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A Dynamic Procedure for the Lagrangian

Averaged Navier-Stokes-α Model of Turbulent Flows
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A dynamic procedure for the Lagrangian Averaged Navier-Stokes-α (LANS-α) equa-
tions is developed where the variation in the parameter α in the direction of anisotropy is
determined in a self-consistent way from data contained in the simulation itself. In order
to derive this model, the incompressible Navier-Stokes equations are Helmholtz-filtered at
the grid and a test filter levels. A Germano type identity is derived by comparing the
filtered subgrid scale stress terms with those given in the LANS-α equations. Assuming
constant α in homogenous directions of the flow and averaging in these directions, results
in a nonlinear equation for the parameter α, which determines the variation of α in the
non-homogeneous directions or in time. Consequently, the parameter α is calculated dur-
ing the simulation instead of a pre-defined value. In order to evaluate the applicability of
the dynamic LANS-α model in anisotropic turbulence, a priori test of a turbulent channel
flow is performed. It is found that the parameter α changes in the wall normal direction.
Near a solid wall, the length scale α is seen to depend on the distance from the wall with a
vanishing value at the wall. On the other hand, away from the wall, where the turbulence
is more isotropic, α approaches an almost constant value. Furthermore, the behavior of
the subgrid scale stresses in the near wall region is captured accurately by the dynamic
LANS-α model. The dynamic LANS-α model has the potential to extend the applicability
of the LANS-α equations to more complicated anisotropic flows.

I. Introduction

Turbulent flows play an important role in many areas of engineering fluid mechanics as well as atmo-
spheric and oceanic flows. Accurate simulation of a turbulent flow requires that the energetics of the

large scale energy containing eddies, dissipative small scales, and inter-scale interactions to be accounted
for. In direct numerical simulations (DNS) all the involved scales are directly calculated. DNS is believed
to provide the most comprehensive representation of the governing equations of fluid flows; the so-called
Navier-Stokes (NS) equations. Owing to the very high Reynolds numbers encountered in most problems of
interest, the disparity between the large scales and small scales, which represents the computational size of
the problem, rapidly grows with the Reynolds number. Consequently, DNS can resolve only a small fraction
of the turbulent activity for high Reynolds number flows.

While the direct numerical simulation of most engineering flows seems unlikely in near future, turbulence
modeling could provide qualitative and in some cases quantitative measures for many applications. Large
Eddy Simulations (LES) and the Reynolds Averaged Navier-Stokes Equations (RANS) are among the nu-
merical techniques to reduce the computational intensity of turbulent calculations. In LES, the dynamics
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of the large turbulence length scales are simulated accurately and the small scales are modeled. The vast
majority of contemporary LES make use of eddy-viscosity based Subgrid-Scale (SGS) models in conjunction
with the spatially-averaged (filtered) Navier-Stokes Equations. In this approach, the effect of the unresolved
turbulence is modeled as an effective increase in the molecular viscosity. On the other hand, RANS models
are obtained by time averaging the Navier-Stokes equations. In this case most of the unsteadiness is averaged
out. Consequently, the time mean quantities are calculated while the faster scale dynamics are modeled.
RANS simulations are often more affordable than LES, however, their accuracy is somewhat limited in many
applications.1

More recently, Holm, Marsden and their coworkers2 introduced a Lagrangian averaging technique for the
mean motion of ideal incompressible flows. Unlike the traditional averaging or filtering approach used for
both RANS and LES, where the Navier-Stokes equations are averaged or spatially filtered, the Lagrangian
averaging approach is based on averaging at the level of the variational principle. In the isotropic Lagrangian
Averaged Euler-α (LAE-α) equations, fluctuations smaller than a specified scale α are averaged at the level of
the flow maps.3 Mean fluid dynamics are derived by applying an averaging procedure to the action principle
of the Euler equations. Both the Euler and the Navier-Stokes equations can be derived in this manner
(see Marsden & Ratiu4 for a variational derivation of the Euler equations). The usual Reynolds Averaged
Navier-Stokes (RANS) or LES equations are then obtained through the subsequent application of either
a temporal or spatial average. The critical difference with the Lagrangian averaging procedure is that the
Lagrangian (kinetic energy minus potential energy) is averaged prior to the application of Hamilton principle
and a closure assumption is applied at this stage. This procedure results in either the Lagrangian averaged
Euler Equations (LAE-α)a or the Lagrangian averaged Navier-Stokes Equations (LANS-α), depending on
whether or not a random walk component is added in order to produce a true molecular diffusion term.
Since the Hamilton principle is applied after the Lagrangian averaging is performed, all the geometrical
properties (e.g. invariants) of the inviscid dynamics are retained even in the presence of the model terms
which arise from the closure assumption.2,5, 6 For instance, LAE equations posses a Kelvin circulation
theorem. Thus it is potentially possible to model the transfer of energy to the unresolved scales without an
incorrect attenuation of quantities such as resolved circulation. This is an important distinction for many
engineering and geophysical flows where the accurate prediction of circulation is highly desirable.

