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The development of micro aerial vehicles has been hindered by a poor understanding of the flight dynamics
associated with the unique aerodynamic regime. This study experimentally estimates the aerodynamic damping
derivatives of flat-plate wings with aspect ratios less than 3 at a Reynolds number of 7.5 x 10*; when combined with
previously published results detailing the lateral and longitudinal static loads, a dynamic model is developed for low-
aspect-ratio wings. The initial-condition response of the linear equations of motion shows that the loading created by
roll stall results in purely aerodynamic lateral modes which, unlike conventional aircraft, are not attributed to
geometric features, such as the vertical tail; this response was favorably compared with the integration of the full
nonlinear equations. The mode is manifested by divergent, high-amplitude perturbations in sideslip, bank angle, and
roll rate; furthermore, it is seen to be affected by angle of attack variations, which significantly alter the instantaneous
value of the roll stability derivative L. If the input frequency of the angle of attack oscillations is close to the natural
frequency of the pure lateral mode, the bank angle is seen to drift away from its equilibrium value due to an attenuated
restoring roll moment. This represents a previously unconsidered stability mode, referred to as roll-resonance, which
couples the lateral and longitudinal stability axes for small perturbations from equilibrium flight conditions.

Nomenclature

b = wingspan, cm

C = damping term in differential equation,
N/(rad/s)

c = chord, cm

f = motion frequency, Hz

fe = low-pass-filter cutoff frequency, Hz

fs = data sampling frequency, Hz

I = moment of inertia, kg - m?

I, 1, 1,1, I,, = moments of inertia about body
axes, kg - m?

K = spring term in differential equation, N /rad

k = reduced frequency, k = fb/2U,

L,M,N = body moment components, N - m

P, q,r = body components of rotational
velocity, deg /s

Tag = time delay between model motion
and aerodynamic load, s

Uy = freestream velocity, m/s

u, v, w = body components of translational
velocity, m/s

v = eigenvector

X, Y, Z = body force components, N

Xlat = lateral state vector

X, v, 2 = body centered axes

a = angle of attack, deg

p = sideslip angle, deg

y = sample displacement variable

Yw = test-function displacement, deg

Yw lag = test-function delayed displacement, deg

= damping ratio
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(% = pitch angle, deg
A = eigenvalue
D, 0,V = Euler angles, deg
¢ = Dbank angle, deg
@ = angular velocity, rad/s
@y Ja = natural angular velocity of lateral
mode, rad/s
W, = angular velocity of prescribed a(?), rad/s

1. Introduction

IGNIFICANT progress has been recently made in the

development of novel, bioinspired micro aerial vehicles (MAVs)
ranging from flexible/morphing wing aircraft to nano- and pico-scale
flapping-wing flyers [1-6]. The design of these vehicles has been
predominantly based upon iterative flight-testing methods due to the
lack of availability of aerodynamic design tools for this complex
regime, in which interactions between separated flow and tip-vortex
effects strongly influence the aerodynamic loading under static and
dynamic conditions [7-15]. While the increasing availability of
wind-tunnel results for low-aspect-ratio (LAR) low-Reynolds-
number wings has provided some baseline data for MAV designers,
this has typically been restricted to longitudinal loading (lift, drag,
pitching moment) of assorted planforms [16—19]. Recently published
results by the authors have demonstrated that the lateral loading of
LAR wings experiences a significant roll moment due to roll stall, an
asymmetric loading condition created by asymmetric tip vortices in
sideslip; this results in large magnitudes of the roll stability derivative
Ly, and has significant implications for vehicle control and gust
rejection [20-23].

The lateral response characteristics of aircraft have historically
been attributed to the influence of a number of geometric factors,
including the side forces and moments generated by the vertical tail,
the antisymmetric loading of wings with sweep or dihedral, and the
displacement of streamlines by the fuselage; the impact of these
parameters was recognized in the earliest days of aviation, and has
become standard knowledge available in aircraft dynamics textbooks
[24-27]. An example of oscillatory lateral motion is the Dutch-roll
response, which is a periodic response of sideslip, roll, and yaw, and
is typically stable for correctly sized vertical-tail surfaces [28]. A
rotation of the aircraft about its center of gravity induces static and
dynamic loading dependencies due to these geometric asymmetries
about the plane of the wing; these typically required empirical wind-
tunnel data to provide reliable estimates of the associated magnitudes
[24]. The challenges involved in designing a laterally stable MAV
suggest that the aerodynamic regime itself is a fundamental cause of
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the instabilities; specifically, the presence of roll stall on LAR wings
is associated with the increased impact of tip vortices when the
wingspan is sufficiently small, and has been discussed as an
underlying factor in gust sensitivity and loss of control during banked
turns [20]. To address this, the models tested in this experiment are
designed to remove the aforementioned geometric features by testing
simple flat plates, which make it possible to isolate the impact of the
flow behavior on the static and dynamic stability characteristics of
the wing.

A full investigation into the inherent dynamics of LAR wings
requires estimates of the aerodynamic damping derivatives; this type
of survey using canonical flat-plate wings has not been conducted
at low Reynolds numbers due to the associated experimental
challenges. The authors have updated their experimental setup at the
University of Florida to enable these measurements in all relevant
degrees of freedom (roll, pitch, yaw, plunge) using a forced-
oscillation technique [29]. The availability of all potential static and
dynamic load dependencies for the first time in a Reynolds-number
regime applicable to MAVs permits the development of a dynamic
model for LAR wings; this paper describes how the nature of the
loads created by roll stall provides unique, coupled stability modes,
which are attributed to the flow effects and inertial properties of the
wings. Similar types of investigations have been previously con-
ducted to characterize the nonlinear aerodynamic effects and
stability-analysis methods, such as wing rock, inertial coupling,
unsteady aerodynamics, buffeting, and the application of catastrophe
theory; the reader is referred to the list of provided review
publications, which describes these in great detail [27,30-37]. It
should be noted, however, that these aforementioned modes are
typically present at the maneuverability limits of high-performance
aircraft, and that the bulk of the existing literature refers to higher-
Mach-number regimes. The results presented in this paper for
rectangular LAR wings are applicable to the low-Reynolds-number,
fully incompressible flight regime of MAVs (Mach number ~0.03),
and are also shown to occur at cruising flight conditions. As such,
they have critical implications for future MAV designers, as it is
necessary to consider the inherent dynamics of the wing before
incorporating the additional effects of geometric features in the quest
to design a passively stable vehicle.

The outline of this paper is as follows: the experimental setup and
methodology used to collect the damping derivatives are summarized
in Sec. II. The measured values of these derivatives are plotted and
described in Sec. III. The simulation results for the nonlinear
equations of motion are depicted in Sec. IV and are compared with
linear models, which are used to describe the parameters of the
stability modes. Finally, the relevant conclusions of the study, with
respect to the impact of these results on future MAV design, are
discussed.

II. Methodology

A. Experimental Setup: Wind Tunnel and Force Balance

All experimental results collected in this investigation were
obtained using the Prototunnel located at the University of Florida
campus, which has previously been described in detail by the
authors [19]. Results are presented for a flat-plate wing (0% camber)
with an aspect ratio of unity (b = ¢ = 10.2 cm), a 5:1 elliptically
rounded leading edge, and a thickness-to-chord ratio of 1.6%; aspect
ratios of R =1.5 and 2 were also tested, although, as the dynamics
were similar to those of the R = 1 case, the results are not discussed in
this paper for brevity. This result is not entirely surprising, as previous
results by the authors indicated that the behavior of roll stall, which
will be shown to be the driving mechanism for the lateral-stability
modes of LAR wings, is similar for aspect ratios below 3 [20]. Testing
of aspect ratios above 2 is not currently feasible due to the geometric
constraints of the Prototunnel and the inertial limitations of the
model positioning system (MPS) motors. Figure 1 shows a schematic
depicting the model placement relative to the force balance and MPS
in the tunnel, in addition to relevant coordinate axes and the definition
of sideslip angle (which is defined as negative when there is a flow
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Fig. 1 Top view of Prototunnel test section showing body-fixed
coordinate system.

component moving in the +y,, axis, as this corresponds to the wing
translating in a positive flight direction [27]).

B. Forced-Oscillation Technique

While a number of experimental methods exist for the estimation
of aerodynamic damping derivatives, accurate results have been
notoriously difficult to obtain [38]. Techniques such as free
oscillations, forced oscillations, curved-flow tunnels, and free-flight
testing have been applied to a wide variety of aircraft configurations
to obtain first-order estimates of damping parameters [39-45]. The
MPS was designed and built by the group to conduct forced-
oscillation testing, which permits the testing of different degrees of
freedom and angular/translational rates; this is desirable for LAR
wings, as no systematic investigations of the damping parameters
have previously been conducted for this unique low-Reynolds-
number regime. The potential high incidence angles and suscep-
tibility to large gust perturbations common to the MAV regime
require the characterization of these derivatives for a wide variety of
conditions.

