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A Sensor Flock is described, consisting of many small UAVs which move
according to decentralized potential gradient guidance laws designed to
cause improvement in sensed data quality. Information Energy potentials
are defined to include terms for sensed data quality, mechanical energy loss
due to motion, and quality-of-service for inter-vehicle communication. Ex-
amples are provided showing that a 147 vehicle flock autonomously produces
desired behavior under suitable choices of parameters in the Information En-
ergy function. A portion of the flock clusters in regions of high data signal-
to-noise ratio, while other vehicles maintain communication links to a base
station, and still other vehicles spread out to cover unsensed areas within a
specified coverage volume. Applications in toxic plume characterization and
atmospheric science are discussed.
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Introduction

Dangerous atmospheric contamination plumes can be caused by many sources such
as tanker truck or railroad spills, industrial release accidents, or chemical/biological/nuclear
terrorist attacks. Depending on prevailing winds and plume buoyancy, contaminants can
be transported over large distances or remain in some regions for long periods. Hazards to
the public and the environment are highly variable, since severity of exposure depends on
the type of contamination, its concentration, duration of exposure, mode of contact, and
natural toxin degradation rates. Accordingly, responses to a release event may range from
simple broadcast advisories to remain indoors or avoid the area, to large-scale emergency
evacuation and subsequent quarantine and decontamination.

In urban areas, large structures create complex wind patterns, increasing the dif-
ficulty of predicting plume dispersion. At the same time, high population density increases
the stakes in making appropriate response decisions. Timely determination of toxin species,
plume source, plume structure, and predictions of plume evolution would have significant
benefits in preventing exposure and planning cost-effective remediation. While the develop-
ment of sophisticated numerical dispersion models is on-going, the accuracy of these models
depends on the quality and quantity of sensed toxin concentration and wind velocity data
in a large volume of air above the protected area. Data at the lower boundary of this
volume can be provided by sensors fixed to existing structures, providing relatively dense,
high-quality information about instantaneous toxin concentrations where contact with per-
sonnel and property occurs. However, the predictive capability of such a sensor array is
limited. Remote sensing of the atmosphere above a city using passive or active scanning
optical sensors can provide additional information,'® 16 but the resulting spatial resolution,
specificity, and concentration accuracy cannot compete with in-situ sensing.

The prospects of high-density in-situ sensing using conventional means, such as
radiosonde balloons, are daunting: the volume of interest over a mid-sized city is on the
order of 20km in diameter and 2km in height. For a spatial resolution of (300m)3, some
23,260 balloon-carried sensors are required. On the other hand, if the toxic plume occupies
only 0.01% of this volume, only 23 sensors would be needed, provided they are somehow
located in the vicinity of the plume. This suggests that a fleet of approximately 100 mobile
airborne sensors, which can rapidly move to areas with significant toxin concentrations,
could suffice. UAVs are a natural choice for the sensor platform, since they could be
produced and operated at lower cost than a fleet of 100 conventional piloted aircraft, and
toxic exposure to pilots could be avoided.

Large UAVs have high payload capability and can carry significant on-board com-
puting, communication, and sensing resources. They are also high value assets, with a high
cost of failure including danger to other aircraft and personnel on the ground. This requires
sophisticated flight control and safety systems, and expanded FAA authority to operate
over populated areas.

In contrast to work using large UAVs for toxin dispersion characterization, e.g.,
we suggest that a Sensor Flock composed of bat-sized micro aerial vehicles (MAVs) would
provide more appropriate technology. (See Figure 1 for a MAV vehicle being developed at
the University of Colorado). MAVs would pose little danger to personnel and property on
the ground or other air vehicles. They do not need specialized take-off or landing facilities.
They could be reusable, attritable, and could be produced in large numbers at low cost.
While technology developments are needed, such small vehicles could potentially remain in
flight for periods of several hours, sufficient to provide highly accurate data for decisions in
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the critical initial period after a toxin release event. Subsequently, fewer numbers might be
used to monitor dispersions over longer periods.