Numerical simulations by Chen et al7 and Mohseni et al8 showed the capability of the LANS-α equations
in simulating isotropic homogenous turbulence. However, most engineering and geophysical flows of interest
are often anisotropic. For example, due to rapid damping of turbulent fluctuations in the vicinity of a
wall, the application of the isotropic LANS-α equations with a constant α is not appropriate for long term
calculations. In order to capture the correct behavior in such systems the parameter α must be spatially
or/and temporally varied in the direction of anisotropy,9 i.e. wall normal direction. There has been some
attempt (with limited success) in order to remedy this problem. A successful dynamic LANS-α model is yet
to be formulated and tested. There are at least two approaches to anisotropy in the LANS-α equations:

(i) To derive a set of anisotropic LANS-α equations. See alternative derivations in.6,10

(ii) Use the isotropic LANS-α equations, but with a variable α to compensate for the anisotropy.

At this point much more work must be done on the anisotropic LANS-α equations before they can be applied
to practical problems. The second approach listed above is what will be explored in this study.

This paper is organized as follows: The isotropic LANS-α equations and some of their main features are
summarized in section II. A dynamic LANS-α approach is proposed in section III where the variation in the
parameter α in the direction of anisotropy is determined in a self-consistent way from the data contained in
the simulation itself. Our approach will be developed in the same spirit as the dynamic modeling procedure
for conventional LES11,12,13,14 which has achieved widespread use as very effective means of estimating model
parameters as a function of space and time as the simulation progresses. The incompressible Navier-Stokes

aIn this nomenclature, α is used to denote the filtering scale (i.e. the simulation faithfully represents motions on a scale
larger than α).
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equations are Helmholtz-filtered at the grid and a test filter levels. A Germano type identity is derived by
comparing the filtered subgrid scale stress terms with those given in the LANS-α equations. Considering a
constant value of α and averaging in the homogenous directions of the flow results in a nonlinear equation
for the parameter α, which determines the variation of α in the non-homogeneous directions or time. This
nonlinear equation is solved by an iterative technique. Consequently, the parameter α is calculated during
the simulation instead of a fixed and pre-defined value.

Numerical techniques for simulating the dynamic LANS-α model in this study are described in section
IV. In order to demonstrate the applicability of the dynamic LANS-α model of this study in anisotropic
flows, a priori test of turbulent channel flows are performed in section V. Concluding results are presented
in section VI.

II. The Isotropic LANS-α Equations

The incompressible isotropic LANS-α equations for the large scale velocity u are given by (see2 for a
derivation)

∂u

∂t
+ (u · ∇)u = −∇p +

1
Re

∆u +∇ · τ(u), (1)

∇ · u = 0, (2)

where Re is Reynolds number and τ(u) is the subgrid stress tensor defined as3

τ(u) = −α2(1− α2∆)−1
[
∇u · ∇uT −∇uT · ∇u +∇u · ∇u +∇uT · ∇uT

]
. (3)

The subgrid scale stress τ(u) is in fact the momentum flux of the large scales caused by the action of smaller,
unresolved scales. Here α is a constant length scale introduced during the averaging process. Note that for
vanishing parameter α the NS equations will be recovered.

The LANS-α equations can be represented equivalently by

∂v

∂t
+ (u · ∇)v + vj∇uj = −∇P +

1
Re

∆v, where vi is defined as v = u− α2∆u. (4)

The modified pressure P in these equations is determined, as usual, from the incompressibility condition:
∇ · u = 0 and ∇ · v = 0.

