions of the Euler
equation for their model and calculated the proper-
ties of the street, that we used in the present study.
In passing we note that Meiron et al.l® concluded
that the modeling of a vortex street by regions of
constant vorticity did not fundamentally alter the
stability results of Karman's point vortex model; at
least for moderate values of the area of the individual
vortices, there is only a single value of x for which
the street is stable. This behavior is a consequence
of the Hamiltonian nature of the Euler equations
and its symmetries'¢ and it should hold for any in-
viscid model of the street that retains the back to
fore symmetry of the basic flow. Jimenez!# argues
that the viscous effects might be responsible for the

2

persistence of a natural vortex street observed in ex-
periments.

This paper is organized as follows. In the next
section we review the relaxational approach in the
vortex ring pinch-off process. This will motivate the
application of the same approach to the Karman
vortex street. Equivalence of the intrinsic shedding
Strouhal number St in the frame of reference of in-
variants of motion and Karman's aspect ratio k was
studied in section 3. Kelvin’s variational results were
also addressed in section 3. Nondimensionalization
of the Karman vortex street based on the invariants
of motion is performed in section 4. In section 5
the numerical computations of Saffman and Schatz-
man' were used to estimate the nondimensional en-
ergy and impulse of the vortex system for various
aspect ratios . An explanation for the vortex shed-
ding behind bluff bodies based on the relaxational
model is discussed in section 6. Finally we summa-
rize our results in section 7.

2 UNIVERSALITY IN VORTEX RING PINCH-OFF
PROCESS

Our main motivation for the present investigation
comes from the universal formation number of vor-
tex ring pinch-off process observed in experiments
by Gharib et al.'> Mohseni & Gharib® offered a re-
laxational model for the vortex ring pinch-off pro-
cess. Numerical simulations of the Navier-Stokes
equations were performed by Mohseni et al.® where
they verified the modeling assumptions in Mohseni
& Gharib.® In the laboratory, vortex rings can
be generated by the motion of a piston pushing a
column of fluid through an orifice or nozzle. The
boundary layer at the edge of the orifice or nozzle
will separate and roll up into a vortex ring. We
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think that since the formation of vortex rings in-
volves strong mixing of the generated shear layer
with the ambient fluid (the same applies to the for-
mation of vortices in two-dimensional flows), the er-
godicity requirement of statistical equilibrium theo-
ries has a chance to be satisfied. The experiments
of Gharib et al'® have shown that for large pis-
ton stroke versus diameter ratios (L/D), the gener-
ated flow field consists of a leading vortex ring fol-
lowed by a trailing jet. The vorticity field of the
formed leading vortex ring is disconnected from that
of the trailing jet at a critical value of L/D (dubbed
the “formation number”), at which time the vortex
ring attains a maximum circulation. The formation
number was in the range 3.6 to 4.5 for a variety
of exit diameters, exit plane geometries, and non-
impulsive piston velocities. An explanation for this
phenomenon was given based on Kelvin's variational
principle. It was both experimentally!® and analyti-
cally® observed that the limiting stroke L/D occurs
when the generating apparatus is no longer able to
deliver energy, circulation and impulse at a rate com-
parable with the requirement that a steadily trans-
lating vortex ring has maximum energy with respect
to kinematically allowable perturbations. Recently
Mohseni® argued that the energy extremization in
Kelvin’s variational principle has a close connection
with the entropy maximization in statistical equilib-
rium theories. Numerical evidence for a relaxation
process in axisymmetric flows to an equilibrium state
has already been provided by Mohseni et al.}® in a
direct numerical simulation of the vortex ring pinch-
off process.

