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The flowfield of a round synthetic jet driven by a piezoelectric membrane issuing into a quiescent environment is
studied in this paper. The self-similar behavior exhibited by both synthetic and continuous turbulent jets leads to the
hypothesis that synthetic jets may be modeled using similarity analysis, just as continuous turbulent jets are modeled.
Accordingly, synthetic jets are modeled using both the Schlichting solution to boundary-layer equations in
cylindrical coordinates and the Landau-Squire solution to the Navier—Stokes equations in spherical coordinates, for
which the virtual viscosity coefficient of a continuous turbulent jet is replaced with that measured for a synthetic jet.
The virtual viscosity of the synthetic jet for both models is obtained from the spreading rate and velocity decay rate of
the jet. Hot-wire anemometry is used to characterize the flow downstream of the orifice. The flowfield is observed to
consist of two regions, as distinguished by the centerline velocity decay: namely, a developing and a developed region.
The developing region is characterized by a velocity increase followed by a plateau, for which the axial extent of this
region scales with the stroke length L. The developed region is identified by the centerline velocity decaying as x~!,
and it is within this region that the jet models are applicable. The velocity decay rate and spreading rate of synthetic
jets are observed to increase with stroke ratio L/d, while being independent of the Reynolds number Re. This
dependency on stroke ratio is attributed to the increase in impulse and energy of the emerging vortex rings as the
stroke ratio increases and their subsequent enhanced interaction. The geometry of the actuator is additionally seen to
impact the spreading and decay rates by means of influencing the initial conditions at the orifice. The experiments
verify that by using the adjusted value of the virtual viscosity, the theoretical models of a continuous turbulent jet may
still be used to model a periodic synthetic jet. The virtual viscosity of the synthetic jets under test proves to be larger
than that of equivalent turbulent continuous jet based on the same momentum flux. The enhanced viscosity is
attributed to the additional momentum transfer and mixing brought about by the periodic introduction and

breakdown of the vortex rings in synthetic jets.

Nomenclature

half-width of the jet

diameter of the cavity

diameter of the orifice

magnitude of the point force

frequency of oscillation

height of the cavity

depth of the orifice

kinematic momentum flux

scaled jet spreading rate

scaled velocity decay rate

length of the slug

radial coordinate (spherical polar coordinate)
Reynolds number

radial coordinate (cylindrical polar coordinate)
jet spreading rate

velocity decay rate

time period of oscillation

mean actuator exit velocity

mean streamwise velocity (cylindrical polar coordinate)
mean streamwise centerline axial velocity

mean radial velocity (spherical polar coordinate)
driving voltage

mean radial velocity (cylindrical polar coordinate)
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mean polar velocity (spherical polar coordinate)
axial coordinate (cylindrical coordinate)

virtual origin based on width

virtual origin based on velocity

centerline peak-to-peak deflection of the membrane
eddy viscosity in the Schlichting solution

= eddy viscosity in the Landau—Squire solution
self-similar variable (Schlichting solution)
polar coordinate (spherical polar coordinate)
half-angle of the jet

self-similar variable (Landau—Squire solution)
density of the fluid

= total shear stress
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1. Introduction

SYNTHETIC jet or a zero-net-mass-flux (ZNMF) jet is a type

of fully periodic jet that results from the formation and
interaction of vortex rings or pairs [1]. A common method of gene-
rating a synthetic jet employs a cavity-diaphragm setup and is the
method used in this investigation. The synthetic jet generator consists
of a sealed cavity with a flexible vibrating diaphragm on one end and
an orifice on the other. As shown in Fig. 1, the synthesis is composed
of a cycle with two strokes: namely, a suction and an ejection. During
the suction stroke, the diaphragm moves away from the orifice,
increasing the volume of the cavity and subsequently decreasing the
pressure within. This results in the entrainment of low-momentum
fluid into the cavity. During the ejection stroke, the diaphragm moves
toward the orifice, resulting in the expulsion of fluid through the
orifice. At the edge of the orifice, the formed shear layer rolls up to
form a vortex ring that travels downstream due to its self-induced
velocity. In this fashion, a series of suction-ejection strokes results in
the formation of a train of vortex rings moving away from the orifice.
These coherent structures then interact, coalesce, and break down in a
transition toward a turbulent jet that is directed downstream.
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a) Suction

b) Ejection

Fig. 1 Schematic of synthetic jet operation displaying the suction and
ejection strokes.

This operational principle allows for the synthetic jet to be
synthesized entirely from the surrounding medium, which conse-
quently implies a zero net mass flux across the actuator boundary.
However, on account of the asymmetry of the system, a net momen-
tum flux is imparted to the external flow. The lack of plumbing
provides an added benefit of reduced size, weight, and fabrication
complexity. Additionally, the periodic vortex rings introduced into
the flow exhibit an ability to influence the environment at a variety of
length scales. All of these properties make synthetic jets attractive in
a number of applications that include active flow control [2—4],
electronic cooling [5,6], fluid mixing [7], and aerial [§-11] and
underwater propulsion [12,13]. Although recent reviews of synthetic
jets may be found in the literature [14—16], a brief overview of the
background relevant to the present investigation is presented next.

