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Abstract
Themovements of organisms can be thought of as aggregations ofmotion primitives:motion
segments containing one ormore significant actions. Here, we present ameans to identify and
characterizemotion primitives from recordedmovement data.We address these problems by
assuming that themotion sequences can be characterized as a series of dynamical-system-based
pattern generators. By adopting a nonparametric, Bayesian formalism for learning and simplifying
these pattern generators, we arrive at a purely data-drivenmodel to automatically identify
breakpoints in themovement sequences.We apply thismodel to swimming sequences from two
hydromedusa. Thefirst hydromedusa is the prolate Sarsia tubulosa, for whichwe obtainfivemotion
primitives that correspond to bell cavity pressurization, jet formation, jetting, cavity fluid refill, and
coasting. The second hydromedusa is the oblateAequorea victoria, for whichwe obtainfivemotion
primitives that correspond to bell compression, vortex separation, cavity fluid refill, vortex formation,
and coasting. Our experimental results indicate that the breakpoints between primitives are
correlatedwith transitions in the bell geometry, vortex formation and shedding, and changes in
derived dynamical quantities. These dynamics quantities include terms like pressure, power, drag, and
thrust. Such findings suggest that dynamics information is inherently present in the observed
motions.

1. Introduction

Cnidarian medusae are marine invertebrates with a
unique body structure. Compared to other aquatic
organismswithmore complex swimming appendages,
medusae have a relatively simple structure consisting
of an axisymmetric, umbrella-shaped bell. The bell is
the primary swimming appendage and is able to
contract by a circular band of muscle fibers. Periodic
bell contractions and extensions interact with the
surrounding fluid and deliver momentum into the
wake to generate locomotive forces.

For medusae with a prolate body (bell height
greater than diameter), jetting-based propulsion is
their main swimming mechanism. Thrust arises from
the forceful expulsion of water from a cavity through
the velar aperture. Since there are no muscles to
oppose those that expel water, the surrounding fluid is

drawn back into the bell by the release of elastic strain
energy stored in the bell during contraction. This is
similar to a process observed in cephalopods [1]. In
short, discontinuous, unsteady motion is produced by
a contraction phase during which water is ejected and
positive thrust is produced. This is followed by a
motionless stage in which either negative or negligible
thrust is generated [2]. The temporal nature of the
unsteadiness is variable [3, 4], since medusae man-
euver in bouts of swimming cycles interspersed with
periods of inactivity.

For many years, jetting-based propulsion [5, 6]
was viewed as the only swimming mechanism for
medusae, and the model proposed in [7, 8] has been
applied to a broad range of species to describe
their behavior. However, more recent analyses have
revealed that such amodel is not relevant for all medu-
sae. Colin and Costello [9] found that the work of
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Daniel [7, 8] can only explain the acceleration patterns
of prolate medusae, not oblate medusae (bell height
less than diameter). From their observations and mul-
tiple follow-up studies [2, 10], it was determined that
oblate medusae swim according to a jet-paddling, or
rowing, mode of propulsion [11]. Under this regime,
jet-paddling generates a propulsive vortex during the
contraction phase. During the relaxation phase, the
bell causes the formation of a second vortex with
opposite rotation relative to the propulsive vortex.
These two vortex rings interact and create large
induced velocities away from the hydromedusae in the
wake [10].

Despite the differences in swim mechanics, all
hydromedusae have a common organization for neu-
romuscular control [12, 13]. The control framework
consists of an electrically coupled network of large
neurons found in the bell. These neurons act as a dis-
tributed swim pacemaker system, or central pattern
generator, for swim contractions. Superimposed on
this network are species-specific neuronal and mus-
cular organizations that allow unique behavioral
responses for each species.

Due to the utility of these underlying pattern gen-
erators for modulating medusae swimming behaviors,
we are interested in modeling their motion responses
for bio-inspired locomotion and control. That is, we
would like a means to describe and transfer many of
the witnessed maneuvers. In doing so, it should be
possible to quickly and efficiently plan paths using the
extracted motions for certain biologically imitative
platforms [14]. Understanding the environmental
effects of these maneuvers should also help advance
actuation schemes [15, 16]. Coupled with this desire is
that of improving upon these maneuvers and remov-
ing unnecessary elements from them.

To facilitate this motion modeling, it is helpful to
have a base characterization of the motions. We hence
pursue the identification of motion primitives from
recorded observations. This identification is equiva-
lent to temporal motion segmentation. That is, we
look for breakpoints where there are either gradual or
abrupt changes in the medusae kinematics. Such time
instances should correspond to changes in actuation
regimes. We simultaneously model the motions as
dynamical systems so that swappable, pattern-gen-
erator-based controllers can be created. The use of
these controllers for driving soft-body platforms will
be the subject of our future endeavors.

The motion primitives that we identify are subsets
of hydromedusae movement sequences that contain
one or more variable-duration actions. For example, a
single cycle of a rhythmic propulsion cycle or even a
fraction of the cycle could be taken as a motion primi-
tive. At the other extreme, in the case of a forward pro-
pulsion and turning action, there would be two major
motion templates. One primitive would correspond to
the body kinematics up to the turning point and
the other to the motions that occur after the turn.