Figure 1. Membrane wing MAV under development at the University of Colorado. Wingspan
is 30 cm and mass is 170 g.

Such a Sensor Flock would provide benefits in other atmospheric sensing applica-
tions. Examples include: modeling the local weather produced by wildfires to better predict
their evolution and improve the deployment of firefighting resources; sensing and modeling
of thermodynamic plumes over open ice leads in polar regions to better understand inter-
actions between sea, ice, and atmosphere which contribute to climate change; and in-situ
data collection in storms to provide better storm track predictions and understanding of
tornado prediction and evolution.

Deploying a 100 vehicle Sensor Flock raises unique challenges in command and
control. Each MAV carries very limited on-board power and computing resources. Flight
control, toxin sensing, information processing, communication, and decision making must be
extremely simple and decentralized. Yet rather sophisticated aggregate behavior is desired,
so that the flock can semi-autonomously seek out plumes, guided by supervisory human
operators and real-time models of plume evolution.

Control of groups of UAVs has been pursued in various ways, from individually
remote-piloted vehicles, such as the Predator, to slaving a sortie of UAVs to a lead pi-
loted vehicle,® to various formation flight control algorithms, e.g.,.>1%!! to sophisticated
optimization-based path planning, task allocation, and coordination approaches, e.g.3 %18
These approaches are ill-suited for the large numbers of vehicles needed in atmospheric
sensing, and for the corresponding flocking behavior that allows vehicles to explore freely,
guided by the quality of data each vehicle obtains.

In this paper, we introduce the concept of Information Energy for command and
control, and examine the resulting behavior of a 147 vehicle Sensor Flock as it samples a
simple toxin plume dispersion in simulation. Vehicles communicate with each other to share
sensed data and to plan their own motion, and communicate with a ground control center
which maintains a model of the plume and predicts dispersion over time. Each vehicle flies
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in an energy conserving loiter circle, whose centroid is self-adjusted over time to improve
measures of data quality. Information Energy is a potential function maintained on each
vehicle, containing terms for sensor data quality, communication quality of service, and the
energy cost of motion. Vehicle motion is guided by gradients of the Information Energy
potential, which are simple to compute in on-board flight control processors. This provides
a highly agile and data-reactive sensing network in the air above protected areas which can
be monitored and controlled by a single supervising user.

Flock Control Structure
The Sensor Flock has a hierarchical control structure:

1. At the lowest level, simple high-rate control of propulsion and vehicle attitude is
used to maintain steady, efficient flight. Instantaneous flight direction and speed
are controlled to follow Lyapunov vector fields” which provide globally attractive
trajectories which are compatible with MAV flight. See Figure 2.

2. As toxin concentration data is collected, the mid-level control alters loiter circle centers
to cause circling vehicles to cluster in regions of high quality data (e.g. sufficient
toxin concentration signal to noise ratio), while maintaining multi-hop communication
relays to the central data processing facility, and avoiding excessive repositioning that
shortens loiter time.

3. High-level control arranges loiter circles within clusters to improve data gradient es-
timates, and to better distribute clusters within the toxin plume.

4. At the highest level, humans supervise flock behavior based on detailed, centralized
plume modeling from transmitted MAV data, providing intelligent decision making
where automation cannot.

Target Loiter Circle
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Wind
40 ]
: : Initial
— Vehicle
E. 20 \/ Velocity
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Figure 2. Trajectories of four UAVs resulting from a Lyapunov guidance law providing globally
attractive loiter circles at different locations.
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Information Energy

Information Energy is used to provide mid-level guidance and control (level 2) in
this paper. Desired behavior includes

a) avoiding collisions between MAVs

b) encouraging some vehicles to cluster in the vicinity of a toxin plume
c¢) dispersing some vehicles to search for other contaminated areas

d) bounding vehicle motion to a limited coverage volume

e) maintaining network connectivity between vehicles in the plume and the ground control
center

f) minimizing energy lost in moving vehicle loiter circle centers

The Information Energy in each vehicle consists of both auto-potentials and hetero-
potentials. The auto-potentials incorporate information on each vehicles’ own motion, its
sensed data, and communication traffic it is relaying. The hetero-potentials include infor-
mation on neighboring vehicles’ relative positions and the quality of their sensed data. Each
vehicle computes the local gradient of the composite potential field to determine the vector
rate of change of its loiter circle center.