Synthetic jet actuators occur primarily in axisymmetric [17-19],
and rectangular [1,20,21] configurations, depending on the geometry
of the external flowfield that is to be influenced. The axisymmetric
type is studied in this paper, in which the flow structure of the issuing
jet is dependent upon several characteristics that include the
geometry of the actuator, fluid properties, and actuation parameters.
Two nondimensional variables (namely, the stroke ratio L/d and
Reynolds number Re) are identified as the primary factors that
influence synthetic jets [1]. The stroke ratio is representative of the
length of the slug of fluid ejected from the orifice during the
expulsion stroke. The stroke ratio may also be interpreted as an
inverse Strouhal number, where 27/(L/d) = St [22], and the
Reynolds number embodies the velocity of this ejected slug. The
explicit definitions are given later in the paper. In addition, because
the formation of a synthetic jet is incumbent upon the ejected vortex
rings escaping the flow entrained back into the cavity during the
suction stroke, a criterion for jet formation [23,24] in an axisym-
metric case is given as

1L

7 d >0.16

The flowfield of an issuing synthetic jet may be thought to be
composed of a near field and a far field based on the dominant flow
phenomena, and a schematic of the evolution of the jet is presented in
Fig. 2. The near field is typified by the presence of discrete coherent
vortex rings and fully periodic flow. The flow in the far field is, by
contrast, directed solely away from the orifice and bears resemblance
to a turbulent continuous jet. This likeness is in the form of the self-
similarity of the flow as inferred from the collapse of the scaled mean
and turbulent intensity profiles [1,17]. The synthetic jets are
observed, however, to spread faster and decay more rapidly that their
continuous turbulent counterpart [17,18]. This points to the fact that
synthetic jets possess an enhanced capacity for mixing. It is this self-
similar behavior and increased spreading rate, which suggests that
turbulent jet similarity models may be extended to synthetic jets by
taking into account the enhanced mixing present in synthetic jets.
Thus, in this paper, we hypothesize that round synthetic jets in the far
field may be modeled using similarity analysis just as round
continuous turbulent jets are modeled, with an adjustment of the
virtual eddy viscosity coefficient of the continuous jet. Accordingly,
the jet is systematically modeled to obtain the virtual viscosity
associated with a synthetic jet from the spreading and decay rates,

Vortex ring

emerging from
the orifice

Round orifice

Mean velocity
profiles in the
far field

Fig. 2 Schematic of the evolution of a round synthetic jet, showing a

vortex ring in the near field, and mean velocity profiles of the jet in the

far field.

with experiments conducted to verify the aforementioned eddy
viscosity replacement hypothesis. The effect of the key actuator
parameters on the eddy viscosity is later examined.

This paper is outlined as follows: Section II describes the
theoretical models for the external flowfield of the synthetic jet,
followed by a model of the actuator. The experimental setup for the
measurement of the velocity field and diaphragm deflection is then
described in Sec. III. The results are presented and discussed in
Sec. IV. In Sec. V, the conclusions are summarized.

II. Theoretical Modeling

In this section, models of the external flowfield of the round
synthetic jet are first outlined, following which a model charac-
terizing the synthetic jet actuator is presented.

A. Time-Averaged Flowfield

Consider the region of the synthetic jet in which the periodically
formed vortex rings cease to be coherent discrete structures and a
turbulent jet is directed downstream (Fig. 2). As mentioned earlier,
the mean streamwise velocity profiles have been observed to collapse
onto a single curve when scaled appropriately. It is this streamwise
region that lends itself to similarity analysis. Two classic solutions to
free continuous jets are the Schlichting [25] and the Landau—Squire
[26,27] solutions. The first is based on boundary-layer approxi-
mations in cylindrical polar coordinates, and the second is a solution
of the Navier—Stokes equations in spherical polar coordinates. Both
solutions are outlined next with their applicability to synthetic jets
discussed.

1. Schlichting Jet

The far field of a continuous jet may be thought to be generated by
acontinuous point source of momentum in an infinite incompressible
fluid. It is admissible to describe the mean velocities in the con-
tinuous jet by boundary-layer equations. In seeking a self-similar
solution to the boundary-layer equations, the streamwise pressure
gradient is necessarily zero, whereupon a closed-form solution for a
laminar jet exists [25]. It was later seen [28] that the turbulent jet
analog could be modeled using the identical differential equations
that described the laminar jet, with the sole replacement of the
laminar viscosity coefficient with a virtual eddy viscosity coefficient
associated with the turbulent jet. Following along these lines, it is
hypothesized here that the mean velocity field of a synthetic jet may
be modeled as a laminar free jet, along with the use of a virtual
viscosity coefficient obtained empirically for a synthetic jet. An
overview of the similarity analysis is traced out next, along with its
pertinence to synthetic jets.

In polar coordinates, the boundary-layer equations with no
pressure gradient are written as
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where u and v are the streamwise and radial velocity components,
respectively; 7 is the total shear stress; and p is the fluid density. The
total shear stress may be related to the mean velocity using an eddy
viscosity approximation:

ou ou
T=P(”+SI)E=P8E 2

where v is the laminar kinematic viscosity, ¢, is the turbulent eddy
viscosity coefficient, and ¢ is the total or effective eddy viscosity that
takes into account both the laminar and turbulent contributions to the
shear stress. Although the eddy viscosity hypothesis assumes that
momentum transfer in a turbulent flow is dominated by large-scale
eddies, it does characterize the mixing due to turbulent fluctuations,
which in turn is indicative of the rate of spreading of a free jet.