One interpretation for the equations (1) is that they are obtained by averaging the Euler equations in
Lagrangian representation over rapid fluctuations whose scale are of order α. In this respect, one can show
that the Lagrangian averaged Euler equations can be regarded as geodesic equations for the H1 metric on the
volume preserving diffeomorphism group, as Arnold15 did with the L2 metric for the Euler equations. Note
that in calculating the SGS stress τ(u) in equation (3) one needs to calculate the inverse of the Helmholtz
operator (1−α2∆), which implies the need to solve a Poisson equation. While efficient numerical treatment
of the Poisson equation, or its possible elimination through rational approximation will be a focus of a future
publication, we note, in passing, that the inverse of the Helmholtz operator can be expanded in α to higher
orders of the Laplacian operator as shown in below

(1− α2∆)−1 = 1 + α2∆ + α4∆2 + · · · if αλmax < 1 (5)

where λmax is the highest eigenvalue of the discretized operator ∆. It should be noted that in a periodic
domain one can easily convert the equation

(1− α2∆)−1v = u (6)

to
v̂ =

1
1 + α2k2

û (7)
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in Fourier space. Where k is the wavenumber in Fourier space.
Now using the Taylor expansion on the right hand side one can obtain

1
1 + α2k2

= 1− α2k2 + α4k4 − · · · if α2k2 < 1 (8)

In the case of numerical discretization of ∆ the convergence condition is reduced to α2k2
max < 1 where kmax

is the highest wavemode captured in the simulation. Note that α is the cutoff scale of the Helmholtz inverse
filter. Therefore, 1/α is the highest wavemode captured accurately by the LANS-α model. The promise of
the LANS-α equations is to capture the large scales (< 1/α) accurately, while the small scales are modeled.
To this end, the condition α2k2 < 1 must hold in any accurate simulation using the dynamic LANS-α
equations. As a result, one can avoid solving a Poisson equation to invert the Helmholtz operator using the
expansion (5).

It is interesting to note that the Lagrangian averaging technique preserves the Hamiltonian structure of
the governing equations in the inviscid limit while the effects of small scales on the macroscopic features of
large scale are taken into account in a conservative manner. The Hamiltonian and Lagrangian formulations of
ideal fluids are both basic and useful. These formulations are part of a more general framework of geometric
mechanics, which plays a vital role in the development of new continuum models suited for computation,
as well as numerical algorithms that preserve structure at the discrete level. In recent years the geometric
approach to fluid mechanics has been quite successful. Geometrical methods provide a framework for the
study of nonlinear stability,16 variational integrators,17,18 statistical equilibrium theory,19,20 and many other
interesting topics in fluid dynamics. The Lagrangian averaged Navier-Stokes-α uses ideas from geometric
mechanics and offers a theoretically and computationally attractive approach to the turbulence closure
problem.

III. Derivation of a Dynamic LANS-α Model

The LANS-α equations for the large scale velocity u are given by equations (1), where τ(u) is the subgrid
stress tensor defined in (3). This set of equations for α is similar to the grid filtered equation in the dynamic
LES.

In analogy with the dynamic LES one can obtain an equation for the filtering length scale, α, by filtering
the Navier-Stokes equations

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui

∂xj∂xj
, (9)

with the Helmholtz related filters

ū = (1− α2∆)−1u, grid filter, (10)
ˆ̄u = (1− α̂2∆)−1(1− α2∆)−1u, test filter, (11)

to obtain
∂ūi

∂t
+

∂ūiūj

∂xj
= − ∂p̄

∂xi
+

1
Re

∂2ūi

∂xj∂xj
− ∂τij

∂xj
, (12)

∂ ˆ̄ui

∂t
+

∂ ˆ̄ui ˆ̄uj

∂xj
= − ∂ˆ̄p

∂xi
+

1
Re

∂2 ˆ̄ui

∂xj∂xj
− ∂Tij

∂xj
, (13)

where

τij = uiuj − ūiūj ,

Tij = ûiuj − ˆ̄ui ˆ̄uj .
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Using an idea similar to Germano identity,11 we define

Lij = Tij − τ̂ij = ̂̄uiūj − ˆ̄ui ˆ̄uj , (14)

where the subgrid scale stresses under two filtering actions can be modeled by the LANS-α subgrid term in
equation (3). Therefore,

τij = α2(1− α2∆)−1Mij , (15)

Tij = α̂2(1− α̂2∆)−1Nij , (16)

where

Mij =
∂ūi

∂xk

∂ūj

∂xk
− ∂ūk

∂xi

∂ūk

∂xj
+

∂ūi

∂xk

∂ūk

∂xj
+

∂ūj

∂xk

∂ūk

∂xi
,

Nij =
∂ ˆ̄ui

∂xk

∂ ˆ̄uj

∂xk
− ∂ ˆ̄uk

∂xi

∂ ˆ̄uk

∂xj
+

∂ ˆ̄ui

∂xk

∂ ˆ̄uk

∂xj
+

∂ ˆ̄uj

∂xk

∂ ˆ̄uk

∂xi
.