Repelling Potentials

The design of Information Energy functions begins with desired behavior a) above. Consider
the following radial hetero-potential function

2, 72
Vm-zllnm +d

2 r2+4? (1)

where 7; = /(z — z;)? + (y — yi)? + a?(z — 2)? is the (vertically modified) radial distance
from the center of a given vehicle’s loiter circle (z,, z) to the i neighbor vehicle’s loiter
circle center (z;,v;,7;). The parameter a, is used to scale vertical distance differently
from the horizontal, in keeping with the relatively large diameter of the volume of interest
compared to its vertical extent. The parameters d > § control the radial influence of other
vehicles: when another vehicle is more distant than d, the corresponding hetero-potential
for that vehicle approaches 0. When this other vehicle is closer than d, the potential V,;
becomes positive. Taking the gradient of this potential, we obtain

(z — ) (z — ;) (y —vi) _ (y — vs) ar(z — z) _ ar(z — 2) g
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whose magnitude is given by
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If the vehicle in question moves in the opposite direction of this gradient, with a rate
proportional to its magnitude, the effect is a repulsion from the i** vehicle with a strength
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that is large if the other vehicle is within a distance d but outside a distance §. At distances
large compared to d, the repulsion effect goes to zero. By superimposing all these repelling
hetero-potentials, i.e.

VV, = Z Vi (4)

an aggregate gradient V'V, is obtained for each vehicle, causing motion away from all other
vehicles—more quickly if they are close and more slowly if they are well-separated. When
used without an additional bounding potential (see below), this causes the flock to disperse,
also providing the basic tendency of the flock to produce the desired behavior c¢) above.
Although each of the i terms in the gradient computation for VV,; is simple,
there are a large number of terms if the hetero-potential to every other vehicle in the flock
is computed. In practice, only vehicles in a neighborhood need be included, since the contri-
bution to the composite gradient from distant vehicles is small. This could be implemented,
for example, by only including those other vehicles for which radio signals (communicating
their position) have sufficient strength. Distant vehicles are then automatically excluded,
saving computation. In addition, since changes in relative position are slow compared to
loop rates of this mid-level guidance law, hetero-potentials can be updated with one other-
vehicle gradient term per loop, distributing the computation on each vehicle over time.
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Figure 3. Simulation of flock behaviors a), c¢) and d), where a regular grid (greed circles) of
147 MAVs autonomously disperses (black circles) to fill an ellipsoidal bounding volume with
100m altitude lower bound.

To maintain the flock in a desired region, a bounding auto-potential is also defined:

1
Vi = 5 In(r7 +b°) (5)
2=(z—1)?+ (y —ye)? +a%(z — 2.)? is the (squared) distance of the vehicle loiter
circle center (z,y, z) from the specified center (z.,y., z.) of the protected volume, and b is
the radius of that volume. Note the vertical displacements have been scaled (by a.) relative
to the horizontal, as in the repelling potential earlier. The gradient of this potential is

where 7

o] B wow) al-z) | (©)

(r2+0%) (r2+06%) (r2+0?)
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whose magnitude goes to 0 as r. becomes large, but does so much more slowly than the
magnitude of the hetero-potentials V,.;. The negative of this gradient is added to the hetero-
potential gradient above to produce a vehicle loiter circle rate of change. Thus, vehicles that
are repelled to distances approaching the radius b experience increasingly strong attractive
“forces” toward the flock center, which eventually overcome the repelling effects from the V,;
potentials. This produces a bounded flock diameter, satisfying behavior d), whose size can
be controlled via the parameter b. Vehicle loiter circle centers then become approximately
equally distributed (due to the repelling potentials) throughout an ellipsoidal region centered
at (Te, Ye, 2c)-