Aerodynamic damping is an out-of-phase loading, which opposes
the translational and angular velocities of a wing (or aircraft) in a
manner physically identical to a dashpot damper in a dynamic
systems analysis [38,46]. As such, forced-oscillation testing is
designed to intentionally generate a motion profile representative of a
harmonic oscillator. As the displacement of the wing can be modeled
by a second-order linear differential equation with a known solution,
the damping constant can be extracted.

The motion of a forced, periodic oscillator with constant damping
and a linear relationship between the angular displacement of the
model y and the forcing term F, cos(wt) is represented by the
differential equation:

¥+ Cy + Ky = F cos(wr) (1

in which C is the (constant) damping term, K is the restorative spring
term, and w is the angular velocity of the motion (with all terms
normalized by moment of inertia) [46]. The solution of this equation
can be expressed in the form y(¢) = y, cos(wt 4 §), in which &
represents the phase lag between the forcing term and the motion of
the body. The position, velocity, and acceleration of y can be
expanded using trigonometric identities, and grouped into sin(wt)
and cos(wt) terms:

—yow? cos 8 + Cyow sin § + Ky, cos 6 = F, ()

—yo@® sin § — Cygw cos & + Ky, sin § = 0 3)

Equations (2) and (3) can then be simultaneously solved for the
damping constant C and a spring term K —

_FO sin &

wyo

c “
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The desired output of the forced-oscillation method is an estimate of
the phase lag (6§ = —wt),;) between the displacement of the model
and the aerodynamic loading; the aerodynamic damping derivatives,
by convention, are then the negative of the damping constant C. Thus,
by accurately measuring the time delay, the forced-oscillation
method permits estimates of the damping derivatives; however, due
to the low amplitudes of recorded signals, some postprocessing is
required and is discussed in Sec. IL.D.

C. Data Acquisition and Testing Procedure

To collect sufficient data to provide reliable estimates of the
damping derivatives, a large number of oscillations are prescribed
with which to estimate the time lag. Models are mounted at a
particular incidence of angles of attack and sideslip, and are pre-
scribed oscillations lasting for a record of 40 periods at frequencies of
f=05,1, 1.5, 2.0, 2.5, and 3.0 Hz; these values are similar to
reported magnitudes of steady-state periodic in-flight motions of
MAV5s [47]. The physical frequencies are used to compute reduced
frequencies of k = fb/2U,, which permits a nondimensional
comparison between different experimental setups. Data are sampled
at f; = 1000 Hz.

The time lags between the aerodynamic loads and the model
displacement, measured with the microloading technology (MLT)
force balance and encoders on each motor axis, respectively, are then
computed at every zero crossing. Displacement amplitudes are 1 deg
for pitch and yaw, 3 deg for roll, and 0.5 cm for plunge; the small-
amplitude oscillations keep the loads within a linear regime, and
smaller perturbations are possible for pitch and yaw due to the
gearing on the MPS. While the forced-oscillation amplitudes must
remain small to satisfy Eq. (1), it is not sufficient to assume that the
aerodynamic damping of LAR wings is constant for any incidence
angle relative to the freestream; thus, the small-amplitude tests are
repeated at angles of attack of @ = 0, 10, 20, 30, 40, and 50 deg, and
corresponding sideslip angles of f = 0, 10, 20, and 35 deg. This
permits piecewise interpolations of the damping derivatives in flight
dynamic simulations of the nonlinear equations of motion. The
experiment is repeated to collect up to 10 records of each frequency
and incidence-angle combination to ensure repeatability; the
estimated time delays are then averaged over the records, and used to
compute the relevant derivative.

D. Data Reduction

Acceptable measurements of #,, require addressing issues of low
signal-to-noise ratio (SNR), synchronizing data acquisition (DAQ)
with specific points in the motion trajectory and precise filtering of
the data. These issues will be briefly discussed in this section, and
have been analyzed in greater detail in a previous work by the
authors [29].

1. Motion Quality and Data-Acquisition Synchronization

The optical encoders used for position feedback control on the
MPS motors are used to both track the desired motion of the axis and
synchronize the beginning of DAQ. When the encoder on the axis of
motion registers the beginning of the first step, the motion controller
triggers a breakpoint, which is sent to the DAQ card and initiates the
data acquisition. Figure 2 shows the measured encoder position for a
given forced oscillation in pitchof 6, = 1 degatafrequency of 1 Hz;
only the first five periods are shown for clarity. The discretized steps
of the motor are seen to smoothly track the desired trajectory,
permitting the use of Eq. (1) to describe the motion. To correlate the
ground truth of the model with the rotation of the motor, high-speed
camera videos were taken of the oscillating wing, and the time history
of its angular displacement was matched with the encoder signal.
This video also confirmed that motion occurred in only one degree of
freedom, that is, during a prescribed pitch oscillation, the sideslip
angle of the model did not vary.

1.5

Desired position
= = = Actual encoder position

Angle [degrees]

Time [seconds]

Fig.2 Encoder measurements for a forced pitch oscillation; f = 1 Hz,
6y =1 deg.

2. Filtering Techniques

While the displacement of the model can be tracked by the motor
encoders, the low amplitudes of oscillation and vibrational noise of
the tunnel and MPS deteriorate the SNR of the data; often, the SNR is
as low as 0.1. In many scenarios, this would be detrimental to the
prospects of extracting viable data from the signal; however, an
examination of the frequency content of the signals for all six
channels of the MLT balance indicates that the vibrational noise
typically occurs above 10 Hz, whereas the maximum motion
frequency tested is 3 Hz. This small but significant bandwidth
permits a low-pass filter to be set at a carefully selected cutoff
frequency f., which removes the noise from the raw data without
attenuating the desired component; for the frequencies between 0.5
and 3 Hz tested in this study, f. was set between 3 and 5 Hz. Figure 3
shows the frequency content and the corresponding filter charac-
teristics for a sample case of pitch motion occurring at f = 1 Hz.

While the gain properties of the filter must be carefully selected to
attenuate the noise in the data, it is also important to recognize that the
filter dynamics will impart a phase lag to the output signal; as the lag
of the aerodynamic loading relative to the model displacement is the
desired result of the experiment, this is a potential error source. To
address this, a zero-phase filtering technique is used with the fourth-
order Butterworth filter depicted in Fig. 3b. This method filters the
signal in the forward direction, and then reverses the data array and
performs the same filtering operation, eliminating the phase lag.

3. Validation of Algorithm

To ensure that the filtering techniques described in the previous
section achieve the desired result, a test function was assigned a phase
lag corresponding to f,, = 0.01 s, and then contaminated with
Gaussian noise and run through the postprocessing code used to
compute the damping derivatives. An initial function y,,, repre-
senting the motion of the wing, and a delayed function y,, g,
representing the loading, are defined:

Yw = A sin(zft)
Ywlag = A Sin(zﬂ:ft - 5) (6)

Gaussian noise is then added to the data signal to create an SNR of
0.1; both full-spectrum (white noise) and band-limited noise signals
are considered to determine how the presence of noise at the carrier
frequency of f = 2.5 Hz affects the estimation of the time delays.
The low-pass-filter cutoff frequency is nominally set at 4 Hz. Plots of
the original signal, the frequency content of the band-limited noise,
and the filtered signal are shown in Fig. 4; the imparted time delays
are correctly measured to be 0.01 s with 95% confidence bounds on
the order of 1e — 5 [29]. The results indicate that zero-phase filtering
satisfactorily eliminates the noise from the data, and estimates the
time delays with a high degree of confidence; the presence of noise at
the carrier frequency reduces the effectiveness of the filter, and the
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Fig. 3 Bandgap requirements for data postprocessing at f = 1 Hz.

use of a unidirectional filter imparts a significant lag to the measured
data. The success of the zero-phase filter indicates that the phase lag
of the experimental data can be computed with confidence, provided
that the minimum noise frequency is a factor of 2-3 Hz higher than
the motion carrier frequency.