Depending upon the needs of the application, these
two primitives could be further subdivided.

Although motion primitives can be manually
identified, it is advantageous to automate their extrac-
tion. This is because it permits the quick analysis of
multiple motions and hence should allow us to impart
platformswith awide range of capabilities.

Any motion sequence can be segmented arbi-
trarily. However, use of the motion subsequences as
the foundation for controllers will require that the seg-
mentation breakpoints correspond with meaningful
changes in either the hydromedusa’s actions or the
hydromedusa’s influence on the environment. We
therefore propose a hybrid motion characterization
and segmentation scheme that is based upon learning
low-dimensional, stochastic dynamical systems.
Under this scheme we concurrently uncover reduced
spaces for the movement sequences and characterize
the motion dynamics in this simpler space. By simpli-
fying the dynamics, we can construct efficient con-
trollers. Due to the way that we perform this
reduction, it becomes easy to detect temporal break-
points and hence segment the motions. We accom-
plish this through a generative Bayesian model (see
section 2.1 for the overview and section 2.2 for the
mathematical details).

To assess our approach, we consider the modeling
and segmentation of propulsivemotions from the Sar-
sia tubulosa, a jetting-based hydromedusa, and the
Aequorea victoria, a paddling-based jellyfish. Our
experimental results show that the breakpoints occur
during major changes in the body kinematics (see
sections 3.2.1 and 3.3.1 for an overview of the primi-
tives). Additionally, a comparison against multiple
dynamics quantities reveals that the breakpoints are
correlated with inflections in terms like thrust, drag,
power output, and flow rate (see sections 3.2.2 and
3.3.2 for the dynamics results and discussion). This
clear separation ofmotion dynamics leads us to believe
that each primitive is associated with a separate actua-
tion scheme. Therefore, it is plausible that the motion
primitives we identify could be swapped in and out to
achieve efficient control of soft-body platforms As
well, the findings suggest that the bell motions, which
are simple to detect and process, inherently encode a
great deal of dynamics information.

Before continuing, it is important to note that we
are not the first to consider motion primitives: over
the years, a variety of motion primitive research has
conducted. A majority of these efforts are focused on
demonstrating that motion primitives can reduce the
computational burdens associated with both low- and
high-level robotic control problems [17–25]. In
comparison, the automated extraction of motion pri-
mitives from movement sequences has received lim-
ited attention. This is largely because much of the
existing work has focused on platforms with few
degrees of freedom, for which motion primitives
can be quickly andmanually specified by investigators.
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As the number of degrees of freedom in a plat-
form increases, however, the problem of defining
motion primitives becomes more complicated. By
automatically specifying motion primitives from
movement sequences, we will save investigators sub-
stantial time when defining primitives for such plat-
forms It will also permit bio-inspired platforms to
mimic the locomotive behaviors present in the move-
ment sequences. The segmentation scheme developed
in this paper therefore represents a much-needed
contribution.

2.Motion dynamics learning and
segmentation

2.1.Motion processing overview
For our motion modeling and segmentation, we
assume that we have sequences of bell kinematics data.
We seek to describe this, potentially multi-modal, data
by a series of low-dimensional dynamical systems.
These low-dimensional systems focus on neighbor-
hoods of the phase space and should evolve in the same
manner as the potentially unknown, high-dimen-
sional systems that generated the data. That is, we split
the domain into multiple regions according to the
local complexity of the phase space. Each region is
overseen by a computationally tractable, low-dimen-
sional dynamical system that offers an opinion about
the progression of the high-dimensional behaviors.
Note the construction of these low-dimensional
systems does not require either data pre-processing or
any physical insight about themotions.

For our framework, we would like the low-dimen-
sional dynamical systems to function asmotion primi-
tives. Where these systems are defined in the phase
space should correspond to breakpoints, or mean-
ingful changes, in the motion. These breakpoints
match well with the observed dynamics, as we will
show in our experiments.

The type of stochastic differential equations used
in the model influences how effectively it can char-
acterize kinematics. We have opted to use a super-
position of Lévy-driven [26, 27] Gauss–Markov
processes [28] with non-Gaussian marginal distribu-
tions. Gauss–Markov processes are host to a number
of excellent properties [29, 30]. For example, they can
be viewed as continuous analogues of first-order auto-
regressive processes [31]. This property suggests that
Gauss–Markov processes should be well suited to
modelingmotions over short time scales.

If the Gauss–Markov processes are to be of prac-
tical use, investigators must have some insights into
the structure of the dynamics. As well, investigators
would need to know the number of phase-space
regions needed to construct a decent approximation.
Estimates for the number of motion primitives would
therefore need to be supplied. Both of these con-
sequences are counterproductive to our ambitions.

This is because we seek an approach for motion
modeling that relies on little to no human supervision.
To avoid explicitly specifying this information, we
adopt a nonparametric model assumption [32].
We assume that a characterization of the motion pri-
mitive kinematics may require an infinite super-
position of both latent processes and Gauss–Markov
processes. In most cases, however, only a finite num-
ber of processes will be necessary. A prudent selection
of prior distributions will permit our inference scheme
to automatically discern the number of Gauss–Mar-
kov processes and motion primitives present in
the data.