Inspired by these observations we offered a re-
laxational (statistical) approach to the vortex ring
pinch-off process.®!® This is an alternative expla-
nation of the vortex ring pinch-off process, based
on a mixing entropy maximization, besides the en-
ergy extremization approach in Kelvin’s variational
principle. From this point of view, any vortex ring
generator can be viewed as a tool for initializing an
axisymmetric flow with a particular rate of the gen-
eration of invariants of motion. FEach vortex ring
generator has a specific rate for feeding the flow with
the kinetic energy, impulse, circulation, etc. In this
picture, at small strokes (small Z/D) one will find
that all of the initial vorticity density will coalesce
into a steadily translating vortex ring. As the stroke
length increases the size, strength, and the transla-
tional velocity of the resulting vortex ring increase.
This process persists until a critical formation num-
ber is reached, when the vortex generator is not able

3

(¢)2001 American Institute of Aeronautics & Astronautics or Published withPermission of Author(s) and/or Author(s)' Sponsoring Organization.

to provide invariants of motion compatible with a
single translating vortex ring. Equivalently, beyond
the critical formation number a single vortex ring
at equilibrium (steadily translating) that maximizes
the mixing entropy for given energy, impulse and
circulation is not possible. In this case the lead-
ing vortex ring will pinch-off from the trailing jet
and will relax to a translating vortex ring with the
translational velocity U; dictated in the maximum
entropy principle. For very large strokes (greater
than twice the critical formation number) successive
vortex rings will pinch-off from the the trailing jet.
This scenario was verified in the numerical simula-
tions of the vortex ring pinch-off process in Mohseni
et al.'® The general observation in these simula-
tions was that the main invariants of motion in the
pinch-off process are the kinetic energy, circulation
and impulse. The higher enstrophy densities did not
play a significant role as long as the Reynolds num-
ber was relatively high.

In the next sections we utilize the same approach
to study the Karman vortex street behind bluff bod-
ies. We view the vortex street formation as a re-
laxational process where the generated shear layers
relaxes into coherent vortical structures while maxi-
mizing a mixing entropy or equivalently extremizing
the energy of the system (Kelvin’s variational prin-
ciple). Statistical equilibrium of a vorticity distribu-
tion in 2-D flows was studied by Miller,1® Miller et
al.,'” and Robert and Sommeria.!8

3 FRAME OF REFERENCE OF INVARIANTS OF
MOTION

Apart from the vorticity generation process, the for-
mation of vortex streets is mainly an inviscid pro-
cess. The invariants of motion for 2-D Euler equa-
tions include the energy E, circulation I', impulse I,
and the generalized enstrophies. However, on any
finite resolution the only invariants of motion that
survive the mixing process are the linear functionals
of vorticity,® 7 namely E,T, and I. The transla-
tional velocity Uy of the center of the vorticity field
is also an invariant of motion. Note that U; appears
as the Lagrange multiplier for the impulse in the
variational formulation underlying the Euler equa-
tions. Therefore, the main kinematical invariants of
motion in the formation of vortex streets are: E, T, 7
and U;. Apart from these kinematical invariants the
geometrical parameters h and ! (see figure 1) are also
invariants of motion.

The surviving invariants of motion may be used
to find an intrinsic scaling for vortex streets. This is
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done in the next section. In this section we show that
in the frame of reference of the invariants of motion
the intrinsic Strouhal number St and the Karman
aspect ratio k are the same. We define the intrinsic
Strouhal number based on the separation distance h,
shedding period T' = 1/, in which f is the shedding
frequency measured by an observer moving with the
free stream and measuring a translational velocity
U, for the vortices. Therefore

_fh_ h

St =T, = 70,

1)
Note that All the parameters in defining this intrin-
sic Strouhal number are invariants of motion. The
shedding time is clearly the same as the time re-
quired for a vortex in the vortex street to travel one
period . Hence, T" = [ /Uy, and we obtain

h

Stzﬁ',-‘—‘T.

(2)
Therefore, for an observer in the frame of reference
of invariants of motion the intrinsic Strouhal number
St defined in (1) and the aspect ratio £ = h/l (remi-
niscence of the von Karman aspect ratio used in the
stability analysis of Karman’s point vortex street)
are the same. Note that h is twice the distance of
the center of a vortex from the wake centerline.