III. Measured Damping Derivatives

The results presented in Sec. IL.D indicate that it is possible
to extract meaningful and reliable estimates of the aerodynamic

-6

x 10

damping derivatives. A large test matrix was devised, and damping
derivatives were computed for loads with dependencies on roll rate,
pitch rate, and yaw rate (d/dp, d/0dq, d/or, respectively); derivatives
due to translational accelerations, d/da and d/0dp, were found to be
negligible. The results for oscillations in a given degree of freedom
are plotted in Figs. 5-7 for the & = 1 wing tested at a Reynolds number
of 7.5 x 10*. Any load that demonstrated nonnegligible damping is
listed on the horizontal axis, with the corresponding derivative on the
vertical axis. In the figures, “xx” is used as a placeholder to denote
normal (NF) and side (SF) forces as well as roll (RM), pitch (PM) and
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Fig. 4 Filtering validation results for test signal with SNR = 0.01.
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Fig.5 Nondimensional d/dp derivatives for an R = 1 wing at Re = 7.5 x 10*; f = 0.5,1,1.5,2,2.5,3 Hz,a = 0 deg (O), 10 deg (x), 20 deg (), 30 deg
(V), 40 deg (<), 50 deg (o), § = 0 deg (black), 10 deg (blue), 20 deg (red), 35 deg (green). Color available online.

yaw (YM) moments. As previously published results have indicated
that nondimensional aerodynamic loads do not vary significantly
between Reynolds numbers of 1 x 10* and 1 x 10° for LAR wings,
only a single representative condition was tested in this experiment to
limit the amount of data being presented [17,19]. The results are
presented in body axes (normal force and axial force) instead of
stability axes (lift and drag) to avoid confusion between the lift force
and roll moment, which are both often represented by the variable L.

The results displayed in Figs. 57 represent the first experimental
measurements of the aerodynamic damping derivatives of LAR
wings at low Reynolds numbers. The largest magnitudes are seen to
be the damping of normal force in pitch (Cy ,), which are nominally
an order of magnitude larger than any other derivative measured;
however, the trends present for all derivatives are similar. The
magnitudes of the damping derivatives are largest at the lowest
oscillation frequencies, and decrease exponentially with higher
values of k. The behavior of the data suggests that the acrodynamic
damping approaches zero for f > 3 Hz (k > 0.1), although this is
merely speculative, as experimental measurements are not currently
feasible with the MPS at higher frequencies; however, a linear
stability analysis of the LAR wing response presented in the
following section indicates that the natural frequency of the inherent
modesis around f = 1 Hz, in which the damping derivatives are well
represented. All aerodynamic derivatives measured were negative,

- Ty
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* o ® E ¥-
10 L g *
e L
-20 6 o 0 %
o e
_-30 g g 8 i §
g f } X
5
O 40 °
504
ol ¥
A
=70 .
0

xx:RM

0.06 0.08 xx:PM

0.1 xx:NF
k = fb/2U Aerodynamic load
Fig. 6 Nondimensional 0/dq derivatives for an AKR=1 wing at
Re=75x10% f=05,1,1.5,2,2.5,and 3 Hz,a = 0 deg (O), 10 deg
(X), 20 deg (A), 30 deg (V), 40 deg (1), 50 deg (o), f = 0 deg (black),
10 deg (blue), 20 deg (red), 35 deg (green). Color available online.

implying positive (stable) damping. Some cross-coupled derivatives
were observed, specifically damping in roll moment with pitch (Cy, ;)
and damping in normal force/pitch moment with roll rate (Cz , and
Cyp) at increased sideslip angles, although the magnitudes were
typically small. Additionally, the roll damping derivative C; , was
conspicuously absent when no sideslip angle was present; this
surprising result is attributed to the small wingspans of the LAR wing
experiencing only minor variations in induced velocity due to the roll
rate. The lack of roll damping is a plausible explanation for the jittery
nature of MAV flight.

The damping derivatives of flat-plate wings with aspect ratios of
1.5 and 2 were also measured and were typically found to
demonstrate the same trends as the &=1 case. The maximum
damping was present at f = 0.5 Hz, and decreases at greater motion
frequencies. Most results indicated positive (stable) damping,
although the normal force derivative due toroll rate C , was found to
experience slight negative damping at the highest sideslip angles
tested for R =2. The most significant difference between the aspect
ratios was a minor reduction in amplitude as the wingspan was
increased, and the effects of the tip vortices on the loading were
diminished. The close similarity of the results indicates that dynamic
loading of these wings is affected in much the same way as the & =1
case, which is also the case for the static loading [20]; as aresult, only
simulation results for an aspect ratio of unity are presented in this

..
g Ve,
0 ~ o e
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. * v L 5 »
- T T
NPT
* 9 v YV § &
¥
s3] %97
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Fig. 7 Nondimensional 0/0r derivatives for an R=1 wing at
Re=75x10% f=05,1,1.5,2,2.5,3Hz,a = 0 deg (O), 10 deg (x),
20 deg (A), 30 deg (V), 40 deg (1), 50 deg (o), f = 0 deg (black), 10 deg
(blue), 20 deg (red), 35 deg (green). Color available online.
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paper. They are representative of the stability characteristics of
rectangular wings with & <3 for which roll stall is prevalent.

IV. Stability Considerations for LAR Wings

Previous publications by the authors and others have detailed the
static loading characteristics of LAR wings [8,17-20]; the results
from this investigation have provided the relevant damping de-
rivatives for a wide variety of conceivable incidence angles. This
makes it possible to completely describe the functionality of the
aerodynamic loading, which permits the formulation of a dynamic
model for LAR wings at low Reynolds numbers and an analysis of the
modal response to perturbations from equilibrium flight. It will be
shown that the unique loading conditions generated by the short
wingspan, particularly the effects of roll stall on the roll and yaw
moments of the wing, create a purely aerodynamic lateral-stability
mode; furthermore, this mode can be shown to depend on angle of
attack perturbations, indicating a cross coupling of the stability axes.
Experimental data have shown that roll stall is present and significant
for rectangular and tapered flat-plate wings, as well as for an MAV
wing and complete MAV aircraft [20,21]; because of this, the
canonical results discussed in the following sections for a flat plate
with an aspect ratio of unity may be considered to represent a more
general case for planforms that are affected by roll stall. Although no
data are presented here for full airframes, the susceptibility of MAVs
toroll stall indicates that their stability properties may be significantly
impacted by the following results.

A. Longitudinal Instability

Before considering the lateral response of LAR wings to
disturbances from equilibrium, the nature of longitudinal stability
should be discussed. Symmetric wings of any aspect ratio are
passively unstable in pitch, as it is not possible to obtain a negative
(restoring) pitch stability derivative and a statically trimmed wing
without either a horizontal tail or cambered/reflexed airfoil providing
balanced moments [27]. Thus, solutions to the equations of motion
will be dominated by the pitch instability and will not accurately
portray the lateral dynamics; furthermore, simply fixing a constant
angle of attack will eliminate any potential dependencies on
longitudinal motion, which are expected to be significant due to the
magnitude of the roll stall derivatives.

It is of interest in this investigation to analyze both the purely
lateral modes (constant a) created by roll stall, and to also determine
how the cross-coupled loads and nonlinear terms in the equations of
motion affect the wing dynamics. To address this, angle of attack
trajectories are prescribed in the solution instead of being implicitly
solved for. In a physical sense, this may be considered to correspond
to a time-varying vertical gust or a longitudinal short-period mode
experienced by the flying wing. The prescribed angle of attack
trajectories are given in Eq. (7):

a(t) = ag

a(f) = £A sin(wyt + 8) + ag @)

Finally, it should be noted here that the prescribed trajectory
assumes that the subsequent variations in lateral loading do not affect
the longitudinal motion of the wing. This is reasonable, as previously
published static results [19] and the currently presented damping
derivatives indicate typically negligible effects on longitudinal
loading by lateral perturbations. With the procedure for addressing
the longitudinal motion of the wing now defined, the equations of
motion can be considered and simplified based on the experimentally
determined loading regime.