2.2. Bayesianmodel specification
In what follows, we describe a probabilistic, contin-
uous-time model that relates sequences of motion
observations with a number of low-dimensional
dynamics systems. For generality, we assume that the
discrete-time observations x tk

m dÎ( ) may come
from m M1, ,= ¼ datasets each potentially having
k K1, ,= ¼ modalities. The proposed model consists
of p P1, ,= ¼ low-dimensional latent processes
y t p; ,

k
m qÎ( ) q d,< which evolve independently of

each other and are described by a set of stochastic,
parameterized partial differential equations [33].
These stochastic differential equations impose a prior
distribution on the space of latent processes. They
encode any prior knowledge about how a hydromedu-
sa’s bodymay change in shape.

Some simplifying suppositions need to be made
about these latent processes so that our model is tract-
able. The first supposition is stationarity of the
reduced dynamics evolution. That is, unless there is
information suggesting to the contrary, we do not
want to impose a bias on how the latent dynamics pro-
cesses change over time. Note that a combination of
the latent processes will be capable of modeling non-
stationarymovement dynamics.

Additionally, we would like the correlation
between two instances of the latent process to decay
monotonically as time between them grows. Even-
tually, we want the correlation to approach total inde-
pendence as the time between instances becomes
unbounded. This implies that the dynamics at one
time instant should not strongly influence the dynam-
ics in the distant future.We therefore cannotmake use
of any models that do not account for the temporal
evolution of the latent processes and assume that the
latent states are not time-dependent.

Lastly, we enforce continuity with an analytically
available transition density. Such a constraint allows
for statistical model inference to be carried out even
when the observations are captured at non-equidi-
stant intervals. Consequently, the framework can
adapt to the granularity of the observations and pro-
vide exact probabilistic predictions at any resolution.

Each of these properties can be realized if we
take the latent processes to be a function of
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independent Gauss–Markov processes [34] with
background-driving, non-Gaussian Lévy processes
[26, 27]. The Gauss–Markov processes tk

mk ( ) are the
solutions of the stochastic difference equation

td k
m

k
m

k
m2k l k=-( ) t t zd d k

m2 +( ) t .k
ml( ) Here, k

ml is a
positive scalar delay parameter and z tk

m ( ) is a non-
Gaussian Lévy process for themth motion primitive
and kth datamodality. We assume that the Lévy pro-
cess has positive increments and no drift, which
means that the Gauss–Markov process will be
positive.

We can give an intuitive explanation for the beha-
vior of a Gauss–Markov process. It is a process that
moves up entirely by incremental jumps and then tails
off exponentially according to the decay parameter.
The use of the Lévy process implies that the timing of
the jumps is random. This behavior is similar to the
switching diffusion process of Liechty and Roberts
[35]. Despite the relatively simple dynamics, our simu-
lation results indicate that combinations of Gauss–
Markov processes should be capable of describing
hydromedusaemovements.

We employ the Gauss–Markov processes in a gen-
erative model [36]. The generative model encodes our
prior assumptions about the kinematics dynamics and
determines how the hydromedusae movements could
have been generated based upon those priors
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Here, ak
m is a variable that determines the rate at which

the dynamics evolve, with larger values indicating
increasingly frequent changes. As well, bk

m is a vector
that controls the mean value of the dynamics in
multiple dimensions. For the Lévy process, vk

m and k
my

are, respectively, themass and decay terms, while k is
the basemeasure for the process.

This generative model is the simplest case of how
we will describe the kinematics dynamics of the
motion primitives. It essentially says that the kine-
matics come from a single Gauss–Markov process.
While model (1) may be sufficient for some types
of actions, it will not be for all of actions that we con-
sider here. This is because some of the hydromedusae
movement sequencesmay not be adequately described
by only one Gauss–Markov process. We therefore
build up to a more suitable model, given in (4),
that aggregates multiple Gauss–Markov processes.
Toward this end, we start by re-writing the Gauss–
Markov process as a transformation of a Poisson pro-
cess [37]
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where j k
m

j, 1a =
¥{ } and j k

m
j, 1t =
¥{ } are two independent

sequences of random variables corresponding to the
arrival times of a Poisson process with unit intensity. It
is important to note that the transformation from (1)
to (2) is not an approximation, which means that the
behavior of (2) is the same as (1). This is because a
Poisson process is a special case of the Lévy process: it
characterizes the number of jumps performed by the
Lévy process.

If the background-driving Lévy process is a com-
pound Poisson process, then the Gauss–Markov pro-
cess in (2) can be converted from a Poisson process to
the limit of amarked point process [38],
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Here, Ji j, are the random samples of a Poisson jump
distribution. The delta symbol corresponds to the
indicator function: 1ti j,

d =t < when t.i j,t <
The dynamics modeling formulation in (3) proves

to be useful for our purposes. It is advantageous
because (3) contains a superposition ofGauss–Markov
processes, the limit of which can mimic virtually any
deterministic or stochastic phenomena. More specifi-
cally, the model assumes that the kinematics phase
space can be segmented into regions of variable scale,
with each region characterized by a Gauss–Markov
process. When each region has infinitesimal size, the
dynamics become trivial to describe. As the size of the
regions increases, the dynamics can become more
complicated. Properties of the Gauss–Markov pro-
cesses [29, 30] ensure that (3) can tolerate some com-
plexity in the dynamics.