To ensure that vehicles remain away from possible contact with structures and
personnel on the ground, a simple barrier on motions produced by the above gradients
is enforced on each vehicle, so that vehicles (loiter circles) cannot descend below a speci-
fied floor altitude. Horizontal motion at this boundary remains unconstrained. Figure 3
shows results of a simulation using the repelling and bounding potential gradients, together
with the floor barrier, where vehicles (loiter circle centers) are initialized at a rectangular
7x7 array of grid points spaced 2.5 km horizontally, and in three layers spaced by 250 m
vertically. The vehicles disperse to equi-distant stations within a flat-bottomed ellipsoid
approximately 20 km in diameter and 1 km thick, bounded below by a 100 m floor. This
provides autonomous low-resolution coverage of a large region, but does not incorporate
desirable behaviors b) and e) supporting high-resolution plume sampling and high-rate net-
working of this information to the ground control station.

Plume Model

For the purposes of this paper, data quality will be defined by the scalar toxin concentration
value produced by an air-sampling sensor on board each vehicle. We wish vehicles to cluster
more closely together in the vicinity of the plume to provide high-quality measurements for
estimating plume source and dispersion, and predicting areas on the ground that will be
subsequently affected. However, we do not want vehicles to cluster too closely, since that
would limit coverage of the plume extent. As long as sensed data is above a specified signal-
to-noise threshold, data quality will be defined to be “high”. I the maximum concentration
is normalized to 1, we will presume that high data quality is obtained with normalized
concentrations larger than 0.1. On the margins and outside the plume, sensed signal quality
will decrease with concentration to 0. Clustering tendencies of vehicles should be equivalent
anywhere in a plume where the data quality value is larger than 0.1, and this tendency
should be reduced according to the quality value outside the plume. For the simulations in
this paper, a simple steady source dispersive plume (no buoyancy) was modeled to produce
toxin concentration data “measurements” from each vehicle, depending on its position in
the plume. Concentration values D are determined by the model*

m (—0.5[(y—yr)2+(1—17")2]

D=1 (e(@—er)+A)? ) .001 | —log(.001 7
0g <W(c(x ~ ) +A)e + og(.001) (7)

where m determines the mass flow rate of the effluent, and c is the downstream dispersion
coefficient, and A is a parameter that bounds the source concentration. For convenience
in the simulation, this data concentration is normalized to a maximum value of 1 at the
source, and then saturated so that locations in the plume with concentration larger than 0.1
have D set to 0.1. Figure 4 shows two partly transparent isosurfaces of data quality values
0.1 (red) and 0.01 (blue). The plume source is at ground level at horizontal coordinates
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z, = —2km and y, = —2km, and the prevailing wind is along the positive z direction. The
dashed red lines show the bounding box containing the initial vehicle positions. Dotted
blue lines intersect at the plume source, and the blue triangle indicates the ground control
center.
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Figure 4. Simulated plume caused by steady toxin emission at ground level under a prevailing
x-direction wind. Isosurfaces of data concentration quality values 1.0 (red) and 0.1 (blue) are
shown.

Clustering Potentials

Another component is needed in the Information Energy potential to cause a subset of
the flock to cluster in the plume where data quality values are high. One approach is to
counter the repelling potentials with attractive potentials for vehicles which are already
in the plume, causing other vehicles to be attracted to their vicinity. For example, the
clustering hetero-potential

r?+d;