B. Nonlinear Equations of Motion and Aerodynamic Load Dependencies
The system of coupled, nonlinear, first-order differential equa-

tions, which represent the evolution of the body-axis forces and

moments of a rotating rigid body, are given in Egs. (8) and (9):

X i qw —rv sin ©
Yi=miv+m|ru—pw |+mg| —cos®sin® 8)
VA w pv—qu —cos © cos @

L pr_lxzi qr(lz_ly)_pqlxz

M= 1,q + | prd,—1)+ (P> =), | )
N Izi'_llea pq(ly_lx)+qr1xz

in which m is the mass of the body; g is the gravitational acceleration;
u, v, and w are the translational components of velocity; p, ¢, and r
are the rotational components of velocity; X, Y, and Z and L, M, and
N are the force and moment components about the body axes; /., I,
and I, are the moments of inertia about the body axes; and I, is the
product of inertia about the x and z axes; due to symmetry about the
x-zplane, I,, = 0. This is a valid assumption for the LAR wings used
in this investigation, as well as for conventional aircraft. Dotted terms
indicate a time derivative. The nonlinear system can be written in a
form suitable for numerical integration:

iw=X/m-qw+ rv— g(sin ©)
v=Y/m—ru+ pw+ g(cos ®)(sin ®)
w=Z/m— pv+ qu + g(cos ©)(cos D)

_ 2\ I. 2.
pe (=) e e ron)

Z

_ pq((]y _I:x)lxz _ Ixz):|

. 1
q = I_[M_ pr(lx _Iz) + (P2 - rz)lxz]
y

' I L) N+I“L I, -1 L
r=\1,— - y —dx —
2T, 1. pa\ly —1I; L.
I.—-1)I,,
—qr(—(z ,’) +1)] (10)
X

in which the x, y, and z weight vectors have been expressed in terms
of the Euler angles @ and ©. The terms in Eq. (10) are influenced by
the aerodynamic angles and rates of the wing; an accurate knowledge
of the load dependencies is required for a correct model. The
conventional Taylor series expansion of these loads is well known for
high-aspect-ratio wings, and typically assumes that it is possible
to decouple lateral and longitudinal axes [27]. Because of the
significant differences in the associated flow regime, determining the
dependencies of LAR wings requires experimental evidence, which
considers potential cross-coupled loading and aerodynamic damping
[19]. The expansions of X, Y, Z, and M about a zero sideslip angle are
found to be nominally identical to high-aspect-ratio cases; however,
the presence of roll stall and the associated @ and f dependencies alter
the nature of the L and N (roll and yaw moments) for an R = 1 wing:

oL oL oL oL oL
AL =20+ Z na+ S ap + Zag+Zn
TR PR e e
ON  oN ON
AN =28+ P na+ E5A 1
B NP g Rt G AT an

It may be noted in Eq. (11) that expected lateral derivatives, such as
the yaw-moment dependence on roll rate (ON /dp), are not included,
as the experimental data from forced-oscillation testing indicated that
these values were negligible for LAR wings. Of most significant
interest in Eq. (11) is the presence of the cross-coupled derivatives
OL/oa and ON/oa, which couples the evolution of the lateral
moments to variations in angle of attack. As the models tested to
obtain these experimental dependencies were simple flat-plate,
rectangular wings, these derivatives are created purely due to the
aerodynamic loading of LAR wings. When the aspect ratio is
increased to 3, 0N /da disappears and 0L /da is significantly reduced
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[20]; this indicates the unique aerodynamic regime of LAR wings,
and suggests the possibility of stability modes, which are specific to
this type of vehicle.

A final simplification to the equations of motion is achieved by
constraining the pitch angle to be constant; therefore, in addition to
the i and w equations of Eq. (10) being explicitly defined in terms of
the prescribed a(t) trajectory, the pitch-rate equation ¢ is equal to
zero. Thus, all cross coupling due to longitudinal variations is due to
the varying vertical velocity as opposed to coupled perturbations of
angles of attack and pitch. Furthermore, for flat-plate wings, the cross
product of inertia 7, is negligible. These simplifications reduce the
equations of motion to a more manageable form:

i = U, cosla(?)]
v=7Y/m—ru+ pw+ g(cos ®)(sin D)

w = Uy sinfa(t)]

p=AL/L,
q=0
F=AN/I, (12)

The Euler angles ®, ®, and ¥ are defined in the usual way.
Numerically integrating these equations for a prescribed longitudinal
trajectory of a(t) and a given lateral perturbation (Av, A¢, Ap, Ar)
yields the time histories of the lateral state variables, and can be used
to identify stability modes created by the influence of roll stall on the
wing aerodynamics. In the following sections, the nonlinear solutions
of Eq. (12) are considered to be the most accurate representations of
the response of the wing, as they are based upon instantaneous values
of the experimentally obtained forces and moments, and do not
require approximations of the gravitational or nonlinear terms in the
side-force equation. Linear models that compare favorably with the
nonlinear results are desirable, as they then permit straightforward
interpretations of the stability characteristics of the wing. Finally, it
should be noted here that, although the integration is carried out in the
body axes of the wing (u, v, w), the results will be presented in the
more conventional stability axes, in which

w
a = tan™! (—)
u

B = sin™! (%) (13)

C. Linearized Models of LAR Modes

A linearized model can be developed from the nonlinear equations
of motion in Eqgs. (8) and (9) by assuming that the Euler-angle
perturbations are small; that the wing is an R =1 flat plate, in which
I, = 0and I, = I; that the initial values of side force and roll, yaw,
and pitch moments are zero; and that the products of rates (gr, pr) are
negligible. It should be noted that the pw term in the side-force
equation is retained due to the potentially high roll rates associated
with LAR wings, although it is typically ignored for conventional
aircraft. It is linearized about the initial vertical-velocity component,
such that pw = pw,. The final linear equations of motion become

AX —mg cos ©yf = m(it + qwy)
AY + mg cos Oy = m(v + rUy — pwy)
AZ — mg sin ©y0 = m(w — qU,)

AL =1p
AM = 1,4
AN = L7 (14)

in which the A terms represent the force and moment perturbations
from equilibrium. These terms can be expanded using a Taylor series,

and a linear system for the response of the wing can be constructed.
The dependencies of Eq. (11) are incorporated into Eq. (14); the roll
moment due to pitch rate L /dq is neglected, as ¢ is constrained to be
zero. The ensuing linearized system is defined in Eq. (15):

(10 0 0 0 o0(a

01 0 0 0 0]fa

0 0 muy 0 0 Of|][p

0 0 1 0 0f]¢

00 0 01 0f|p

[0 0 o ||
[0 -2 0 0 0 0 a
1 0 0 0 0 a

_ 0 Y, Yz mgcos®, mw, -mU, p (s
0 0 0 0 1 0 P
0 L, L 0 L, L, p
|0 N, Ny 0 0 o |l

in which the first two equations (& and ) are artificially constructed
to induce a sinusoidal variation in angle of attack corresponding to
Eq. (7). Stability derivatives are presented in dimensional form so that
the solution to Eq. (15) produces time histories of the state variables
in physical units.

It is apparent that a number of stability derivatives, which
commonly occur in conventional aircraft analysis, such as Y,, ¥,
N,, and N,, are not present in Eq. (15). This is based upon the
experimental results presented in Sec. III, which indicate that the yaw
or roll rotations (r or p, respectively) did not generate a periodic load
in the side force or yaw moment (¥ or N). In a conventional aircraft,
these derivatives are typically associated with the roll-yaw coupling
created by the vertical tail [27]; unlike roll stall, which was still found
to be prevalent due to the LAR flow regime, these loads were
experimentally found to be insignificant for the canonical flat-plate
wing. The L, derivative is retained in Eq. (15), as the results shown in
Fig. 5 indicate that it is present, albeit with small magnitude, for high
sideslip angles (8 > 20 deg). L, was shown to be present in Fig. 7 for
a number of incidence angles, although, again, the dimensionalized
magnitude is small relative to Ly, and will not greatly affect the
dynamics of the system.

The simplified nonlinear equations of motion and the linearized
system of equations presented in Eqgs. (12) and (15), respectively, are
solved for the time histories of the lateral state variables:

xw={p ¢ p r} 16)

The accuracy of the linear model in representing the nonlinear
equations of motion is assessed, and the nature of the wing response is
discussed and quantified. Initially, the angle of attack is held constant
to determine the pure lateral response in Sec. IV.D; the sinusoidal
trajectory of Eq. (7) is then prescribed, and the ensuing effects on the
modal response of the wing are discussed in Secs. IV.E and IV.F.

D. Purely Lateral Motion

The initial-condition response of the system of equations described
in Eq. (15) is evaluated for equilibrium angles of oy = 5 and 15 deg,
Po =0 deg, and an arbitrary lateral perturbation of xj, =
{1 deg 0 O O0}7. The results shown in Figs. 8 and 9 dem-
onstrate the development of a periodic, divergent mode. Despite the
large magnitudes of the perturbations, which would seem to
invalidate several assumptions made in the linearization process, the
nonlinear equations are matched nicely for as much as 3 s of motion.
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Fig. 8 Comparison of nonlinear (solid line) and

As such, the results of a linear analysis can accurately predict the
stability characteristics of the wing. The parameters of the mode
shapes computed from solving the eigenvalue problem, including
the eigenvalues A and eigenvectors v, normalized magnitude and
phasing of the state variables, and the damping ¢ and undamped
natural frequencies of periodic lateral modes (@, 1,), are listed in
Table 1.

As seen in the simulation results, a divergent and oscillatory mode
exists with significant participation by all four variables. The largest
contribution is due to the roll rate, which is driven by large moments
created by roll stall and corresponding low moments of inertia about
the x axis. The relative magnitudes and phase delays between the
variables approximately correspond with those expected for the
Dutch roll of a conventional aircraft [28]. The undamped natural
frequencies are all below w,, 1, = 10.2 rad/s [f = 1.6 Hz], which
places them within the range of frequencies at which the damping
derivatives were measured experimentally.