The eddy viscosity may be derived from the experimental data as
follows. Assuming that the evolution of the jet is dependent only on
local length and velocity scales and lacks memory of the orifice
dimensions itself, the streamwise mean velocity profiles may be
considered self-similar. From the conservation of streamwise
momentum, it may be shown that the characteristic length b and
velocity u of the jet scale as x and x~!, respectively. The self-similar
assumption then leads to a streamwise velocity profile of the form
u = x"'f(r/x). The similarity variable, written as n = o(r/x), is
related to the virtual viscosity coefficient through a free constant o.
With the mixing length hypothesis showing that the virtual viscosity
is constant over the entire jet, the boundary-layer equations may then
be reduced to an ordinary differential equation of the form
ff =f —nf". From the conservation of momentum and the
assumed form of the velocity distribution, the streamwise velocity is
solved to be

3K 1 3)
u= —_—
8mex (14 1n?)?
with the self-similarity variable given as
1 3JVK
=g\ @
T e r

where K is the kinematic momentum of the jet, which is a measure of
the strength of the jet, and is obtained as

K=2n/oou2rdr
0

It is important to note here that the preceding analysis assumes a
constant momentum flux in the streamwise direction. Although this
is applicable to continuous jets, in synthetic jets, it has been reported
that the momentum flux at the orifice is higher than that in the far field
[1,21]. The momentum flux was shown to decrease in the near field of
the jet due to an adverse pressure gradient and then to asymptote in
the far field to some fraction of the exit momentum flux. It is this
reduced asymptotic value of the momentum flux that should serve as
the magnitude of the driving momentum flux in the preceding
similarity analysis for the synthetic jet and not the exit momentum
flux at the orifice of the actuator.

The eddy viscosity € is now obtained from the spreading and decay
rates of the jet. At the centerline, the streamwise velocity may be
expressed as

3K

= = S
8mex
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X

where S, is a measure of the jet decay rate. The radial extent of the jet

ata particular axial station may be characterized by a half-width b, /,,

defined as the radial distance from the centerline at which the

streamwise velocity drops to half the centerline velocity. The linear

streamwise variation of the half-width may be written as

by =S,x 6)

where S, is the spreading rate of the jet. From Eqgs. (3—6), the free
constant o in the similarity variable is related to the spreading rate as

242 -1
G_T 7

from which the eddy viscosity is related to the spreading rate and
decay rate as

1 52
E=—F7-—"——
8(v2—-1)S,

In summary, Egs. (3) and (8) model the far field of the jet in cylin-
drical coordinates. Thus, in this study, we employ the same technique
(as previously discussed) in which the eddy viscosity of the synthetic
jetis obtained from experimentally determined spreading and decay
rates. Next, an alternative similarity model to a synthetic jet is
presented.

(3

2. Landau—Squire Jet

In this section, a solution of the Navier—Stokes equations to an
axisymmetric free jet in spherical coordinates is outlined (Landau—
Squire solution [26,27]). With the Schlichting solution, in seeking a
self-similar solution to the boundary-layer equations, the streamwise
pressure gradient was required to be zero. However, in the Landau—
Squire jet, a self-similar solution to the Navier—Stokes equations
exists for a laminar jet, without the requirement of a nonexistent
pressure gradient. In replacing the viscosity coefficient of the laminar
jet with the virtual viscosity of a turbulent jet, the velocity distri-
bution of the turbulent jet model was found to be in good agreement
with experiments [27]. As with the Schlichting model, the viscosity
replacement hypothesis is extended to synthetic jets here, in which
the salient results of the Landau—Squire solution are briefly
presented.

The analysis in the slender viscous region comprising the jet and in
the limiting behavior of high Reynolds number yield the radial
velocity and pressure distributions as [29]

4e 1 4 £ -1 ©
U =———-—-=, — - 2>
‘TRC(+ER TP TRCO+ P
where € is the virtual kinematic viscosity of the jet, the similarity
variable is £ = 6/+/2C, and C is a constant that is shown to be
inversely proportional to a Reynolds number, which is based on the
centerline velocity of the jet and distance from the origin. In the limit
as Re — oo, C is expressed in terms of the magnitude of the point
force that drives the jet, F, as

F R 16
2mpe?  3C

10)

The half-spreading angle 6, , is defined as the angle at which the
radial velocity along a constant radius is half the centerline radial
velocity u, .. Through the use of the definition of the half-spreading
angle, the constant C is derived as

0
C= 11
22 1) o
From which the virtual viscosity is shown to be
1 9%/2
E=— 12
8(v2—-1) S, (12

The virtual kinematic viscosity is thus a product of the inverse of the
centerline velocity decay rate (which is identical in both cylindrical
and spherical coordinates) and the square of the spreading angle of
the jet and is of same form as that obtained from the Schlichting
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solution. Thus, Egs. (9-12) model the free jet in a spherical coordi-
nate system. To enable this solution for a synthetic jet, the spreading
angle and centerline decay rate need to be obtained from experiment.