Apart from the measurement of the shedding fre-
quency in the frame of reference of invariants of mo-
tion the Strouhal number defined in equation (1) also
deviates from that introduced by Roshko? in the
length scale parameter used, and is different from
that introduced by Bearman?® in the velocity pa-
rameter used. Instead of the vortex street width A,
Roshko based it on the distance of the two free shear
layers separated from the tripping cylinder. For ve-
locity scale, we use the translational speed of the vor-
tex street, while the velocity at the separation point
on the cylinder surface was used by Bearman.?® Al-
though our definition of the Strouhal number is dif-
ferent than the available definitions in the literature,
their values are relatively close. Consequently this
might explain why for a fixed stationary bluff body
the Strouhal number for vortex shedding behind a
bluff body is very close to the von Karman'’s stability
aspect ratio, 0.28.

From the point of view of the theory developed in
this study the departure of the values of the Strouhal
number and the Karman aspect ratio for a stably
translating vortex street stems from the fact that the
quantities that are used in the literature are mostly
not an invariant of motion for 2-D Euler flows. In
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general the invariants of motion (e.g. U; and h) are
not known a priori, while the dimensions of the bluff
body D and the free stream velocity Uy, are often
given. This fact makes the definition of the Strouhal
number based on easily available scales more desir-
able and practical.

To connect the intrinsic Strouhal number (1) to
any other Strouhal number defined in the literature
we assume a general Strouhal number Sty defined
for a general frame of reference with a distinctive
velocity and length scales, V and H respectively.
Therefore,

faH
'_~V'—', (3)

where H is the characteristic length of the bluff body
and fg is the shedding frequency measured in this
frame of reference. One can easily show that

Sty

_EGLLG
St h v )]

where the Doppler effect is invoked to relate the fre-
quency in the two frame of references. This relation
shows that to connect the vortex street in the wake
to the bluff body one requires to measure two param-
eters experimentally, namely H/h and U,/V. This
is consistent with the previous observations that any
connection between the wake and the vortex shed-
ding of a bluff body requires two free parameters
that needs to be measured or calculated indepen-
dently.

If we agssume that in the frame of reference of in-
variants of motion for the Euler equations St = &
is universally invariant for a fixed stationary body
(as argued in the next section with a value com-
parable with Karman’s aspect ratio for the stabil-
ity of Karman’s point vortex streets) one realizes
that the vortex shedding for various bluff bodies or
free stream flow parameters are characterized by the
ratios H/h and U;/V. Therefore the main experi-
mental relations needed to relate a general Strouhal
number Sty to the intrinsic Strouhal number St are
relations for H/h and U;/V. For a fixed station-
ary bluff body, where the relative rates of generation
of the main invariants of motion are approximately
constant during the formation process, we speculate
(see next sections) that the resulting Karman as-
pect ratio would be close to 0.28. However if by
any mechanism* the relative rates of generation of

Sty =

(4)

*This can be achieved by forced lateral or streamwise mo-
tion of the cylinder or application of a synthetic jet to the
near wake of the biuff body
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the main invariants of motion are changed during
the formation of each vortex region one expects a
strong modification in the characteristics of the re-
sulting vortex streets, including strong deviation of
the Karman aspect ratio from 0.28. See next sec-
tions for more discussion on this issue.

4 NONDIMENSIONALIZATION

We would like to consider vortex shedding behind a
bluff body as a relaxation problem similar to the
relaxation of axisymmetric flows to a regular ar-
ray of vortex rings discussed in section 2 and in
Mohseni.® As discussed in the previous sections the
main parameters for the resulting Karman street are
E,T',1I,U;, h, and [, in which h and ! are the lateral
and streamwise distance between the center of vor-
tex patches, respectively. Note that the period of
vortex shedding in the frame of reference of invari-
ants of motion is related to U; and I through [ = TU,.