In essence, these results demonstrate how the loading created by
roll stall — predominantly the large magnitude of the roll moment
due to sideslip L; — induces a linear, but divergent, Dutch-roll-type
mode inherent to LAR wings. The oscillatory and unstable results of
Figs. 8 and 9, computed for an arbitrary initial condition x,, o, which
does not specifically excite any of the modes listed in Table 1,
indicate that this mode dominates the response of the wing even for
small sideslip perturbations. This is confirmed by considering the
response of the state variables to initial conditions which produce
the mode, computed as the real part of the normalized complex
eigenvector from Table 1; this response is plotted in Fig. 10 for
ap = 15 deg, and is seen to closely resemble the response to the
arbitrary initial condition of Fig. 9. Although the amplitude of os-
cillations increases, resulting in a less effective linear approximation,
the similarity of the plots indicates that the lateral response of LAR

linear (dashed line) response; ay = 5 deg, f, = 0 deg.

wings is dominated by the divergent harmonic behavior of this
unstable Dutch-roll mode.

The second set of eigenvalues present for both values of the
equilibrium angle of attack in Table 1 represents an overdamped,
stable mode, which is also experienced by LAR wings. The response
of variables returns to the equilibrium value typically within 1 s, and
no harmonic oscillations are observed; the mode is excited by large
initial bank angles, which are mostly out of phase with the sideslip
angle. Unlike conventional aircraft, which exhibitroll sustenance and
spiral modes, LAR wings do not experience real modes instigated by
roll stall. As this mode is passively heavily damped, it does not
contribute to instabilities, and therefore, is not of great interest in the
scope of this study.

E. Effects of Angle of Attack Perturbations: The Roll-Resonance Mode

Conventional formulations of the Dutch-roll mode assume that it is
unaffected by the longitudinal motion of the aircraft; however, due to
the loads created by roll stall for LAR wings, the roll and yaw
moments exhibit a dependency on the angle of attack. Furthermore,
the high values of p and r seen in Figs. 810 can cause the pw and ru
nonlinear terms to become significant in the side-force equation.
A sinusoidal angle of attack trajectory of a(f) = Ag sin(w,?) is
prescribed in the linear and nonlinear equations to investigate the
effects on the response of the lateral variables. The amplitude is set to
Ay = 3 deg; while this is an arbitrary value, the results are found to
be nominally identical for Ag <5 deg. Larger amplitudes will
naturally affect the response of the state variables; however, the
purpose of this study was to determine how small perturbations from
equilibrium may initiate unstable modes. Hence, a small-amplitude
oscillation is maintained. The frequency w, and phase 6 of the angle
of attack input are varied to assess the ensuring effects on the wing
response; selected values of @, are based on the natural frequencies
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of the lateral modes seen in Table 1, such that w, /@, 1., = 0.5, 1, and
2. The linear equations are trimmed about oy =5 deg and
Po =5 deg; the nonzero trim sideslip angle is used so that the cross-
coupled roll-stall derivatives Y, L,, and N, are also nonzero. The
time histories of the state variables for these test parameters are
displayed in Fig. 11.

The results of these simulations indicate that the presence of
longitudinal perturbations does affect the response of all four lateral
variables, although the constraint that the amplitude of the angle of
attack variations remains small causes only subtle effects in most
cases. The additional restoring forces and moments attributed to L,
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Fig. 9 Comparison of nonlinear (solid line) and linear (dashed line) response; @, = 15 deg, f, = 0 deg.

and N, increase the frequency and the magnitude of the response
relative to the pure lateral cases of Figs. 8—10. The linearized model
provides a reasonable approximation for the trajectory of the wing for
angle of attack variations at frequencies of w,/w, 1, = 0.5 and 2.
While some overshoot is present at higher sideslip deflections where
the values for the stability derivatives computed at a trim condition of
Po =5 deg are no longer valid, the main features of the response are
correctly captured.

When the frequency of a(t) is equal to the natural frequency of the
lateral response, however, it is clear that the linear time-invariant
(LTI) model of Eq. (15) breaks down. The most significant variation

Table1 Parameters of lateral-stability modes at equilibrium angles of &y, = 5 and 15 deg
a, deg A v [v] 5, deg ¢ @, 1a> 1ad/s
—0.0004 % 0.054i 0.057 -90
. 0.032 £ 0.162i 0.172 —79
5 1.1 £5.7i 0.961 1 -0.192 5.82
—0.201 + 0.074i 0.223 —160
—-0.022 0.025 -359
—1.65 £ 1.69i —0.261 & 0.266i 0- 423 _”4 0.699 2.37
0.881
—0.114 + 0.268i 0331 —113
—0.002 + 0.032i 0.032 -94
15 1.35 £ 10.1i 0.013 £ 0.097i 0. 099 _82 —-0.133 10.2
0.993
—0.049 £ 0.012i 0. 051 —167
0.008 £ 0.002i 0.009
. —0.337 £0.141i 0. 396 —157
—2.33+£9.73i 0.922 0.923 2.53
—0.024 £ 0.124i 0. 138 —100
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Fig. 10 Nonlinear (solid line) and linear (dashed line) response to divergent initial conditions; ay = 15 deg, f, = 0 deg.

is that of the bank angle ¢ shown in Fig. 1le; the results of the
nonlinear simulation do not oscillate about zero, but instead drift
toward a considerable amplitude (—150 deg within the 3 s of the
simulation). This behavior is only observed when w,, is within 50% of
the natural frequencies of the original lateral mode, and suggests that
the relative phasing of a(f) and S(r) in these cases causes a
fundamental shift in the aerodynamic loading conditions, and
resulting stability characteristics, of LAR wings. This description of
the interactive effects of oscillations in angles of attack and sideslip
on the bank-angle stability of LAR wings represents a mode which
has not previously been described; furthermore, it is a mode that is
seen to arise from small perturbations from an equilibrium flight
condition. As the response of ¢ is highly dependent upon the
frequencies of a(t) and f(¢) oscillations having similar values, this
mode will be referred to herein as the roll-resonance mode.

A schematic depicting the development of the first two cycles of roll-
resonance is shown in Fig. 12 for an initial perturbation, which ex-
cites the divergent lateral response (ry <0 deg /s, po > 0 deg/s);
simultaneous views of the sideslip angle (with trailing tip vortices
included), the bank angle from a downstream perspective, and the
angle of attack are provided. The lateral displacement of the wing is not
shown. Relative magnitudes of the angular displacements and rates are
taken from the simulation results shown in Fig. 11. The effects of the
angle of attack on the relative tip-vortex strength are included, and
significantly influence the roll-resonance. The maxima and minima of
the angle of attack trajectory are seen to coincide with the largest
positive and negative values of the sideslip angle, respectively, in
Figs. 12b, 12d, 12f, and 12h. At these yawed configurations, the
trailing vortices are illustrated in the skewed distribution seen in the
smoke-wire-visualization testing to which the linear relationship
between the roll moment and the angle of attack was attributed [20].
Because of this flow asymmetry, at the positive sideslip displacements
(Fig. 12b), roll stall causes the strength of the tip vortices to increase

with the angle of attack, and impart a greater-magnitude roll moment
than would be generated by a wing at constant angle of attack.
Similarly, during negative sideslip displacements (Fig. 12d), the lower
angle of attack reduces the strength of the tip vortices and the associated
restoring roll moment. As the wing continues to oscillate in sideslip due
to arestoring yaw moment (also generated by the tip-vortex asymmetry
of roll stall [20]), the disparity in tip-vortex strength and roll-moment
magnitude perpetuates, and the bank angle of the wing is driven in the
negative direction; while it still oscillates and may reach a less negative
angle (Fig. 12f), it never returns to a wing-level configuration. It should
be noted that, if the angle of attack does not change, the strength of the
tip vortices also remains nominally constant, and the restoring roll
moment remains in proportion with the sideslip angle; this results in the
divergent Dutch-roll mode seen in Figs. 8§-10.