Vi=In——t "1
T DI R

(8)
has been investigated, where d; is used to set the data quality threshold, and D; is the
data concentration value communicated from other vehicles. This produces a potential well
around other vehicles which have high-quality sensor data. Together with the large repelling
gradient close to other vehicles, this produces a kind of 3-dimensional moat around each
vehicle in the plume, attracting other vehicles from distances on the order of dy, but retaining
separation distances on the order of ¢ from the repelling potential (1). Unfortunately, as
vehicles begin to cluster, the aggregation of all these potential wells produces a deep “super-
well”, which attracts more vehicles, etc. While it is possible to choose parameters to keep all
vehicles in the flock from clustering to the plume, retaining some for low-resolution coverage
of the rest of the protected volume, parameter choice is very sensitive. The difficulty is that
the repelling and attracting potentials must balance, and this balance is affected by the
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number of vehicles that aggregate. As a result, the required parameter values can be
difficult to determine. Figure 5. shows a plot of a 2D potential of this type, including
repelling and attracting terms. Note the deep well where attracted vehicles have gathered.
As additional vehicles fall into this well, the lip of the basin of attraction expands, attracting
more vehicles, out to a radius where the attraction is balanced by repelling potentials.

T

Information Energy

4

0

y displacement, -50 10

[m*100]

-100 _ -60
100 80

x displacement, [m*100]

Figure 5. Illustration of a an aggregate potential seen by one vehicle on a 2D domain containing
both repelling and attractive terms, causing clustering which is very sensitive to potential
function parameters.

An alternate approach is to weaken the repelling fields for vehicles with high data
quality, so that they are pushed together more closely by the unweakened potentials of the
vehicles outside the plume. The following hetero-potential has been investigated, which
replaces the original expression for V,,; in (1) with

- AT (9)

where the parameter h determines the factor by which the original repelling potential is
reduced radially. For example, when A = 100, the maximum saturated data value of 0.1
causes repelling radii to be reduced by a factor of 10 for vehicles in the high data quality
regions of the plume. Note that the separate clustering hetero-potentials V,; are not needed
in this approach.

Figure 6 shows the resulting motion of vehicle loiter circle centers from the initial
grid of Figure 3, using the technique of data-weakened repelling. Since all the hetero-
potentials now have gradients with the same sign, the balance between repulsion and clus-
tering cannot be so easily tipped by the number of vehicles that aggregate, and difficulties
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with stability of the clustering are avoided. This makes the behavior less sensitive to small
changes in parameters.
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Figure 6. Clustering in the vicinity of the plume achieved by weakening of repelling potentials
for vehicles with high data quality.
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Figure 7. MAV motions using information energy with data clustering effects, shown projected
onto the xy plane (left) and the xz plane (right)
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Networking Potentials

In order to emulate the data traffic from an ad-hoc communication network among MAVs,
a weighted average of unit vectors pointing from the base station to each vehicle was com-
puted. These vectors were weighted based upon the the data quality at the location of that
vehicle. As the vehicles cluster in the plume, we obtain an average vector which points
from the base station in the direction of the approximate centroid of the good-data cluster.
The ad-hoc networking is assumed to primarily route sensor data traffic through vehicles
which are positioned in the vicinity of this line connecting the base station to the cluster.
Desired behavior e) requires that a sufficient number of vehicles remain in this communica-
tion corridor in order to provide adequate channel capacity by relaying sensor data along
multi-hop links between vehicles in the flock. For the present purposes, we presume that
the data relay traffic C that each vehicle is carrying is related to its distance Dc away from
the axis of the communication corridor via

dr?

=942 D2 (10)

which has a maximum of g along the axis of the corridor, and falls off to zero for vehicles
away from the corridor. This communication traffic measure C is used in a similar manner
as the data quality D in (9) to weaken the repelling potentials, causing vehicles to cluster
along the communication corridor. Figure 8 shows the results of the combined data and
communication clustering effects. This has the desired dispersion of some vehicles and
clustering of other vehicles in the plume and along the communication corridor.
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Figure 8. MAV motions using information energy with both data and communication clus-
tering effects.
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Figure 9. MAV motions using information energy with both data and communication clus-
tering effects, shown projected onto the xy plane (left) and the xz plane (right)

Motion Energy Conservation

Desired behavior f) is addressed by adjusting the effective viscosity of the medium in which
the vehicles are moving. Larger viscosities are achieved by reducing the step size y in the
position updates, e.g. for the x-direction update of each vehicle loiter circle center

Thyr = T+ uVVe /(1 + p[VVi]) (11)

This produces a rate of change in x which depends on the composite potential gradient
“force” VV. The normalization (1 + u|VV,|) limits these rates of change. This effective
viscosity acts to suppress unnecessary activity in the vehicles, which helps to minimize
excessive energy expenditure in moving loiter circle centers and thereby maximize time
aloft.