It was pointed out by Kelvin?! (see also Arnold??)
that for, given vorticity and momentum, steady
states of 2D Euler flows correspond to stationary
points of the kinetic energy with respect to kinemat-
ically allowable isovortical perturbations. When the
strength of the vorticity is uniform, the requirement
of kinematically allowable perturbations in Kelvin’s
variational method corresponds to keeping the area
constant. Kelvin also remarked that the configura-
tion would be stable if the stationary value were a
maximum or minimum, but unstable if it were a min-
imax. In this case the total area A of the uniform
vorticity is also an invariant of motion. Therefore
one can expect the functionality

K= % = f(E,T,1,Uy,h, A).

(8)
for the aspect ratio k. Note that E and I are calcu-
lated per unit depth and unit streamwise period. A
straight forward dimensional analysis results in the
following three nondimensional numbers, namely

FE
Eog= -—[_(713 (6)
T
Tpg = mj )
2
Ay = A (g) - %. (8)

Since in the frame of reference of invariants of motion
St = k we can cast the relation (5) as

St=k= f(End, Fndy And)- (9)
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In the next section we explore the dependence of E,4
and I',,q on the values of St = k and A,,4 for a wide
class of inviscid vortex streets.

5 ESTIMATIONS FOR E,q AND I'yy

To estimate the behavior of E,4 and I',4 for vari-
ous kK we use the numerical simulations of the Euler
equations performed in Professor Saffman’s group at
Caltech in the 80’s. Saffman & Schatzman?: 11,1223
studied the Karman street of the two dimensional ar-
rays of vortices of finite area and uniform vorticity.
This arrangement is believed to be a better approxi-
mation of the vortex streets formed behind cylinders
than the point vortices of von Karman. Saffman &
Schatzman consider a double staggered array of vor-
tices with their centers h apart and with the wave-
length of the periodic vortex array being [.

Here we use the calculations by Saffman & Schatz-
man''?? to estimate values of E,q and I'pg for var-
ious aspect ratios k. We denote any quantity ex-
tracted from Saffman & Schatzman’s data by ‘".
Note that in Saffman & Schatzman! 2® all quantities
are nondimensionalized by the circulation I" and the
wavelength I. Their energy is calculated per unit
length, while in our calculations energy is calculated
per unit period I. Saffman & Schatzman®?® curve-
fitted the results of their numerical calculations for
values of x between 0.1 and 0.8 which are used in
the present study.

Relations for the energy and the translational ve-
locity of the curve-fitted results are given by Saffman
& Schatzman.! The area of a vortex is clearly re-
lated to the strength, i.e. circulation, of each vortex.
The area parameter in Saffman & Schatzman® 23 is
a = A/I?. Therefore Ang = a/k%. The relationship
between the area of the vortices and k, required in
the calculation of E and U,, can be obtained from
Schatzman.!?

Now since U is only a function of k and o, we can
write

1
Tng = Cna(k, @) = —. (10)
K,Ut

Therefore both I',y and A,4 are at most functions
of k and a. Consequently, the nondimensional re-
lation (9) may be translated to a relation for the
nondimensional energy E,q as a function of x and
a. Hence

Epg=Eng (F"'a Oé) (11)

Using Saffman & Schatzman’s result! the nondimen-
sional energy E,q4(k,c) is calculated and shown in
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figure 2(a). The corresponding nondimensional cir-
culation is shown in figure 2(b). For some class of
vortex streets there is a preferred value of K = St
around 0.26. In analogy with the vortex ring pinch-
off process we speculate that these vortex streets are
generated by a fixed stationary bluff body where the
relative rate of generation of invariants of motion are
relatively constant during the formation of each vor-
tex. However if these rates are changed dynamically
during the formation of each vortex a different equi-
librium state with possibly different value of spacing
ratio k& will be formed. This idea is explored in the
next section.