F. Linear Time-Variant Model for Roll-Resonance

While the integration of Eq. (12) provides the full nonlinear
response of the wing to a set of initial perturbation conditions, a more
simplified model that provides more insight into the nature of the roll
divergence is of interest. Because of the angle of attack variations that
instigate the roll-resonance mode, a LTI model does not accurately
capture the behavior of the system, as the stability derivatives of
Eq. (15) will evolve with the instantaneous value of a(#); this much is
seen in Fig. 11. Furthermore, the initial-condition response method
commonly used to solve the linear system in Eq. (15) will not predict
the departure in bank angle from equilibrium seen in Fig. 11e, as this
technique inherently assumes a form of the solution e4’, which may
oscillate about the origin, or smoothly grow or decay, but not both.
These conditions suggest the need for a time-variant model, which
accounts for variations in the stability derivatives with angle of attack.
The state vector must be evaluated at every time step to capture the
divergent nature of the bank angle. A linear time-variant (LTV) model
is given by Eq. (17):
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Fig. 11 Nonlinear (solid line) and linear (dashed line) response to divergent initial conditions; ¢y = 5 deg, fy = 5 deg with a(¢) = 3 sin(w,?).
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This model differs from Eq. (15) by allowing the roll stability
derivative Ly to vary with angle of attack and, implicitly, time. In
addition, as the angle of attack variations are constrained to be
43 deg and are therefore typically smaller than the sideslip
perturbations, the direct effects of the cross-coupled derivatives Y,
L,, and N, are ignored. The results of the integrated LTV system are
compared with the full nonlinear response for an input angle of attack
frequency of w, = w, 1., and are compared with the state-variable
responses of Figs. 11b, 11e, 11h, and 11k. The results are displayed
in Fig. 13.

Relative to the LTI model of Eq. (15), the LTV model provides a
better approximation of the behavior of the roll-resonance mode.
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Fig. 12 Roll-resonance motion viewed from top, downstream, and side (rows 1-3, respectively).

Figure 13b depicts the response of the bank angle, in which the
direction of the divergence, the amplitude and frequency of the
oscillations, and the magnitude of the deviation from the equilibrium
angle of ¢y = 0 deg are captured by the integration of Eq. (17). As
the only stability derivative allowed to vary with time is Ly, itis clear
that the effects of angle of attack perturbations on the roll stability
derivative significantly impact the roll response of LAR wings;
effects due to the cross-coupled derivatives would become significant
for larger amplitude oscillations in a(¢). This is the more quantitative
explanation for the roll-resonance response illustrated in Fig. 12, as
these relevant stability derivatives are attributed to the loading
conditions created by the tip-vortex asymmetry of roll stall. When

Tirr;e, s
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exacerbated by the low /, moments of inertia of LAR wings, this
results in the divergent response of the bank angle. It is interesting to
note that this behavior can still be modeled by a linear system, such as
Eq. (17), although the value of L; must be updated for even small
variations in angle of attack (Aa < 3 deg).

To compare the different linear approximations used in this paper,
a normalized rms deviation (RMSD) is computed for the linear and
nonlinear models using Eq. (18):

XpvsD = Z (xNL(l) le(l)) (18)
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Fig. 13 Nonlinear (solid line) and LTV (dashed line) response to divergent initial conditions; ay =5 deg, fy =5 deg, a(t) = 3 sin(w,?),

wa/wn, lat = 1.
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Table 2 Normalized RMSDs between linear models and nonlinear solutions

Xpmsp (< 1) Xgrmsp (£ <3)

B ¢ p r p ¢ p r

Case ay Bo w(Lf. Figures
Divergent Dutch roll 5 0 0 8
15 0 0 9
55 lla 1
Roll-resonance (LTI model) 5 5 1 11b, 1le, 11h
5 5 2 L/ Uf 10
Roll-resonance (LTV model) 5 5 1 13

0.04 0.05 0.03 0.05 025 028 0.16 0.08
0.05 0.05 0.08 0.07 0.15 0.16 0.20 0.05

05 1la 11d, 1lg 11j 0.1 009 0.12 0.3 036 040 037 038
Ik 045 053 057 019 1.08 063 1.05 0.76

1 034 037 029 0.15 038 0.58 0.39 0.29
020 023 020 0.09 044 0.18 036 0.53

in which xy; and xj;, are the nonlinear and linear responses,
respectively. The value xgysp is normalized by the maximum value
of the nonlinear solution over the domain of interest, so that the
relative magnitudes of different variables may be compared. It was
computed for the state variables of all simulation results presented in
this paper for 0 <7< 1 s and 0 < 7 <3 s to describe how the linear
approximation degrades as the oscillation amplitude increases. The
results are presented in Table 2, and typically corroborate the
qualitative results obtained by observation. Roll-resonance is seen to
increase the RMSD by an order of magnitude when the angle of attack
oscillations occur at the natural frequency of the lateral mode
(wy/®, ) = 1). The implementation of the LTV model, listed in the
bottom row of Table 2, reduces the deviation between the linear and
nonlinear models by over 50% for ¢ < 1 s, and by around 75% over
the entire 3 s duration of the simulation. Similar reductions are
present for the other state variables, again indicating the better
approximation of the LTV model.

G. Attenuation of the Roll-Resonance Mode

As both the divergent Dutch-roll and roll-resonance modes are
found to be unstable even for small perturbations from equilibrium
flight, it is desirable to determine a mechanism for mitigating these
responses. A range of scaling factors is applied to L to determine the
effects on the ensuing eigenvalues; the results are tabulated in Table 3.
It can be seen that reducing the roll stability derivative by a factor of
1/11 produces positive real parts of the eigenvalues, and thus, drives
the system stable, attenuating the divergent Dutch-roll mode; a larger
scaling factor increases the magnitude of the negative real eigenvalue
component, and thus, improves the stability characteristics. In a
physical sense, the decreased impact of Ly on the instantaneous
loading of the wing attenuates the roll moment generated by roll stall,
and thus, reduces the unstable lateral response. It should be noted
here that similar results are achieved by increasing the N derivative,
also listed in Table 3, effectively stiffening the directional stability of
the wing and preventing the sideslip angle (and ensuing roll moment)
from growing too large.

H. Discussion of Results

The dominance of the divergent Dutch-roll and roll-resonance
modes has critical ramifications for the stability and control
properties of LAR wings. First and foremost, the presence of these
modes can be uniquely attributed to the derivatives created by roll
stall and the low moments of inertia, which are inherent to these
wings. The subsequent creation of a significant roll stability
derivative Ly due to the tip-vortex asymmetry of a LAR wing in
sideslip is seen here to induce unstable oscillations of all lateral
variables; the dependence of this response upon angle of attack

Table3 Effects of scaled stability derivatives
on eigenvalues at @y = 5 deg

Scaling factor Scaled derivative A

1 Ly, Ny 1.1 +£57i
1/11 Ly —0.001 £ 4.3i
1/20 Ly —0.14 £ 4.2i
6 Ny —0.003 £ 12.1i
20 Ny -0.21 £21.9¢

perturbations through roll-resonance demonstrates a fundamental
coupling of the lateral and longitudinal stability axes, which is not
present for conventional aircraft flying at equilibrium conditions. The
tendency of LAR wings to submit to this mode after only minor
perturbations from trim conditions indicates their vulnerability to
instabilities when small, nonzero sideslip conditions exist.

The modes discussed in this paper are additionally interesting, as
they can be described as purely aerodynamic; unlike conventional
stability modes for high-aspect-ratio aircraft, they are entirely
attributed to the loading asymmetries of roll stall as opposed to the
size and orientation of geometric features, such as tail surfaces.
A consideration of this mode has significant impact on future vehicle
design of MAVs, as control surfaces must be sized to compensate for
wings with their own inherently unstable dynamics. A previous work
by the authors has indicated the potential for winglets centered below
the center of gravity of the wing to reduce the magnitude of roll stall,
and thus, the associated stability derivative Ly [21]. As weight is
always a concern for MAV designers, a potential solution that would
not increase the airframe weight is the implementation of a yaw
damper, which would actively serve to augment the N, derivative.
The most crucial impact of this investigation, however, is the under-
standing of the creation and influence of the divergent Dutch-roll and
roll-resonance modes experienced by LAR wings, which have not
previously been accounted for in MAV design. In essence, this
demonstrates the ineffectiveness of conventional design tools, which
do not compensate for the unstable dynamics of the wing itself.

V. Conclusions

This paper presents new results for the stability and control
properties of LAR wings. To date, the uncertainties associated with
the low-Reynolds-number aerodynamic regime have made using
these wings in MAV design an iterative exercise. Limited information
exists about the static loads experienced by MAV wings, although
recent results by the authors and others have provided some canonical
aerodynamic studies of longitudinal and lateral forces and moments.
The first discussions of roll stall for LAR wings came out of such
papers, and this previously unconsidered inherent aerodynamic load,
generated on models bereft of geometric features that roll moments
are conventionally attributed to, suggested the need for a better
characterization of the lateral-stability-response characteristics of the
wings themselves. Experimental challenges have prevented a
comprehensive study of damping stability derivatives for these
wings; for this reason, an active positioning system was designed and
built by the group to estimate these parameters. This knowledge is
then incorporated into a full model for the flight dynamics of LAR
wings, and is used to simulate the response to perturbations from
equilibrium (trim) conditions.