Conclusions and Future Work

This paper presented the concept of information energy for the purpose of locating
and mapping a toxic plume dispersed over a dense urban area with a sensor flock. Using
simple potential fields, it was demonstrated that clustering can be autonomously achieved
around the toxic plume, while also maintaining a multi-hop path for communications to the
base station.

While the information energy approach shows considerable promise, some impor-
tant questions remain:

e How should desired behavior be precisely defined? At the lower levels, behavior def-
inition is easier. e.g. global loiter circle stability. At the supervisory level, behavior
will be situation dependent and user controlled, hence adequate command and control
must be provided (see below). For mid- and high-level autonomy, desired behavior is
not well-defined. Partly, this is because it will be data-dependent, and partly because
precise motions are not required. However, a precise notion of desired behavior in
specific dispersion scenarios will be needed to develop meaningful theory and to more
fully evaluate or compare candidate autonomous algorithms. This can be addressed
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by constructing representative test case scenarios and corresponding behavior met-
rics, ranging from analytic dispersions for which rigorous results may be obtained, to
representative dispersions for realistic performance assessment.

e How can desired behavior be produced with assured performance? Complexity is re-
duced by the proposed control hierarchy, which aggregates similar behavior in each
level, and limits interaction between levels by taking advantage of several features
of the application: time scale separation (fast attitude control vs. slow loiter circle
re-positioning); domain splitting (clustering only produces radial constraints, perhaps
allowing independent arrangement for better gradient estimates); length scale separa-
tion (local support of potential functions limits the number of neighbors contributing
to potential gradients); and parametric interaction (inter-level interaction is via vari-
ation of potential function parameters, instead of explicit motion commands).

At each level, gradient descent of energy functions provides a local optimization
approach, easily computed by each vehicle. Lyapunov vector fields provide a rigorous way to
supply compatible dynamics with global stability properties when the desired equilibrium
set is known (e.g. loiter circles). Dynamics at the mid level require the construction of
appropriate energy functions, which is not as simple in this application as in formation
control® %11 or robot path planning,'®!7 were stability to known equilibria are desired.
Also, this approach seeks to include not only data-dependent motions as in,% but also
network traffic and internal energy factors. We also seek to provide analytic Lyapunov
stability support for control law behavior, unlike general intelligent agents®'? which are
more flexible, but more difficult to characterize. Finally, we must provide extremely simple,
decentralized solutions for computation and communication feasibility in a flock of hundreds
of low-capability vehicles.

References

'R. Bachmayer and N. E. Leonard, “Vehicle Networks for gradient Descent in a Sampled Envi-
ronment”, Proc. IEEE Conf. on Decision and Control, Las Vegas, NV, Dec., 2002, pp. 112-117.

2P. R. Chandler and M. Pachter, “Hierarchical Control for Autonomous Teams”, Proc. AIAA
Guidance, Navigation, and Control Conf. Montreal, Canada, Aug., 2001. ATAA paper no. 2001-4149.

3P. R. Chandler, M. Pachter, D. Swaroop, F. M. Fowler, J. K. Howlett, S. Rasmussen, C. Schu-
macher, and K. Nygard, “Complexity in UAV Cooperative Control”, Proc. American Control Conference,
Anchorage, AK, May, 2002.

4F.A. Gifford, “Turbulent diffusion-typing schemes: A review”, Nuclear Safety, Vol. 17, No. 1,
pp. 68-86, 1976.