It is often difficult to choose a suitable number of
Gauss–Markov processes for representing the kine-
matics dynamics. We therefore have adopted a non-
parametric assumption [32] in (3): there potentially is
an infinite number of Gauss–Markov processes in the
superposition, a finite number of which will have non-
negligible weight. The number of Gauss–Markov pro-
cesses will be automatically discerned by our inference
scheme.

Additional priors need to be imposed to complete
the model in (3). Toward this end, we assume that the
masses of the Poisson process are the jumps of a
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Gamma process. The decay parameters of the Poisson
process are independently and identically distributed
according to a base distribution. We do not have an
explicit form in mind for the jump distribution of the
Poisson process. As such, we utilize a Polyá tree prior
[39, 40],
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The use of these priors does not change the core
behavior of (3): (4) represents the hydromedusa
kinematics as a sum of Gauss–Markov processes with
comparatively simple dynamics. One difference, how-
ever, is that (4) offers a rigorous way for our inference
scheme to choose various parameter values based
upon the sequences of hydromedusa movement
observations. That is, we will allow the observations to
define possible parameter values versus forcing inves-
tigators to explicitly choose them. Automating the
parameter selection helps guarantee that the dynami-
cal pattern generators will accurately track the hydro-
medusa movement trajectories. It also requires less
manual intervention from investigators.

Another difference between (3) and (4) is that (4)
provides a relationship between the hydromedusae
motion observations and the movement dynamics. In
(4), we assume that the observations x tk

m ( ) at time t
are a weighted projection of latent processes y t p; .

k
m ( )

This projection is performed so that the latent pro-
cesses can be efficiently evaluated. The number of
latent processes chosen by our inference scheme to
characterize the observations are taken as the number
ofmotion primitives.

To implement the model in (4) for practical pur-
poses, a robust inference scheme is needed to deduce
the distributions associated with the parameters.
Hence, we look to two Markov chain Monte Carlo
samplers (see the appendix for the mathematical
details). The first is furnished for batch training [41].
Batch training is commonly performed when all of the
data to describe some phenomena has been collected.
The second sampler serves in a broader online setting
[42], which is invaluable when there is an initial lack of
data and more observations are added over time. The

latter of these inference schemes can be combined
with the predictive uncertainties returned by the
model. These uncertainties signify when the learned
dynamical systems will no longer be well-aligned with
the motions being captured and thus must be updated
if they are to remain relevant.

3. Experiments and analysis

We have two goals for the ensuing experiments on
motion sequences from S. tubulosa andA. victoria. The
first is to determine if the segmentation boundaries are
defined when there are gradual or abrupt changes in
either localized or widespread bodily motion (see
sections 3.2.1 and 3.3.1). If so, then these primitives
can be strung together and be useful for control of a
soft-body platform. This is because they should
correspond with changes in actuation regimes. Sec-
ondly, we would like to establish what effect each
primitive has on the locomotion dynamics (see
sections 3.2.2 and 3.3.2). With this information, we
can identify where improvements might be made in
the motions. Actually improving the motion primi-
tives will be the subject of our future endeavors.

Before we discuss our experimental protocols and
the results, we provide a review of pressure and circu-
lation in hydromedusae locomotion (see section 3.1).
This discussion provides context for the ensuing
analysis.

3.1. Pressure and circulation in hydromedusae
locomotion
The locomotion of marine animals in general relies on
pressure forces generated by transferring hydrody-
namic impulse to the surrounding fluid. For jellyfish,
the impulse is transfered in the form of a propulsive
jet. In [43], Krieg and Mohseni derived an analytical
model for the pressure inside of jetting cavities which
can be utilized to correlate the relationship between
the different motion primitives and the propulsive
performance. This model integrates the momentum
equation from a farfield location along a strategic path,
taking into account symmetry conditions, in order to
relate pressure on the body to pressure at stagnation,
P∞. Unknown velocity integrals which appear during
this process are then correlated to the total circulation
of certain characteristic regions. The pressure at the
location on the jellyfish cavity surface intersecting the
axis of symmetry, Pb, is shown to be proportional to
the rate of change of circulation in both the cavity and
the jet region,

P P

t t
u

d

d

d

d

1

2
.b

b
Jet Cav 2

r r
= +

G
+

G
+¥ ˜

In this equation ub is the velocity of the jellyfish surface
at the location where the pressure is determined, ρ is
the fluid density, JetG is the circulation in the jet region
(anything downstream of the velar opening), and CavG̃
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is the circulation within the subumbrellar cavity not
including circulation due to cavity surface stretching.
In addition the circulation dynamics of both regions
can be broken down into four basic components:
vorticity flux, half-sink flows, boundary deformation,
and vortex impingement, which we will summarize
briefly. As fluid is ejected out of, or into, a cavity it
carries with it a free shear tubewhich rolls into a vortex
ring. The growing shear layer in the jet region
corresponds to the vorticity flux circulation which we
refer to as .VFG The rate at which this circulation grows
is proportional to the square of the jet velocity,