Numerical integrations of the equations of motion indicated that,
even for small disturbances, the response of the wing was dominated
by unstable oscillatory behavior with coupled interactions between
the state variables 5, ¢, p, and r. Favorable comparisons with a
linearized approximation permitted the use of a linear stability
analysis, which suggests that this response is similar to that of an
unstable Dutch roll. The stability derivatives associated with the
unique aerodynamic loading of LAR wings thus cause these wings
to be naturally susceptible to unstable modes, which must be
compensated for when developing a full MAV. Furthermore, unlike a
traditional Dutch roll where lateral and longitudinal perturbations
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can be entirely decoupled, angle of attack variations were seen to
interact with the lateral state variables and fundamentally alter the
nature of the response. A new behavior, referred to as roll-resonance,
was seen to occur when short-period longitudinal oscillations [a(f) ~
sin(w,t)] were imposed with a frequency close to the natural
frequency of the Dutch-roll response. The interactions between the
angle of attack and the sideslip angle resulted in antisymmetric
restoring roll moments and an ensuing bank-angle divergence, which
inherently cross couples the lateral and longitudinal stability axes.
This behavior of LAR wings at equilibrium flight conditions is
representative of the difficulties involved with designing MAVs;
however, with the improved understanding of the wing dynamics
developed in this paper, better passive and active stabilization
methods can be implemented to greatly simplify the challenges of
future vehicle design and automation.

References

[1] Grasmeyer, J., and Keennon, M., “Development of the Black Widow
Micro Air Vehicle,” 39th AIAA Aerospace Sciences Meeting and
Exhibit, AIAA Paper 2001-0127, Jan. 2001.

Hundley, R., and Gritton, E., “Future Technology-Driven Revolutions in

Military Operations,” RAND Corp., Document No. DB-110-ARPA,

Santa Monica, CA, 1994.

Stanford, B., Abdulrahim, M., Lind, R., and Ifju, P., “Investigation of

Membrane Actuation for Roll Control of a Micro Air Vehicle,” Journal

of Aircraft, Vol. 44, No. 3, 2007, pp. 741-749.

doi:10.2514/1.25356

Albertani, R., Stanford, B., DeLoach, R., Hubner, J., and Ifju, P,

“Wind-Tunnel Testing and Modeling of a Micro Air Vehicle with

Flexible Wings,” Journal of Aircraft, Vol. 45, No. 3, 2008, pp. 1025—

1032.

doi:10.2514/1.33338

de Croon, G., Groen, M., Wagter, C. D., Remes, B., Ruijsink, R., and van

Oudheusden, B., “Design, Aerodynamics and Autonomy of the DelFly,”

Bioinspiration & Biomimetics, Vol. 7, No. 2, May 2012, Paper 025003.

doi:10.1088/1748-3182/7/2/025003

[6] Wood, R., “The First Takeoff of a Biologically Inspired At-Scale

Robotic Insect,” IEEE Transactions on Robotics, Vol. 24, No. 2,

April 2008, pp. 341-347.

doi:10.1109/TR0O.2008.916997

Spedding, G., and McArthur, J., “Span Efficiencies of Wings at

Low Reynolds Numbers,” Journal of Aircraft, Vol. 47, No. 1, 2010,

pp. 120-128.

doi:10.2514/1.44247

[8] Yang, S., and Spedding, G., “Spanwise Variation in Circulation and
Drag of Wings at Moderate Reynolds Number,” Journal of Aircraft,
Vol. 50, No. 3, 2013, pp. 791-797.
doi:10.2514/1.C031981

[9] Taira, K., and Colonius, T., “Three-Dimensional Flows Around Low-
Aspect-Ratio Flat-Plate Wings at Low Reynolds Numbers,” Journal of
Fluid Mechanics, Vol. 623, March 2009, pp. 187-207.
doi:10.1017/S0022112008005314

[10] Ellington, C., vanderBerg, C., Willmott, A., and Thomas, A., “Leading-
Edge Vortices in Insect Flight,” Nature, Vol. 384, No. 6610, Dec. 1996,
pp. 626-630.
doi:10.1038/384626a0

[11] Dickinson, M., and Gotz, K., “Unsteady Aerodynamic Performance of
Model Wings at Low Reynolds Numbers,” Journal of Experimental
Biology, Vol. 174, Jan. 1993, pp. 45-64.

[12] Swanton, E., Vanier, B., and Mohseni, K., “Flow Visualization and Wall
Shear Stress of a Flapping Model Hummingbird Wing,” Experiments in
Fluids, Vol. 49, No. 3, 2010, pp. 657-671.
doi:10.1007/s00348-010-0832-1

[13] Jian, T., and Ke-Qin, Z., “Numerical and Experimental Study of Flow
Structure of Low Aspect Ratio Wing,” Journal of Aircraft, Vol. 41,
No. 5, 2004, pp. 1196-1201.
doi:10.2514/1.5467

[14] Gresham, N., Wang, Z., and Gursul, 1., “Low Reynolds Number
Aerodynamics of Free-to-Roll Low Aspect Ratio Wings,” Experiments
in Fluids, Vol. 49, No. 1, 2010, pp. 11-25.
doi:10.1007/s00348-009-0726-2

[15] Arena, A., and Mueller, T., “Laminar Separation, Transition, and
Turbulent Reattachment near the Leading Edge of Airfoils,” AIAA
Journal, Vol. 18, No. 7, 1980, pp. 747-753.
doi:10.2514/3.50815

[2

—

3

=

ﬁ
e

[5

=

[7

—

[16] Selig, M., Guglielmo, J., Broeren, A., and Giguere, P., Summary of
Low Speed Airfoil Data, Vol. 1, SoarTech, Virginia Beach, VA, 1996,
pp. 23-53.

[17] Pelletier, A., and Mueller, T., “Low Reynolds Number Aerodynamics of
Low-Aspect-Ratio, Thin/Flat/Cambered-Plate Wings,” Journal of
Aircraft, Vol. 37, No. 5, 2000, pp. 825-832.
doi:10.2514/2.2676

[18] Torres, G., and Mueller, T., “Low-Aspect-Ratio Wing Aerodynamics
at Low Reynolds Numbers,” AIAA Journal, Vol. 42, No. 5, 2004,
pp. 865-873.
doi:10.2514/1.439

[19] Shields, M., and Mohseni, K., “Effects of Sideslip on the Aerodynamics
of Low Aspect Ratio Wings at Low Reynolds Numbers,” AIAA Journal,
Vol. 50, No. 1, 2012, pp. 85-99.
doi:10.2514/1.J051151

[20] Shields, M., and Mohseni, K., “Roll Stall for Low-Aspect-Ratio
Wings,” Journal of Aircraft, Vol. 50, No. 4, July 2013, pp. 1060—
1069.
doi:10.2514/1.C031933

[21] Shields, M., and Mohseni, K., “Passive Mitigation of Roll Stall for Low
Aspect Ratio Wings,” Advanced Robotics: Special Issue on Aerial
Robots, Vol. 27, No. 9, April 2013, pp. 667-681.
doi:10.1080/01691864.2013.778941

[22] Thomasson, P., “The Flight Dynamics of a Gust Insensitive Unmanned
Aircraft,” IEE Colloquium on Control and Guidance of Remotely
Operated Vehicles, Vol. 6, Institution of Engineering and Technology,
Hertfordshire, England, U.K., 1995, pp. 6/1-6/3.
doi:10.1049/ic:19950802

[23] Pisano, W. J., and Lawrence, D. A., “Autonomous Gust Insensitive
Aircraft,” AIAA Guidance, Navigation, and Control Conference
and Exhibit, ATAA, Reston, VA, Aug. 2008; also AIAA Paper 2008-
6510.

[24] Zimmerman, C., “An Analysis of Lateral Stability in Power-Off Flight
with Charts for Use in Design,” NACA TR-521, 1935.

[25] Shortal, J., “Effect of Tip Shape and Dihedral on Lateral-Stability
Characteristics,” NACA TR-548, 1935.

[26] Phillips, W., “Effect of Steady Rolling on Longitudinal and Directional
Stability,” NACA TN-627, June 1948.

[27] Phillips, W., Mechanics of Flight, 2nd ed., Wiley, Hoboken, NJ, 2010,
pp. 377411, 715-939.

[28] Phillips, W., “Improved Closed-Form Approximation for Dutch Roll,”
Journal of Aircraft, Vol. 37, No. 3, 2000, pp. 484-490.
doi:10.2514/2.2623

[29] Shields, M., and Mohseni, K., “Aerodynamic Damping Derivatives for
Low Aspect Ratio Wings at Low Reynolds Numbers,” 43rd AIAA Fluid
Dynamics Conference, AIAA Paper 2013-3192, June 2013.