Combining equations (14)-(16), one obtains

Lij = β2α2(1− β2α2∆)−1Nij − α2(1− β2α2∆)−1(1− α2∆)−1Mij , (17)

or
Lij = α2(β2N̂ij − ˆ̄M ij), (18)

where β = α̂/α. Multiplying both sides of the above equation by Sij , to yield

LijSij = α2(β2N̂ij − ˆ̄M ij)Sij . (19)

Taking spatial averaging of both sides of the above equation in homogenous directions, one obtains

α2 =
〈LijSij〉

〈(β2N̂ij − ˆ̄M ij)Sij〉
, (20)

where

Sij =
1
2

(
∂ūi

∂xj
+

∂ūj

∂xi

)
. (21)

The denominator in equation (20) could approach zero, where it creates a singularity. In dynamic LES,
Lilly21 used a least square approach to eliminate the singularity in Germano’s model. By a similar least
square approach a nonlinear equation for α could be found as

α2 = F (α) =
〈Lij(β2N̂ij − ˆ̄M ij)〉

〈(β2N̂ij − ˆ̄M ij)(β2N̂ij − ˆ̄M ij)〉
, (22)

which does not have the singularity problem as in equation (20). This is a nonlinear equation for α. All the
quantities in equation (22) can be calculated during a LANS-α simulation. Therefore, equation (22) provides
a nonlinear equation for dynamically calculating the value of α during the simulation.

At this point the potential values for the free parameter β are required. Writing the grid and test filters
in equations (10) and (11) in the Fourier space, one obtains

ˇ̄u =
ǔ

1 + α2k2
, (23)

and
ˇ̂̄u =

ǔ

(1 + β2α2k2)(1 + α2k2)
≈ ǔ

1 + (β2 + 1)α2k2
=

ǔ

1 + α̃2k2
as k →∞, (24)
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Figure 1. The positions of grid and test filter scales on the turbulent kinetic energy spectrum.

where (̌·) stands for variables in the Fourier space, k is the wavenumber, and α̃ corresponds to filter scale
for the test filter. Since α̃ =

√
1 + β2α ≥ α, one can realize that as long as β > 0, the test filter have a

larger filter scale than the grid filter. Figure 1 shows the relative positions of the grid filter scale α and
the test filter scale α̃ on a schematic of the energy spectrum for a high Reynolds number flow. In order to
accurately model the subgrid scale stress, both the grid filter and the test filter scales must be located in the
inertial sub-range of the energy spectrum. It should be pointed out that the iterative calculation required in
equation (22) does not require new flow field calculations, and the iteration at each time step is carried out
using the existing flow field at the same time step. Similar to the dynamic LES model, the present dynamic
LANS-α model has a free parameter β, which is related to the characteristic length scale of the grid and test
filters.

The dynamic α model given in equation (22) is designed to capture the length scale variations in space
and time. The capability of this model in the simulation of isotropic homogenous turbulence, where α is
regarded as a constant in space and changes only in time, has been tested by Zhao et al .22 Aside from the
isotropic homogenous turbulent flows, it is well suited for anisotropic flows such as wall bounded turbulence
or mixing flow turbulence, where the turbulence length scales could change in space or in time. In cases
where there are directions of homogeneity, such as the streamwise and spanwise direction in a channel flow,
one can average the parameter α over the homogeneous directions. In a more general situation, we expect
to replace the plane average, used in the channel flow, by an appropriate local spatial or time averaging
scheme.

IV. Numerical Method

A priori test of the dynamic LANS-α procedure in a turbulent channel flow is investigated. DNS data
from del Álamo and J. Jiménez23 are employed for the a priori test. The computational domain in this
case, normalized based on the half channel height, is spanned 8π in the streamwise and 4π in the spanwise
directions. The spatial derivatives are calculated by the pesudospectral method in streamwise and spanwise
directions and by the Chebychev-tau technique in the wall normal direction. Similar computational tech-
niques have successfully been used for the DNS of channel flows by Kim et al24 and Moser et al .25 Grid and
test filters of Helmholtz types are applied in both streamwise and spanwise directions. A grid Helmholtz type
filter is applied in the wall normal direction at a fixed α value to filter the DNS data to a specific precision
in this direction so that the SGS stresses get no oscillations in the near wall region. No explicit test filters
are applied in the wall normal direction. α is assumed to be constant in the homogenous directions, i.e. the
streamwise and spanwise directions, in order to solve the nonlinear equations (20) or (22). These equations
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are solved by an iterative technique. The α is regarded as converged when the difference of its values at two
consecutive iterations is less than 10−5. The converged α values at each layer is used as an initial value for
the iteration at the next grid layer. Since both the mean flow and the flow perturbations vanish at the wall,
singular behavior might occur in these equations. This can be easily fixed by starting the a priori test a few
grid points away from the wall. In actual simulation of the dynamic LANS-α equations, one can explicitly
put α to zero below in the immediate vicinity of a wall when the value of α drops below a threshold.