t
u K

d

d

1

2
,VF 2

VF
G

= ¯

where ū is the average jet velocity, u R ,2p=W¯ ˙ and
KVF is a vorticity flux constant which takes into
account increased rates of circulation flux due to both
boundary layer development on the nozzle and radial
velocity components, which is characterized formulti-
ple nozzle geometries in [44]. Whenever fluid is forced
through a finite opening a jet is formed on one side
carrying vorticity with it in a detached shear layer. On
the other side the fluid converges to fit through the
opening. At a great distance this flow looks identical to
one side of a point sink. Krieg and Mohseni [43]
demonstrated that the flow inside a cavity during
jetting (or outside the cavity during refilling) can be
effectively modeled by that of a finite area circular sink
plate, bisected by the opening plane, with total
strength equal to the volume flux. The circulation of
such a flow, ,HSG is described in great detail in [43] for
those interested, here we just summarize the growth
rate.

t
K

R R

R

d

d

¨
HS

HS 2

G
=

W - Ẇ ˙

Here, KHS is a constant related to the half-sink
circulation which depends on the velocity boundary
conditions in the planewhich extends radially outward
from the velar opening. If the velocity is restricted by a
solid boundary, K 0.34,HS = and if the boundary is
free, K 0.15.HS =

The circulation due to vortex ring impingement is
more difficult to summarize in such a concisemanner.
As the jellyfish expands refilling the subumbrellar cav-
ity, the shear layer accompanying the incoming fluid
rolls into a vortex ring much like the jet flow, but the
ring must remain confined to the cavity region. As the
vortex approaches the inner walls a boundary layer of
opposite vorticity forms on the cavity surface from the
discontinuity between vortex induced velocity and the
no slip condition. The growth of the impingement
boundary layer counteracts the circulation flux at the
opening, but the exact magnitude of the impingement
circulation depends on the exact geometry of the
boundary, and the strength/size of the internal vortex
ring. The circulation due to boundary deformation
does not directly affect the reference pressure dynam-
ics. From this methodology it can be seen that jet
acceleration and changes in opening radius affect the
pressure through the half-sink circulation terms;
whereas, the magnitude of the jet velocity affects the
pressure through the vorticity flux circulation terms.

3.2. Sarsia tubulosa results anddiscussion
Our experiments for S. tubulosa (M. Sars, 1835) used a
hydromedusa with a maximum and minimum bell
radius of 0.63 and 0.57 cm, respectively. Additionally,
the subumbrellar volume had a maximum value of
approximately 0.45 cm3 and aminimumvalue of 0.26
cm .3

The bell deformations for S. tubulosa were deter-
mined from videos of physical specimens previously
utilized in [2]. As a summary, the hydromedusa was
placed within a vessel of sufficient size to permit free
swimming. The organism was illuminated via a planar
laser directed through the central axis. Fluorescein dye
was also injected to enhance the illumination. After
video capture, the body was manually delineated in
each frame and approximated using basis splines.
Fourier-time-series interpolation was employed as a
post processing step to create numerical models of the
periodic contractions.

Table 1.A summary of the geometry, physical, andflow characteristics formotion primitives of S. tubulosa.

PHASE GEOMETRY/PHYSICAL CHANGE FLOW EFFECTS

Pressurize There is an outward rotation of the velarflap and a pressur-

ization of the subumbrellar cavity. Half-sink terms

dominate.

The outwardflow across the velum increases sharply.

Jet formation The bell compresses and the velarflap continues to rotate

outward. An increase in pressure is seen due to vorticity

flux. The power ismaximized.

An ejecting jet is formed. The fluid slug begins to be ejected

in this phase.

Jetting Theminimumvelar diameter and bell volume are

achieved. Themaximumbell pressure and upstream

thrust are achieved.

Propulsive vortex ring formation, separation, and transla-

tion occurs. The remainder of the ejected fluid slug is

moved into the ring before separation.

Refill The cavity volume and velar diameter increase. An

upstream thrust is generated due to the relaxation vor-

tex striking the cavity.

There is an inward flowoffluid, which refills the sub-

umbrellar cavity. A relaxation vortex is also formed inside

the cavity.

Coasting There are slight velar oscillations due to small pressure

changes.

There are slight inward and outwardflow changes across the

velum. The relaxation vortex diffuses.
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As mentioned above, our generative model auto-
matically determines the number ofmotion primitives
in an observation set. When applying the model to a
single swimming cycle, it returned a total of five primi-
tives, summaries of which are provided in table 1. The
motion subsequences defined by these primitives are
displayed in figures 1–5; for each subsequence, we
plotted themotion atfive equally spaced time steps. To
emphasize the effect that these motions have on the
surrounding fluid, we overlaid the associated two-
dimensional Lagrangian coherent structures (LCS)
[45, 46]. For these plots and those to come, the LCS are

visualized as ridges of the finite-time Lyapunov expo-
nent field. The forward coherent structures denote
particle advection forward in time and represent
regions where the particles diverge quickly. The back-
ward coherent structures correspond to particle
advection in the past and outline attracting or conver-
ging flow regions. Thus, LCS represent transport bar-
riers with negligible surface normal flux and therefore
dictate fluid transport and mixing. We computed the
LCS from the velocity fields returned by a Navier–
Stokes solver using an arbitrary Lagrangian–Eulerian
method [2, 47].