[30] Nelson, R. C., and Pelletier, A., “The Unsteady Aerodynamics
of Slender Wings and Aircraft Undergoing Large Amplitude
Maneuvers,” Progress in Aerospace Sciences, Vol. 39, Nos. 2-3,
2003, pp. 185-248.
doi:10.1016/S0376-0421(02)00088-X

[31] Gursul, I., Gordnier, R., and Visbal, M., “Unsteady Aerodynamics of
Nonslender Delta Wings,” Progress in Aerospace Sciences, Vol. 41,
No. 7, 2005, pp. 515-557.
doi:10.1016/j.paerosci.2005.09.002

[32] Katz, J., “Wing/Vortex Interactions and Wing Rock,” Progress in
Aerospace Sciences, Vol. 35, No. 7, 1999, pp. 727-750.
doi:10.1016/S0376-0421(99)00004-4

[33] Giil¢at, U., Fundamentals of Modern Unsteady Aerodynamics,
Springer—Verlag, Berlin-Heidelberg, 2010, pp. 251-258, 264-289.

[34] Schmidt, L. V., Introduction to Aircraft Flight Dynamics, AIAA,
Reston, VA, 1998, pp. 9-42, 207-233, 237-248, 257-275.

[35] Leishman, J. G., Principles of Helicopter Aerodynamics, 2nd ed.,
Cambridge Univ. Press, New York, 2006, pp. 306-315, 323-326, 333—
342,378-412.

[36] Carroll, J. V., and Mehra, R. V., “Bifurcation Analysis of Nonlinear
Aircraft Dynamics,” Journal of Guidance, Control, and Dynamics,
Vol. 5, No. 5, 1982, pp. 529-536.
doi:10.2514/3.56198

[37] Gilmore, R., Catastrophe Theory for Scientists and Engineers, Courier
Dover, Toronto, Ontario, 1993, pp. 296-317.

[38] Owens, D., Brandon, J., Croom, M., Fremaux, C., Heim, E., and Vicroy,
D., “Overview of Dynamic Test Techniques for Flight Dynamics
Research at NASA LaRC (Invited),” 25th AIAA Aerodynamic
Measurement Technology and Ground Testing Conference, AIAA
Paper 2006-3146, June 2006.

[39] Fisher, L., and Wolhard, W., “Some Effects of Amplitude and Frequency
on the Aerodynamic Damping of a Model Oscillating Continuously in
Yaw,” NACA TN-2766, Sept. 1952.



http://dx.doi.org/10.2514/1.25356
http://dx.doi.org/10.2514/1.25356
http://dx.doi.org/10.2514/1.25356
http://dx.doi.org/10.2514/1.33338
http://dx.doi.org/10.2514/1.33338
http://dx.doi.org/10.2514/1.33338
http://dx.doi.org/10.1088/1748-3182/7/2/025003
http://dx.doi.org/10.1088/1748-3182/7/2/025003
http://dx.doi.org/10.1109/TRO.2008.916997
http://dx.doi.org/10.1109/TRO.2008.916997
http://dx.doi.org/10.1109/TRO.2008.916997
http://dx.doi.org/10.1109/TRO.2008.916997
http://dx.doi.org/10.2514/1.44247
http://dx.doi.org/10.2514/1.44247
http://dx.doi.org/10.2514/1.44247
http://dx.doi.org/10.2514/1.C031981
http://dx.doi.org/10.2514/1.C031981
http://dx.doi.org/10.2514/1.C031981
http://dx.doi.org/10.1017/S0022112008005314
http://dx.doi.org/10.1017/S0022112008005314
http://dx.doi.org/10.1038/384626a0
http://dx.doi.org/10.1038/384626a0
http://dx.doi.org/10.1007/s00348-010-0832-1
http://dx.doi.org/10.1007/s00348-010-0832-1
http://dx.doi.org/10.2514/1.5467
http://dx.doi.org/10.2514/1.5467
http://dx.doi.org/10.2514/1.5467
http://dx.doi.org/10.1007/s00348-009-0726-2
http://dx.doi.org/10.1007/s00348-009-0726-2
http://dx.doi.org/10.2514/3.50815
http://dx.doi.org/10.2514/3.50815
http://dx.doi.org/10.2514/3.50815
http://dx.doi.org/10.2514/2.2676
http://dx.doi.org/10.2514/2.2676
http://dx.doi.org/10.2514/2.2676
http://dx.doi.org/10.2514/1.439
http://dx.doi.org/10.2514/1.439
http://dx.doi.org/10.2514/1.439
http://dx.doi.org/10.2514/1.J051151
http://dx.doi.org/10.2514/1.J051151
http://dx.doi.org/10.2514/1.J051151
http://dx.doi.org/10.2514/1.C031933
http://dx.doi.org/10.2514/1.C031933
http://dx.doi.org/10.2514/1.C031933
http://dx.doi.org/10.1080/01691864.2013.778941
http://dx.doi.org/10.1080/01691864.2013.778941
http://dx.doi.org/10.1080/01691864.2013.778941
http://dx.doi.org/10.1080/01691864.2013.778941
http://dx.doi.org/10.1049/ic:19950802
http://dx.doi.org/10.1049/ic:19950802
http://dx.doi.org/10.2514/2.2623
http://dx.doi.org/10.2514/2.2623
http://dx.doi.org/10.2514/2.2623
http://dx.doi.org/10.1016/S0376-0421(02)00088-X
http://dx.doi.org/10.1016/S0376-0421(02)00088-X
http://dx.doi.org/10.1016/j.paerosci.2005.09.002
http://dx.doi.org/10.1016/j.paerosci.2005.09.002
http://dx.doi.org/10.1016/j.paerosci.2005.09.002
http://dx.doi.org/10.1016/j.paerosci.2005.09.002
http://dx.doi.org/10.1016/j.paerosci.2005.09.002
http://dx.doi.org/10.1016/j.paerosci.2005.09.002
http://dx.doi.org/10.1016/S0376-0421(99)00004-4
http://dx.doi.org/10.1016/S0376-0421(99)00004-4
http://dx.doi.org/10.2514/3.56198
http://dx.doi.org/10.2514/3.56198
http://dx.doi.org/10.2514/3.56198

Downloaded by UNIVERSITY OF FLORIDA on September 18, 2014 | http://arc.aiaa.org | DOI: 10.2514/1.C032636

[40]

[41]

[42]

[43]

AIAA Early Edition / SHIELDS AND MOHSENI 15

Bird, J., Fisher, L., and Hubbard, S., “Some Effects of Frequency on the
Contribution of a Vertical Tail to the Free Aerodynamic Damping of a
Model Oscillating in Yaw,” NACA TR-1130, April 1953.

Babcock, J., Albertani, R., and Abate, G., “Experimental Estimation of
the Rotary Damping Coefficients of a Pliant Wing,” Journal of Aircraft,
Vol. 49, No. 2, 2012, pp. 390-397.

doi:10.2514/1.C031161

Jones, W., “Wind-Tunnel Interference Effects on Measurements
of Aerodynamic Coefficients for Oscillating Aerofoils,” Aeronau-
tical Research Council TR Rept. and Memorandum No. 2786,
Sept. 1950.

Braslow, A., Wiley, H., and Lee, C., “A Rigidly Forced Oscillation
System for Measuring Dynamic-Stability Parameters in Transonic and
Supersonic Wind Tunnels,” NACA TN-D-1231, March 1962.

[44]

[45]

[46]

[47]

Beam, B., “A Rigidly Forced Oscillation System for Measuring
Dynamic-Stability Parameters in Transonic and Supersonic Wind
Tunnels,” NACA TR-1258, 1956.

Tomek, D., Sewall, W., Mason, S., and Szchur, B., “The Next
Generation of High-Speed Dynamic Stability Wind Tunnel Testing
(Invited),” 25th AIAA Aerodynamic Measurement Technology and
Ground Testing Conference, AIAA Paper 2006-3148, June 2006.
Schueler, C., Ward, L., and Hodapp, A. E., Jr., “Techniques for
Measurement of Dynamic Stability Derivatives in Ground Test
Facilities,” AGARDograph 121, Oct. 1967.

Moirris, S. J., and Holden, M., “Design of Micro Air Vehicles and Flight
Test Validation,” Proceedings of the Conference on Fixed, Flapping and
Rotary Wing Vehicles at Very Low Reynolds Numbers, Univ. of Notre
Dame, Notre Dame, IN, June 2000, pp. 153-176.


http://dx.doi.org/10.2514/1.C031161
http://dx.doi.org/10.2514/1.C031161
http://dx.doi.org/10.2514/1.C031161