5C. E. Hanson, M. J. Allen, J. Ryan, and S. R. Jacobson, “Flight Test Results for an Autonomous
Formation Flight Control System”, Proc. AIAA’s 1st Tech. Conference & Workshop on UAV, Systems,
Technologies, & Operations, Portsmouth, VA, May, 2002. ATAA paper No. 2002-3431.

5M. A. Kovacina, D. Palmer, G. Yang, and R. Vaidyanathan, “Multi-Agent Control Algorithms
for Chemical Cloud Detection and Mapping Using Unmanned Air Vehicles”, Proc. IEEE/RSJ Conf. Intel-
ligent Robots and Systems, Lausanne, Switzerland, Oct., 2002, pp. 2782-2788.

"D. A. Lawrence, “Lyapunov Vector Fields for UAV Flock Coordination”, Proc. 2nd AIAA
?Unmanned Unlimited” Systems, Technologies, and Operations Conf. San Diego, CA, Sept., 2003, ATAA
paper no. 2003-6575.

8N. E. Leonard and E. Fiorelli, “Virtual Leaders, Artificial Potentials and Coordinated Control
of Groups”, Proc. IEEE Conf.on Decision and Control, Orlando, FL, Dec., 2001, pp. 2968-2973.

9W. M. McEneaney and B. Fitzpatrick, “Control for UAV Operations Under Imperfect Infor-
mation”, Proc. AIAA’s 1st Tech. Conference €& Workshop on UAV, Systems, Technologies, €& Operations,
Portsmouth, VA, May, 2002. ATAA paper No. 2002-3418.

13 of 14

American Institute of Aeronautics and Astronautics



0. A. Mehiel and M. J. Balas, “A Rule-Based Algorithm that Produces Exponentially Stable
Formations of Autonomous Agents”, Proc. AIAA Guidance, Navigation, and Control Conf. Monterrey, CA,
Aug., 2002. ATAA paper no. 2002-4591.

H1R. Olfati-Saber and R. M. Murray “Distributed Structural Stabilization and Tracking for For-
mations of Multiple Dynamic Agents”, Proc. IEEE Conference on Decision and Control, Las Vegas, NV,
Dec. 2002, pp. 209-215.

12y, Yang, M. M. Polycarpou, and A. A. Minai, “Opportunistically Cooperative Neural Learning
in Mobile Agents”, Proc. Int. J. Conf. Neural Networks, May, 2002, pp. 2638-2643.

130.J. Senff, R.M. Hardesty, R.J. Alvarez II, S.D. Mayor, “Airborne lidar characterization of
power plant plumes during the 1995 Southern Oxidants Study”, CIRES/University of Colorado/NOAA,
Environmental Technology Laboratory Report R/E/ET2, Boulder, CO, 1998.

YD, H. Slade, “Meteorology and atomic energy”, U.S. Atomic Energy Commission report TID-
24190, Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, 1968.

15p. Song and V. Kumar, “A Potential Field Based Approach to Multi-Robot Manipulation”,
Proc. IEEE Conf. on Robotics and Automation, Washington, DC, May, 2002, pp. 1217-1222.

R.L. Wayson, G.G. Fleming, B. Kim, Wynn L. Eberhard, and W.A. Brewer, “The use of
LIDAR to characterize aircraft initial plume characteristics”, FAA report FAA-AEE-02-04, 2002.

'"H. Yamaguchi and T. Arai, “Distributed and Autonomous Control Method for Generating
Shape of Multiple Mobile Robot Group”, Proc. Int. Conf. Intelligent Robots and Systems, Sept., 1994, pp.
800-807.

181 H. Yang and Y. J. Zhao “Real-Time Trajectory Planning for Autonomous Aerospace Vehicles
Amidst Static Obstacles”, Proc. AIAA’s 1st Tech. Conference & Workshop on UAV, Systems, Technologies,
& Operations, Portsmouth, VA, May, 2002. ATAA paper No. 2002-3421

14 of 14

American Institute of Aeronautics and Astronautics