V. Results and Discussions

Capabilities of the dynamic LANS-α model of the previous sections are examined in turbulent channel
flows. A priori test of the dynamic LANS-α model is carried out in order to determine the accuracy of the
model in predicting the SGS stresses and the energy dissipation rates in a wall bounded flow. The tests are
performed on a DNS data of del Álamo and Jiménez23 for a turbulent channel flow. The turbulence Reynolds
number, based on the wall friction velocity, is Reτ = 550 and the computational grid is 1536×257×1536 in the
streamwise, wall normal, and spanwise directions, respectively. After dealiasing the physically relevant part
of the computational domain reduces to 1024× 257× 1023. The mean velocity profile, non-dimensionalized
by the wall-shear velocity, is depicted in Figure 2(a), where a log layer from y+ ≈ 80 to 220 is observed.
Figure 2(b) shows the turbulence intensity profiles from the wall to the middle of the channel in global
coordinate which is normalized by half channel height δ. Maximum turbulence intensities in all directions
are located in the wall layer.
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Figure 2. DNS results of a turbulent channel flow at Reτ = 550 from del Álamo and Jiménez.23 (a) The mean
velocity profile, (b) Root-mean-square velocity fluctuations in global coordinates.

Figure 3 shows the variation of α with the distance from the wall in both global and wall coordinates for
β = 1.0. As demonstrated in Figure 3(b), α values experience a sharp increase in the vicinity of the wall up
to y+ = 10. This region of sharp increase in the value of α contains viscous sublayer. Diminishing values
of α is observed as one approaches the wall. This is consistent with theoretical expectations that the NS
equations ought to be recovered in the laminar layer at the wall. Away from the wall and beyond y+ = 10, α
shows slow decreasing then increasing across the channel. It is known that the SGS stresses will essentially
approach zero in the middle of the channel, therefore, the small variation of α value in the middle of the
channel has little influence on the SGS stresses. One can argue that the dynamic LANS-α equations in this

7 of 10

American Institute of Aeronautics and Astronautics Paper 2005-0501



case divides the flow into two distinct regions: a near wall region that includes the viscous sublayer where
α is a function of the distance from the wall, and a constant α region which includes the buffer layer, log
layer and the outer layer. In the near wall region α keeps an almost log relation with the distance from the
wall in wall units. In summary, one can argue that in wall bounded flows, the isotropic LANS-α calculations
could be used with a constant α beyond y+ = 10 and with a logarithmic relation in the near wall region.
This projection requires further investigation in LANS-α calculations.
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Figure 3. Variation of α with distance from the wall in (a) global, and (b) wall units.

Similar to the dynamic LES, one expects that the accuracy of the dynamic LANS-α model to depend
on its capability of accurately modeling the SGS stresses. The modeled and the exact SGS stresses in this
flow are shown in Figure 4 for the shear stress component < τ12 >, where < · > stands for averaging in
streamwise and spanwise directions. The general trend of the SGS stresses are captured in the dynamic
LANS-α model without any ad hoc damping function even though the dynamic model underestimates the
shear component of the SGS stresses. The SGS stresses vanish at the wall and in the middle of the channel
with a maximum value within the wall layer. The exact and modeled dissipation < εsgs > are compared in
Figure 5. It is shown that the dissipation is captured accurately by the dynamic LANS-α model in the near
wall region.

VI. Conclusions

A dynamic LANS-α model is proposed where the variation in the parameter α in the direction of
anisotropy is determined in a self-consistent way from data contained in the simulation itself. The model
results in a nonlinear equation for α.

A priori test of the dynamic LANS-α model in a channel flow is carried out, where good agreement
between the dynamic LANS-α predictions and the DNS data is observed. The parameter α is found to
rapidly change in the wall normal direction in the vicinity of the wall. Near the solid wall, the length scale α
shows a logarithmic dependence on the wall normal direction in wall units. Away from the wall, and in the
middle of the channel, α approaches an essentially constant value. As a result, the turbulent flow is divided
into two regions: a constant α region away from the wall and a near wall region. In the near wall region,
α keeps an almost logarithmic relation with the distance from the wall. Consequently, one can argue that
in wall bounded flows, the isotropic LANS-α calculations could be used with a constant α beyond y+ = 10
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Figure 4. The averaged subgrid scale shear stress < τ12 > in global units.

and with a logarithmic relation in the near region. These results indicates a promising application of the
dynamic LANS-α model in wall bounded turbulent flow simulations.
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