Figure 1.The firstmotion primitive, pressurization, for S. tubulosa, where the velar flap extends downstream and the bell compresses.
(top)Plots of the Lagrangian coherent structures for five near-equally spaced time steps over the duration of the primitive
(t 0.01, 0.04, 0.06, 0.08, 0.11= s). Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots, blue curves
represent the forward structures and the red curves represent the backward structures.Mixtures of the forward and backward
structures are given in gray, where thewhiter values denote lower-magnitude transport. The bell of the hydromedusa is displayed in
black. (bottom)Plots of the velar diameter, subumbrellar volume, cavity pressure, flow rate, power output, thrust coefficient, total
drag, and skin friction. In these plots, the gray shaded region denotes the time inwhich themotion primitive takes place. Since the
propulsivemotionwas cyclic, we have plotted two periods.
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The velocity vector fields that we use come from
the previous work in [47]. In [47], Sahin and Mohseni
developed a fluid solver that relies on an arbitrary
Lagrangian–Eulerian [48] formulation of the Navier–
Stokes equations. This formulation is applicable to
moving boundary problems that can be represented in
swirl-free cylindrical coordinates. Assessing the flow
around deforming hydromedusae bodies is an exam-
ple of such a problem. From properties of the fluid
flow, it will be possible to estimate various dynamics
quantities, such as the power output into the

surrounding fluid, skin friction drag, and the internal
cavity pressure. We use these dynamics quantities
when assessing the motion primitive segmentations.
In particular, we show that the motion primitive
breakpoints are well aligned with trend changes in the
dynamics. This finding implies that we have defined a
meaningful temporal segmentation of the hydro-
medusa bodymovements.

In the solver, an unstructured, derformable mesh
is employed to follow the interface between the simu-
lated fluid and the hydromedusa body. The mesh for

Figure 2.The secondmotion primitive, jet formation, for S. tubulosa, where a nozzle-likemechanism is formed and a jetting-based
vortex is produced. (top)Plots of the Lagrangian coherent structures for five near-equally spaced time steps over the duration of the
primitive (t 0.12, 0.15, 0.17, 0.19, 0.22= s). Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots,
blue curves represent the forward structures and the red curves represent the backward structures.Mixtures of the forward and
backward structures are given in gray, where thewhiter values denote lower-magnitude transport. The bell of the hydromedusa is
displayed in black. (bottom)Plots of the velar diameter, subumbrellar volume, cavity pressure, flow rate, power output, thrust
coefficient, total drag, and skin friction. In these plots, the gray shaded region denotes the time inwhich themotion primitive takes
place. Since the propulsivemotionwas cyclic, we have plotted two periods.
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S. tubuolsa consists of 182 517 vertices and 181 730
quadrilateral elements. The mesh for A. victoria con-
sists of 205 714 vertices and 204 784 quadrilateral ele-
ments. These meshes are stretched next to the
hydromedusa bell surfaces to resolve the viscous flow
within the boundary layer.

The governing equations for the viscous fluid flow
are discretized on the meshes using the dilation-free,
semi-staggered finite volume method given in [49]. In

addition to solving the incompressible Navier–Stokes
equations, the equations of motion for a deforming
body are simultaneously solved in a fully-coupled
form. The underlyingmesh is deformed by solving the
linear elasticity equation at each time level. This is
done using GMRES method [50] with the restricted,
additive Schwarz preconditioner and the inverse-LU-
decomposition preconditioner with reverse Cuthill–
McKee ordering. Remeshing is avoided to enhance the

Figure 3.The thirdmotion primitive, jetting, for S. tubulosa, where the vortex is pinched off and the velar flap retracts. (top)Plots of
the Lagrangian coherent structures for five near-equally spaced time steps over the duration of the primitive
(t 0.23, 0.26, 0.29, 0.32, 0.35= s). Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots, blue curves
represent the forward structures and the red curves represent the backward structures.Mixtures of the forward and backward
structures are given in gray, where thewhiter values denote lower-magnitude transport. The bell of the hydromedusa is displayed in
black. (bottom)Plots of the velar diameter, subumbrellar volume, cavity pressure, flow rate, power output, thrust coefficient, total
drag, and skin friction. In these plots, the gray shaded region denotes the time inwhich themotion primitive takes place. Since the
propulsivemotionwas cyclic, we have plotted two periods.
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robustness of the solver and improve its computa-
tional efficiency [51].

3.2.1. Evaluating hydromedusa motions and their flow
fields
Stepping through the plots in figure 1, the first motion
primitive, which we call the pressurization primitive,
corresponds to a single motion occurring over a span
of 0.11 s. The first motion primitive is an outward
rotation of the velar flap, which causes it to protrude in
the downstream (left-to-right) direction. Given the

current knowledge of neuromuscular systems in
hydromedusae [52], we believe that thismovement is a
reaction to the pressurization of the subumbrellar
cavity relative to the outside fluid. That is, slight
changes in the cavity volume initiate rapid pressure
changes, which is due the fact that the fluid is
incompressible. Also note that many hydromedusae
lack sufficient motor control to explicitly move the
velarflap.