An objective in the modeling of vortex shedding
in the wake of bluff bodies could be the modeling of
H/k and U /V. Note that since Uy is provided in the
calculations by Saffman & Schatzman one can have
a graph for U;/V. Now if the preferred intrinsic
Strouhal number is approximately 0.28 for a vortex
street generated by a fixed stationary bluff body one
can relate it to the more conventional Strouhal num-
ber defined based on the characteristic length scale
of the bluff body D (e.g. cylinder diameter) and the
free stream velocity Us. As an example consider
the Strouhal number Stp defined as

_ /oD
StD = Uoo i (12)

where fp is the shedding frequency measured by an
observer attached to the cylinder. An approximate
value of h/D = 1.2, and U; /Uy = 0.16 was reported
by Tyler?? for a fixed stationary bluff body in a flow
with the free stream velocity U.,. Therefore

Stp ~ 1—1-2- (1-0.16)=07St =019  (13)

which is very close to the value reported in the lit-

erature.
O 1 ] 1 ] ]
0 0.1 0.2 03 0.4 0.5 6 AN ALTERNATIVE EXPLANATION FOR THE
K) VORTEX SHEDDING BEHIND BLUFF BODIES
(b

A descriptive explanation of the nearfield wake vor-
tex formation was offered by Gerrard?® in the 60’s.
Figure 2: Nondimensional energy (a) and circulation =~ He suggested that a forming vortex draws the shear
(b) versus  for various a. layer of the opposite sign from the other side of
the wake across the wake centerline, eventually cut-
ting off the supply of vorticity to the growing vor-
tex. Gerrard’s qualitative description of the vortex
shedding process considers vortex formation solely
in terms of the interaction of the main shear layer
formed on the upper and lower part of the bluff body.
Perry et al.?® described the same process from the

6
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topology of the instantaneous-streamline patterns.
The formation of a new vortex (circulating region)
was characterized by the formation of a saddle point
in the streamline topology.

In this section we speculate another qualitative
description of the vortex shedding in the wake of
bluff bodies. Instead of looking at the local dy-
namics of the shear layers (governed by the Euler
equations) and trying to relate it to the final con-
figuration of the resulting vortex street we take a
relaxational approach (governed by e.g. statistical
equilibrium theory. We look at the bluff body as a
source for providing the flow with the invariants of
motion for the Euler equations, namely the energy,
impulse and circulation. From this point of view in
high Reynolds number flows after the generation of
the shear layers the formation of vortices is mainly
an inviscid process. This assumption can be easily
verified for high Reynolds number flows by compar-
ing the viscous time scale with the relaxational time
scale of the system. When this condition is satisfied
the system relaxes to an almost equilibrium state,
before the viscous effects alter the invariants of mo-
tion. Modification in the rate of generation of in-
variants of motion results in a different equilibrium
state; in other words a different vortex system.

It has been experimentally observed that the as-
pect ratio k in the vortex street gradually change as
the viscous effects diffuse the vortices in the vortex
street. In the far field of bluff bodies viscous effects
cause changes in the invariants of motion (as de-
scribed by the Euler equations). For example while
the impulse is still conserved in a viscous fluid the
kinetic energy and circulation decay. Changes in
these parameters derives the system toward a differ-
ent equilibrium state which itself changes continu-
ously. Consequently, the spacing of vortices vary as
the viscosity modifies the invariants of motion.

For a fixed stationary cylinder (or any other bluff
body) there is a specific rate for the generation of the
invariants of motion. This will result in the forma-
tion of a vortex street that is usually characterized
by an aspect ratio of x = 0.28. However any mod-
ification in the rate of generation of the invariants
of motion during the formation of each circulation
region might result in a different equilibrium state
that might be characterized by a different spacing
ratio of the vortex system. Similar to the vortex
ring formation® 10 (2D axisymmetric counterpart to
the vortex shedding in 2D plane flows) it is expected
that two main methods for modifying the character-
istics of the resulting vortex system to be:

7

e changing the local speed of the shear layers

e varying the lateral spacing of the shear layers

during the formation of vortex regions. These meth-
ods substantially alter the rate of generation of the
invariants of motion.