Hitherto, models for the far field of continuous jets have been
modified by the use of an adjusted eddy viscosity to apply to
synthetic jets. With continuous steady jets, the critical nondimen-
sional parameter of interest is a Reynolds number Re based on the
steady exit bulk velocity. However, the upshot of the fully periodic
nature of synthetic jets is as follows:

1) A steady bulk exit velocity does not exist, and hence a suitable
average velocity needs to be defined.

2) Some way of characterizing the oscillatory nature of the flow is
required.

These issues are addressed in the next section.

B. Actuator Model

As mentioned earlier, a nondimensional stroke ratio L/d and
Reynolds number Re have been established as key actuator opera-
tional parameters that influence a synthetic jet [1]. For the cavity-
diaphragm setup used in this experiment, they are obtained from an
incompressible flow model, in which it is assumed that the volume
displaced by the membrane is equal to the volume ejected from the
orifice (Fig. 3). To obtain the volume displaced by the membrane, the
shape of the deflected membrane and the central amplitude are
required. The shape is obtained from the classical theory of plates
[30], and the center amplitude is measured using a laser sensor. With
the ejected volume approximated as a cylindrical slug of fluid with
the same cross section as the exit orifice, the conservation of volume
is written as

a—A=—r (13)

where « is the fraction of the volume displaced by an imaginary
piston undergoing a peak-to-peak deflection of A and is expressed as

_anoD/zy(r)rdr (14)
- (wD*/4H)A

where y(r) is the deflection profile of the diaphragm. In assuming
that the shape of the membrane is modeled by the static deflection of
the circular membrane clamped on the edge subject to a uniform load,
the deflection profile is written as

A rro2r? r
Y(V)ZE[I_P‘FFEH(E)] (15)

where r is the radial coordinate and R is the radius of the membrane.
The preceding deflection profile results in an o of 0.25. The
nondimensional stroke ratio is then determined to be

D2
d
f—sl
ejected

fluid N L

cavity

flexible P BREN
diaphragm -~ A =

Fig. 3 Schematic of the actuator model, in which the volume of fluid
displaced by the diaphragm is ejected through the orifice in the form
of a slug.

The periodic nature of synthetic jets allows for the velocity scales
to be defined based on either volume or momentum flux [31]. If based
on volume flux, the velocity scaleis givenas U, = L/T = fL, and if
based on momentum flux, it is given as U, = ~/2(L/T) = ~/2fL.1t
is more appropriate to use the velocity scale based on momentum flux
here, as the self-similar jet solutions employed in this study define
equivalent jets based on the same momentum flux and not mass flux.
Consequently, the Reynolds number is defined as

_Ud _ V2fLd _ V2faAD?

R
¢ v v vd

an

The Reynolds number is explicitly seen to vary, with both membrane
driving frequency and amplitude and with the stroke ratio appearing
to be independent of frequency. This independence of stroke ratio on
frequency is not accurate, as the use of a piezoelectric diaphragm as a
driver gives rise to the coupling between frequency and deflection
and, consequently, stroke ratio. However, for purposes of calculating
the jet parameters, the model serves the purpose. In summary,
Eqgs. (16) and (17) express the dependency of the critical actuator
parameters on the diaphragm driving frequency and deflection
amplitude.

The preceding described flow and actuator models provide a
framework to relate the input driving parameters (f, V) to the output
jet parameters (S, S,) via the actuator variables (L/d and Re). The
experimental setup used to determine the empirical relationships
between the various parameters is described next.

III. Experimental Method

From Sec. II, it is seen that the inputs to a synthetic jet model
include 1) the central deflection of the membrane, 2) the spreading
rate of the jet, and 3) the centerline velocity decay of the jet. In this
section, the experimental setup to measure the aforementioned
parameters are described.

A. External Flowfield

The experimental setup to characterize the flowfield is shown in
Fig. 4. It consists of the synthetic jet actuator, computer-controlled
stages, and a hot-wire probe, all of which were placed in a clear, large,
Plexiglas enclosure (not shown). Piezoelectrically driven actuators
were used in this experiment, and Fig. 5 is a picture of one such
actuator. The actuator consists of a circular piezoelectric membrane
sandwiched between two circular aluminum elements, which, when
screwed together, form a cavity with an orifice on one end and a
flexible membrane on the other. Three actuators were used in this
study, the dimensions of which are stated in Table 1. The piezo-
electric membrane is driven by a sinusoidal input voltage, the
frequency and amplitude of which are varied and noted later.

Laser sensor

Hot-wire
probe

Automated
stages

Actuator

Fig. 4 Experimental setup used to measure the velocity field and
diaphragm deflection.
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7

Fig. 5 An actuator with a round orifice alongside a dime provided
for scale.

The velocity measurements were made using a single normal hot-
wire probe operating in constant-temperature anemometry mode.
The probe (55P16) wire was 1.25 mm long and 5 pm in diameter and
aligned such that the prongs were parallel to the axis of the jet. The
voltage signal obtained was fed through a low-pass filter with a cutoff
frequency of 10 kHz. The hot wire was calibrated in an iterative
procedure [32] with a fourth-order polynomial curve used to convert
voltage to velocity. Based on the accuracy in the calibration and
scatter in the experiment, the uncertainty in the mean velocity
measurements was estimated to be 2% for velocities greater than 1
m/s and +10% for velocities less than 1 m/s. The hot-wire probe
was affixed to a holder positioned on two computer-controlled stages
capable of traversing the horizontal plane. To characterize the
flowfield, the probe was moved in the horizontal plane of the orifice,
in which the flow at each discrete location was sampled for 10 s
(Fig. 6). The streamwise x/d and radial r/d extents over which the
measurements were made were dependent on the strength of the
issuing jet and orifice diameter of the actuator.