This bodily deformation corresponds to the begin-
ning of fluid expulsion from the subumbrellar cavity.

Figure 4.The fourthmotion primitive, refill, for S. tubulosa, where the bell expands and creates a stopping vortex inside the
subumbrellar cavity. (top)Plots of the Lagrangian coherent structures for five near-equally spaced time steps over the duration of the
primitive (t 0.36, 0.41, 0.46, 0.51, 0.56= s). Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots,
blue curves represent the forward structures and the red curves represent the backward structures.Mixtures of the forward and
backward structures are given in gray, where thewhiter values denote lower-magnitude transport. The bell of the hydromedusa is
displayed in black. (bottom)Plots of the velar diameter, subumbrellar volume, cavity pressure, flow rate, power output, thrust
coefficient, total drag, and skin friction. In these plots, the gray shaded region denotes the time inwhich themotion primitive takes
place. Since the propulsivemotionwas cyclic, we have plotted two periods.
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The LCS corroborate this claim, as the backward (red)
LCS near the velum moves in the downstream direc-
tion and begins to show a counter-clockwise rotation.
This LCS will form the leading edge of the vortex that
will form from fluid ejected during the contraction
occurring in the second primitive. Additionally, the
forward (blue) LCS that extends downstream outside
the bell reveals the boundary of the fluid region that
will be entrained into the vortex. The forward LCS
within the bell defines the trailing edge of the fluid that
will be ejected in the vortex.

The second motion primitive, shown in figure 2,
continues the same action seen in the first primitive,
albeit more visually pronounced. As well, the bell con-
tracts, creating a nozzle-like velar profile [53]. The
quick combination of these two actions precipitates
the ejection of fluid and development of a propulsive
starting vortex. We therefore refer to this primitive as
jet formation. As the LCS show, fluid is being expelled
from the subumbrellar cavity and the start of vortex
formation is clearly seen in the rollup of the backward
LCS. The most prominent forward LCS within the

Figure 5.The fifthmotion primitive, coasting, for S. tubulosa, which is a coasting phase. (top)Plots of the Lagrangian coherent
structures forfive near-equally spaced time steps over the duration of the primitive (t 0.57, 0.67, 0.78, 0.89, 1.0= s). Since the
jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots, blue curves represent the forward structures and the red
curves represent the backward structures.Mixtures of the forward and backward structures are given in gray, where thewhiter values
denote lower-magnitude transport. The bell of the hydromedusa is displayed in black. (bottom)Plots of the velar diameter,
subumbrellar volume, cavity pressure, flow rate, power output, thrust coefficient, total drag, and skin friction. In these plots, the gray
shaded region denotes the time inwhich themotion primitive takes place. Since the propulsivemotionwas cyclic, we have plotted two
periods.
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cavity moves toward the velar opening, marking the
boundary between fluid that will be ejected into the
forming vortex and that whichwill be left behind.

There are two other notable fluid structures pre-
sent during the pressurization and jet formation
motion primitives. Foremost, there is fluid circulating
clockwise within the subumbrellar cavity, which is due
to the relaxation vortex that forms while fluid is drawn
into the bell during the coasting phase from the pre-
vious swimming cycle. This is most evident in the
backward LCS during the first motion primitive. In
the jet formation motion primitive, these structures
begin to dissipate due to viscous decay of circulation.
Secondly, a closed lobe formed by a forward LCS near
the rear of the hydromedusa begins to sharpen and
morph. This lobe is adjacent to the velar flap and con-
tains fluid that will eventually be entrained into the
cavity.

The third motion primitive, shown in figure 3, is
nearly a reversal of the first and second primitives: the
velar flap rotates clockwise and the hydromedusa bell
expands outward by a marginal amount over 0.13 s.
The velar flap retracts due to the fact that sub-
umbrellar pressurization has ceased and because the
vortex separates from the hydromedusa and begins to
move downstream. This primitive will be known as
jetting. As the vortex moves downstream, the forward
LCS near the velummoves into the subumbrellar cav-
ity. This LCS highlights fluid that will be pulled into
the bell during the ingestion or refilling phase of swim-
ming. As the propulsive vortex moves downstream, it
continues to draw in surrounding fluid and increase in
size until the vortex reaches amore steadily translating
phase. Fluid enters the vortex through the gap between
the forward and backward LCS at the top of the vortex.
This additional fluid also acts to slow the vortex
motion, sincemomentummust be conserved.

The fourth motion primitive corresponds to the
refilling phase of the hydromedusa’s swimming cycle.
This motion primitive, shown in figure 4, consists of
an inward rotation of the velar flap and an expansion
of the subumbrellar cavity. This motion primitive has
a duration of 0.21 s and mostly corresponds to an
expansion of the hydromedusa’s bell. There is nomus-
culature present to induce this motion, so it is caused
by the elastic strain energy stored in the bell structures
during the contraction phase [8]. The rapid expansion
of the bell quickly draws fluid into the subumbrellar
region, generating a relaxation vortex within the bell.
This is clearly seen in the LCS in figure 4. This relaxa-
tion vortex is difficult to evaluate since it resides within
the subumbrellar cavity. Its existence was first quanti-
fied numerically by Lipinski and Mohseni [10] and
experimentally byKrieg andMohseni [43].