Changing the local speed of the shear layer is
equivalent to changing the effective free stream ve-
locity felt by the bluff body; consequently chang-
ing the preferred translational velocity of the result-
ing vortex system formed at such rate of generation
of invariants of motion. Varying the lateral spac-
ing of the shear layers could dynamically change
the effective length scale of the body. Similar effect
was observed in the vortex ring pinch-off process® 10
where the dynamical variation of the piston velocity
(changing the speed of the shear layers) and the exit
diameter of the nozzle (changing the lateral spacing
of the shear layers) resulted in the modification of
the size and the shedding frequency (formation num-
ber) of the pinched-off vortex rings. See Mohseni et
al.!% for numerical simulation of such cases.

By appropriately forcing a periodic motion of the
cylinder one can significantly modify the vortex pat-
tern, spacing ratio of the resulting vortices, the total
circulation of each vortex, and the resulting induced
drag. This has been repeatedly observed over the
last few decades. See the recent computations by
Blackburn & Henderson?’ and the experiments by
Williamson & Roshko?® and the references in there.
The preceding relaxational ideas can be used to qual-
itatively describe such situations. Lateral oscillation
of the cylinder would dynamically modify the effec-
tive length scale of the body by changing the lateral
spacing of the shear layers. Pushing the shear layer
away from the wake centerline at an appropriate fre-
quency and amplitude could result in the formation
of a stronger vortex, while driving the shear layer
toward the wake centerline would cut the supply of
vorticity to the vortex and results in a smaller vor-
tex. On the other hand, streamwise oscillations of
the cylinder would effectively change the local speed
of the shear layers. A faster shear layer can follow
and feed the same sign vortex patch for a longer time
and would generate a larger vortex. The appropri-
ate amplitude and frequency of the the oscillations
for the cylinder is determined by the translational
velocity of the desired vortex street. Verification of
these ideas and quantitative descriptions of such sit-
uations based on the relaxational ideas is the topic
of a future study.
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7 CONCLUSIONS

The Strouhal number St and the aspect ratio x (the
ratio of the lateral to streamwise distances in a vor-
tex street) were studied from the frame of reference
of the invariants of motion. For an observer in this
frame of reference the intrinsic Strouhal number St
{defined based on only the invariants of motion for
2D plane flows) and the aspect ratio x are the same
quantities.

The main invariants of motion are the energy E,
impulse I, circulation I', and the translational veloc-
ity U;. These invariants of motion supplemented by
the geometrical invariants of motion h and ! defines
an intrinsic scaling for the vortex street.

The model of Saffman & Schatzman®?3 for the
Karman vortex street was used to estimate the
nondimensional energy and circulation of a periodic
vortex street. They consider an inviscid, incompress-
ible, two-dimensional system consisting of vortices
of finite area and uniform vorticity. For a class of
vortex streets the nondimensional energy of the vor-
tex system has a minimum around St = k = (.26,
which is very close to Karman’s stability criteria for
point vortices. It was speculated that these cases
corresponds to the vortex shedding from a fixed sta-
tionary biuff body where the rate of generation of in-
variants of motion are relatively constant during the
formation of each vortex. By changing the relative
rate of generation of invariants of motion during the
formation of each circulation region one can mod-
ify the available invariants of motion in the relax-
ational process, resulting in a different equilibrium
state with possibly different aspect ratio k. It was
suggested that relaxational point of view to the vor-
tex shedding behind bluff bodies could provide an
explanation for the effect of forced motion of bluff
bodies on the characteristics of the resulting vortex
street.
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