It should be noted that the primary issue arising with the use of a
single hot-wire probe is that associated with measurements of
oscillatory flows and that with high turbulence intensity, both of
which are encountered in synthetic jets. Because the purpose of this
work is not to quantify the velocity components themselves but to
verify a modeling method and further study the effect of actuator
conditions on the development of the synthetic jet, the conclusions
drawn are not expected to change. Thus, the velocities determined in
regions of high turbulent intensities should be understood to be
subject to the errors associated with high turbulence intensity.

As mentioned previously, the computer-controlled stages were
capable of moving only parallel and perpendicular to the centerline of
the jet. This permits the measurement of the axial velocity u at
discrete points in the streamwise and radial directions in a cylindrical
polar coordinate system, which lends itself to the Schlichting jet
solution. However, employing a spherical coordinate system for the
Landau—Squire solution requires the radial velocities to be deter-
mined along an arc of constant radius. The following geometric
argument provides the radial velocities along a constant arc from the
axial velocity measurements made. Referring to Fig. 7, the experi-
ments yield the axial velocities at 1 and 2. However, for the spherical

Table 1 Geometric dimensions of the three actuators
tested in the experiment

Dimensions, mm

Actuator d h D H
1 1.5 0.5 24.8 1.7
2 2.5 42 24.8 1.7
3 2.8 0.6 40.0 34

s,

L
Virtual origin / /

Actuator Location of velocity measurements

Fig. 6 Schematic of the horizontal plane in which measurements
are made.
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Fig. 7 Geometry relating radial velocity to that obtained from
measurements.

analytical formulation, the radial velocity at 2’ is required. From the
expression of the centerline velocity in the Landau—Squire solution,
the radial velocity has the separable form, u, = g(R)f(6). The
effective velocity that the hot-wire probe measures in terms of the
velocity components in the cylindrical coordinate system may be
written as u2; = u® + kv?, where k is constant between 1.1 and 1.2
[33]. The radial velocity is related to the cylindrical velocity compo-
nents by u? = u?> + v>. Now, within the narrow confines of the jet
v < u, it is therefore reasonable to approximate u, & u. s ~ u.
Thus, the radial velocity at 2’ can be determined from the axial
velocity at 2 by u, » = u,8(R})/g(R,). Because g(R) o« 1/R,
R/
Urp = Uy R—z (18)

Thus, Eq. (18) furnishes the radial velocities needed in the spherical
model from the experimental velocity measurements made in a
cylindrical coordinate system.

B. Diaphragm Deflection

The setup to measure the centerline deflection of the piezoelectric
membrane consists of a laser nanosensor, a movable stage, and a
small sliver of silicon (not shown) affixed to the center of the piezo-
electric membrane while it is housed in the actuator (Fig. 4). The
principle of operation of the laser sensor is as follows: A laser beam
generated by the sensor is incident upon areflective surface (the piece
of silicon serves this purpose) on the diaphragm. The reflected beam
returns through the same sensor opening, whereupon it passes
through an optical system and is projected on photodiodes. As the
target moves back and forth, the position of the reflected beam
translates on the photodiode surface from which this translation is
correlated to the motion of the target through calibration. The
calibration of the sensor is conducted as such: With the sensor
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attached to a movable automated stage and the diaphragm fixed in a
particular location, the laser is moved in increments of 1 pm toward
the diaphragm, with the signal response measured at each location.
This nonlinear displacement-response curve then serves as the
calibration curve. To make measurements, the laser is positioned at
the location that allows for the largest sensitivity over the measurable
range. To estimate the overall measurement accuracy of the laser, the
uncertainties associated with stage position, sensor resolution,
calibration, and experimental repeatability were taken into account.
For a typical value, the total combined uncertainty was estimated by
the root sum square to be 1 pm.

The laser measurements were further validated using a noncontact
inductance displacement sensor. The inductance sensor works on the
principle that when a metal target (brass shim of the diaphragm) is
introduced into the electromagnetic field emitted by the inductive
sensor, a change in field strength is observed. This change is then
registered as an output through the use of electronic circuitry, in
which the proximity of the target to the sensor effects the output
voltage. Through means of calibration, the output voltage is inter-
preted as a deflection.

IV. Results and Discussion

First, results of the dynamic response of the piezoelectric
membrane are presented, following which the external flowfield is
characterized.

60 T T T T T

a0t .« i

30+

°_/
VN U

0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
f(Hz)
Fig. 8 The dependence of the dynamic deflection response (A) at the

center of the piezoelectric membrane on driving frequency (actuator 1,
V,=10 V).
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Vg (V)
Fig. 9 The dependence of the dynamic deflection response at the center
of the diaphragm on driving voltage (actuator 1, f = 1600 Hz).

Table 2 Test Matrix for actuator 1, displaying the
driving frequency f, voltage V,, and corresponding
nondimensional actuator parameters L/d and Re

Case no. f Vy L/d Re

1 1600 20 3.9 1324
2 1600 30 52 1765
3 1600 40 6.1 2070
4 1600 50 7.0 2376
5 1480 50 4.0 1256
6 1720 50 3.9 1460

A. Diaphragm Deflection

A synthetic jet with a cavity-diaphragm setup is a coupled system
consisting of an electromechanical domain in the form of the
diaphragm and a fluidic/acoustic domain in the form of the resonant
cavity. The system may be thought to possess two fundamental
frequencies: one associated with the resonant frequency of the
diaphragm and the other with the Helmholtz frequency of the cavity.

To determine the fundamental frequencies of the system, the
driving voltage was fixed and the frequency was swept in intervals of
20 Hz over the range of 0-3000 Hz, with the laser sensor measuring
the central dynamic response of the membrane. Figure § shows the
frequency response for actuator 1 operating at 10 V, where three
peaks are seen. The first peak may be associated with the acoustic
resonant frequency of the cavity. From analytical calculations of the
fundamental frequency of a clamped circular plate [34], the second
peak at 1600 Hz is associated with the diaphragm resonant frequency
in mode (0,1) and is additionally observed to maximize the exit mean
velocity downstream of the orifice.

Next, the effect of the driving voltage at a fixed frequency was
studied. With the frequency fixed at 1600 Hz, the driving voltage was
swept over the range of O to 50 V in intervals of 2.5 V. The dynamic
response is seen to increase with an increase in driving voltage
(Fig. 9). With the other actuators, similar trends in the frequency and
amplitude response were observed as well.

The preceding deflection results permit the selection of the
frequency that maximizes the membrane deflection and provides the
centerline deflection of the membrane, which serves as an input to the
actuator model described. As seen from the frequency response
curve, the amplitude of vibration and frequency are tied in together
and thus do not permit the study of the effect of frequency
independently of amplitude over a wide range. With the preceding
constraint in mind, experiments with varying driving parameters
were conducted, and the test matrix for actuator 1 is summarized in
Table 2. For cases 1 through 4, the driving frequency was fixed at
1600 Hz (the frequency that maximized the exit velocity) with the
driving voltage varied, resulting in a variation in both stroke ratio and
Reynolds number. Cases 5 and 6 were both run at a voltage of 50V, at
two different frequencies that resulted in the same stroke ratio but
different Reynolds numbers. The latter two cases were conducted to
evaluate the effect of Reynolds number on the external flow.

B. External Flowfield
1. Schlichting Model

Figure 10 shows the streamwise development of the centerline
mean velocity u,. of the jet for test cases 1 through 4 for actuator 1.
Two regions are clearly observed: the first region (referred to as the
developing region) is where the velocity is seen to either increase (as
in case 1) or remain constant. The second region (referred to as the
developed region) exhibits a decay in velocity. Because of the
limitations of the single hot-wire probe in highly oscillatory flow,
measurements closer than that reported could be not be trusted.
However, other workers [35] have reported an initial increase in
velocity close to the orifice and have attributed this to the acceleration
of the flow due to the presence of a standing vortex ring at the orifice
[17,35].

Figure 11 shows the centerline decay, and the streamwise distance
is scaled by the stroke length for each case. The extent of the
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Fig. 10 The evolution of the mean centerline velocity u, with
streamwise distance x/d for different test cases (see Table 2 for details
on cases).
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Fig. 11 Variation of centerline velocity with the scaled axial distance
x/L, showing the extent of the developing region scaling with stroke
length.

developing region is now clearly seen to scale with stroke length, and
in about 1.5 stroke lengths, the mean velocity starts to decay,
signaling the start of jetlike behavior. This can be reasoned as
follows. The spacing between individual vortex rings is proportional
to stroke length [36]; thus, an increase in stroke length makes for a
longer distance over which the initial interaction of rings takes place.
This scaling of the extent of the developing region was noticed in the
other actuators as well; however, the size of this region varied from
actuator to actuator.

In the developed region, to demonstrate the self-similarity as
inferred from the mean flow, Fig. 12 presents the normalized mean
velocity profiles at different axial locations downstream of the orifice
for case 3. The velocity is scaled by the centerline velocity u., and the
radial distance is scaled by the axial distance from the virtual origin of
velocity x, . Within a few diameters of the orifice, the jet begins to
spread and slow down. The scaled velocity profiles appear to collapse
rather well onto a Gaussian-like profile; however, it appears that the
profile closest to the orifice [(x —x,,)/d =5.9] exhibits some
deviation, suggesting that the jet has not fully reorganized itself or
developed at this streamwise location.

With the self-similar behavior established in the developed region,
the variation of the centerline mean velocity with axial distance may

be expressed as
U X=X
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Fig. 12 Normalized streamwise velocity profiles u/u. at different
streamwise distances from the virtual origin x,, in cylindrical
coordinates.

where K, is a scaled measure of the decay rate of the jet, and x,, , is the
axial location of the virtual origin of U, / U... It was mentioned earlier
that the actuator exit momentum flux is not equal to the momentum
flux of the synthetic jet at the streamwise location at which self-
similarity is achieved. However, we continue to use the exit
momentum flux (or otherwise, U,) to scale the jet, as the asymptotic
value of the momentum flux is not readily available.

The dependence of K, and x,, on L/d is shown in Fig. 13, in
which both the decay rate and location of the virtual origin increase
with stroke ratio. The increasing trend in decay rate is observed in the
other actuators as well; however, the rates of increase differ, possibly
due to different geometries and subsequent initial conditions at the
orifice (Fig. 14). In evaluating the effect of Reynolds number on the
decay rate, it was observed that cases 5 and 6 (see Table 2), which
have similar stroke ratios (L/d ~4) and different Reynolds
numbers, resulted in the same decay rate as in case 1. Although the
variation in Reynolds number is only about 14%, the results suggest
that the centerline velocity decay is independent of Reynolds
number, as other workers have reported over a wider range of
Reynolds number [19,35].

The growth of the jet is characterized by the spreading rate that
may be expressed as

bip X = Xop
=K |—=22 20
y b p (20)
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Fig. 13 Dependence of decay rate K, (O) and location of the virtual
origin x, , (CJ) on stroke ratio.
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where b, , is the half-width of the jet, K, is the scaled spreading rate
of the jet, and x, ;, is the location of the virtual origin based on the jet
width.

The variation in width of the jet (case 3) in the streamwise direction
is shown in Fig. 15, in which a linear trend is seen. As seen in Fig. 16,
the spreading rates increase with stroke ratio for all of the actuators, in
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0 . . .
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Fig. 15 Linear variation of jet width b, , in the streamwise direction in
cylindrical coordinates.
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Fig. 16 Dependence of spreading rate K, on stroke ratio, where K,
increases with L/d, however, at different rates depending on the
actuator.

which the dependence on the actuator geometry is once again
evident. In all cases seen here, the spreading rate of the synthetic jet
exceeds that of continuous turbulent jets. Once again, cases 5 and 6
resulted in the same spreading rate as case 1, giving further credence
to the lack of dependence of the aforementioned flow parameters on
Reynolds number.

Figure 17 presents the variation of the calculated virtual viscosity
[Eq. (8)] of the three actuators with stroke ratio. The eddy viscosity of
the equivalent continuous jet is also shown for comparison. Synthetic
and continuous jets of the same exit diameter d are considered to be
equivalent in this investigation, based on momentum flux; otherwise,
if the steady bulk exit velocity of a continuous jet is equal to the mean
velocity of a synthetic jet, it is calculated as U, = +/2fL. The eddy
viscosity of the synthetic jet is seen to far exceed that of continuous
jets. The effect of employing a velocity scaling based on mass flux is
to reduce the eddy viscosity, as reported in Fig. 17, by a factor of V2.
With the eddy viscosity encompassing the capacity to transfer
momentum to the surrounding fluid, it appears that the periodic
nature of a synthetic jet greatly increases the momentum transfer in
comparison with continuous jets. This higher eddy viscosity of the
synthetic jet makes it appropriate for applications in which changes
in the surrounding fluid are desired, as in fluid mixing or flow con-
trol. With the interaction of large-scale coherent vortical structures
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Fig. 17 Dependence of eddy viscosity ¢ on stroke ratio for three
actuators, with the eddy viscosity of equivalent turbulent continuous jets
shown for comparison.

(x-xo,u)/d

59
12.6
14.6
16.6
18.6
226
—8J
-—--CJ

u/u

Fig. 18 Comparison of the analytical Schlichting model with experi-
mental normalized velocity profiles. The solution for the synthetic jet is
show in a solid line, and for comparison purposes the solution for a
continuous turbulent jet is shown in a dashed line.
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primarily responsible for mixing and spreading in the near field, it
may be argued that an increase in stroke length increases the volume,
impulse, and energy associated with issuing vortex rings, thereby
enhancing the interactions and mixing in the jet.

Equation (3), along with the empirically determined virtual
viscosity, models the mean streamwise velocity profile, as shown in
Fig. 18. The velocity profile of a continuous turbulent jet of equi-
valent momentum flux with a spreading rate of 0.1 is presented for
comparison. Here, we explicitly see the enhanced mixing present in
the synthetic jet in comparison with a continuous jet. The Schlichting
model approximates the data well, validating the eddy viscosity
replacement hypothesis.

To further reinforce the enhanced momentum transfer in synthetic
jets, the axial development of turbulence intensity is presented in
Fig. 19. In the developing region, extremely high turbulent intensities
have been reported [35]. However, beyond the developing region, as
seen from the plot, the turbulent intensity decreases in the streamwise
direction and appears to asymptote to a turbulent intensity that
increases with stroke length. This further suggests that the influence
of the increased stroke ratio is felt not only in the mean velocity but
also in the turbulent components. It is known that when the
turbulence intensity is high (greater than 30%) or when flow reversal
occurs, significant errors are introduced in using a single hot-wire
[37]. From Fig. 19, the region in which the hot-wire results may be
thought to be valid based on the preceding turbulence intensity
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Fig. 19 Variation of the centerline streamwise turbulent intensity u’ /u,
with axial distance for different test cases (see Table 2 for details on
cases).
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Fig. 20 Normalized streamwise turbulence intensity profiles at
different streamwise distances from the virtual origin in cylindrical
coordinates, in which the intensity profiles continue to develop.

criteria varies with the L/d. Thus, as L/d increases, the axial
distance beyond which the hot-wire results may be thought to be
quantitatively valid increases as well. Thus, for L/d = 3.9, the
distance at which u'/u.<0.3 is approximately 20d, and for
L/d =1,itis 28d. As mentioned earlier, measurements made before
the preceding axial locations may be interpreted qualitatively or
understood to be subject to errors associated with high turbulence
intensity.

Figure 20 shows the streamwise turbulent intensity profiles in
which the turbulent fluctuations and lateral distance are normalized
by the centerline velocity and streamwise distance from the virtual
origin, respectively. As may be inferred from Fig. 19, in the
streamwise range shown in Fig. 20, the turbulent intensity profiles are
still evolving and have not yet reached a self-similar state. This is
quite like other shear flows, in which the higher-order moments
become self-similar further downstream, in comparison with the
mean velocity, as the turbulence reacts more slowly to local
conditions [38].

2. Landau—Squire Model

As discussed, the Schlichting jet solution (which is a solution to
the boundary-layer equations in cylindrical polar coordinates)
models the velocity profiles of the synthetic jet in the far field, with
the use of an empirically determined virtual viscosity. The Landau—
Squire model, which is a solution to the Navier—Stokes equations in

16 r - -
o (x-xo'u)/d
14 1
5.9
12 } o o 126
+ 146
10 b 16.6 |
D o v 18.6
E s8to 226 |
s °5
T+
64, + 0 1
vavv++>l ©
4t Vst o J
vvé? o
o V#%ﬂ (¢} _
. o
v%’Vrj"vﬂ +j(?mo o o o
0 . 0 0 o O 0o
0 0.2 0.4 0.6 0.8 1
0

Fig. 21 Radial velocity profiles of a synthetic jet, in spherical polar
coordinates, at different radial stations downstream of the orifice.
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spherical polar coordinates, is seen to be equally agreeable to
modeling the experimental data. Figure 21 shows the radial velocity
profiles at different radial locations. With the profiles presented in
spherical polar coordinates, the jet, as expected, is seen to slow down
and spread. The centerline decay is identical to that shown in Fig. 10,
as the radial (in spherical system) and axial (in cylindrical system)
coordinates are coincident at the centerline, thus leading to the same
decay rates K, as shown in Fig. 14. The variation in half-spreading
angle with radial distance downstream of the orifice is seen to remain
fairly constant.

If the radial velocity and polar angle are normalized as suggested
by Eq. (9), the velocity profiles at different radial locations collapse
onto a single curve (Fig. 22). By using the measured decay rate and
spreading angle, the eddy viscosity is obtained through Eq. (12),
following which the analytical velocity profile is obtained from
Eq. (9). As seenin Fig. 22, the analytical solution agrees well with the
experimental data, in which the turbulent continuous jet was seen to
be narrower than an equivalent synthetic jet. Thus, it is possible to
conclude that the Landau—Squire model is equally accommodating
to modeling the far field of a synthetic jet.

V. Conclusions

The external flowfield of a round synthetic jet was studied using
hot-wire anemometry. Two regions, as distinguished by the center-
line velocity, were observed: an initial developing region in which
coherent periodic vortex rings exist and start to interact and a
developed region in which the vortical structures break down to
turbulence and the jet exhibits characteristics of a round continuous
turbulent jet. The extent of the developing region is seen to scale with
the stroke length while changing from one actuator to another. In the
developed region, the mean velocity profiles exhibit self-similar
behavior, with the centerline velocity decaying as x~! and jet width
increasing as x, just as with a continuous turbulent jet. This similitude
to continuous jets leads to the hypothesis that the synthetic jet may be
modeled as a continuous turbulent jet using self-similar solutions,
with the replacement of the eddy viscosity of a turbulent jet with that
associated with a synthetic jet. The synthetic jet is modeled using
both the Schlichting solution to boundary-layer equations in
cylindrical polar coordinates and the Landau—Squire solution to the
Navier-Stokes equations in polar coordinates. It is further shown
that, similar to a continuous turbulent jet, the eddy viscosity of a
synthetic jet can be obtained from the spreading and decay rates of
the jet. The experiments on the flowfield validate this hypothesis,
further showing that the eddy viscosity of the synthetic jet is larger
than an equivalent turbulent jet. In this study, synthetic and turbulent
jets are considered to be equivalent, based on the sameness of
momentum flux. This enhanced eddy viscosity is attributed to the
additional mixing brought about by the initial introduction of the
periodic vortical structures and their ensuing breakdown and
transition to turbulence. Therefore, by using the adjusted value of the
virtual viscosity, the theoretical models of a continuous turbulent jet
may still be used to model a periodic synthetic jet. The velocity decay
rate and spreading rate of synthetic jets are observed to increase with
stroke ratio while being independent of Reynolds number within the
limited range investigated. The geometry of the actuator is, however,
seen to have an impact on the decay and spreading rates by means of
influencing the initial conditions at the orifice. This dependency of
spreading and decay rate on stroke ratio is accredited to the increased
impulse, energy, and subsequent enhanced interactions of individual
vortex rings emerging from the orifice as the stroke ratio increases. In
summary, the semi-analytical method proposed here for synthetic
jets connects the external flowfield, as characterized by the spreading
rate K, and velocity decay rate K, to the actuator input driving
functions V,; and f via the actuator parameters L/d and Re.
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