The fifth motion primitive corresponds to a pas-
sive coasting phase, as seen in figure 5. There are small
oscillations present in the velar flap due to elastic and
pressure effects, but there are no major body motions
taking place during this time. The ejected starting

vortex continues to move downstream and gradually
decays, while the newly generated relaxation vortex
also decays within the subumbrellar cavity.

3.2.2. Evaluating hydromedusa motions and dynamics
quantities
As we have demonstrated, each motion primitive for
the S. tubulosa is correlated with transitions between
distinct, fluid-influencing movements. The primitives
can additionally be connected with meaningful
changes in the surrounding fluid environment, despite
not explicitly accounting for such information in the
segmentation process. This connection is due to the
direct influence of the body motion on the surround-
ing fluid. That is, hydromedusa have developed their
body motions in order to swim effectively, which
results in large fluid momentum transfer for a given
motion.

In this section, we consider the relationship
between the motion primitives and several properties
of the fluid surrounding the hydromedusa. As men-
tioned at the beginning of this section, the pressure
dynamics can be related to three basic components of
the system circulation [43]. These components are
observed to have drastically different relationships
with the subumbrellar cavity volume and the velar
opening diameter, which are shown in figures 1–5.We
expect changes in body motions, denoted by the dif-
ferent motion primitives, to relate to changes in the
different circulation components, even though there is
usually not a direct correspondence.

During the pressurization primitive, there is little
change in the volume and diameter measurements,
although both begin to decrease by the end of this pri-
mitive due to the ongoing bell contraction. Even
though the volume flux is small during this primitive,
the rate at which the volume flux increases is sub-
stantial. This implies that the cavity circulation during
this primitive is dominated by half-sink components,
driving the initial cavity pressurization.

In the jet formation primitive, the cavity volume
and opening diameter rapidly decrease as fluid is
expelled from the bell. During this primitive the pres-
sure dynamics are dominated by the vorticity flux
components in the jet due to the large jet velocities.
The half-sink components continue to aid in pressur-
izationwith continual increase in volume flux. The jet-
ting motion primitive captures the end of the
contraction phase and both the velar diameter and the
subumbrellar volume reach their minimum values
during this time. The jetting primitive marks when the
volume flux begins to decrease and the contribution to
total circulation from the half-sink components oppo-
ses the contributions from vorticity flux. As such the
pressure reaches amaximum at the transition between
the jet formation and jetting primitives. At the onset of
the jetting primitive, the vorticity flux still dominates.
Toward the end of the jetting primitive, the reduced
volume flux greatly reduces contributions from these
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components. The half-sink components eventually
become dominant, resulting in the negative pressure
force at the end of this primitive

During the refill primitive, the bell expands,
rapidly drawing in fluid and increasing the sub-
umbrellar volume. As the bell expands, the velar dia-
meter also increases until both quantities are near their
starting values. The refill motion primitive contains all
circulation generating components, but it is not domi-
nated by any one component. At the onset, the
increase in incoming volume flux creates a half-sink
flow in the jet. This half-sink flow compliments the
vorticity flux circulation in the cavity and results in the
small negative pressure peak. However, as the inward
volume flux increases and the vorticity flux compo-
nents become substantial, the internal vortex ring also
impinges on the inner surfaces generating opposing
circulation in the attached boundary layer. This event
contradicts the effects of the vorticity flux compo-
nents. Towards the end of the refill primitive, the
impingement circulation and the internal ring reach
an equilibrium state. Any remaining generation of cir-
culation due to vorticity flux is canceled out by the
half-sink term in the jet. The jet has changed sign due
to the now decreasing inward volume flux. The
volume continues to very slowly increase during the
fifth motion primitive, which represents the coasting
phase of swimming. However, the volume flux rate is
minimal. During the coasting primitive, there is no
significant generation of circulation due to the body
motion. Rather, the circulation during this primitive is
dominated by viscous dissipation, which does not
directly affect pressure forces the way that active gen-
eration of circulation does.

Because the S. tubulosa propels itself via jets cre-
ated by pressurizing the subumbrellar cavity, we can
easily estimate three other quantities. These quantities
are the power output due to the jet through the velar
opening, the average cavity pressure along the sub-
umbrellar surface, and the flow rate through the velar
opening [10]. As seen in figures 1–5, the segmentation
boundaries are linked with slope changes and inflec-
tion points in the power output and cavity pressure.
For the pressurization motion primitive, the power
and pressure both rise, since some amount of positive
work is being done to begin the contraction phase.
During the jet formation primitive, this rate increases
dramatically as the vortex is ejected from the sub-
umbrellar cavity. Both the cavity pressure and the
power output peak as the vortex begins to separate
from the cavity in between the jet formation and jet-
ting primitives. As wasmentioned previously, the peak
in pressure coincides with the peak velocity/vorticity
flux and the reversal of the half-sink circulation as
volume flux begins to decelerate. The peak power
occurs similarly at this time, as discussed in [43]. This
is because the vorticity-flux-dominated peak pressure
also coincides with the peak body surface velocity
required to create the large volume changes. The

lowest values for the power, cavity pressure, and flow
rate occur in the refill primitive as the bell expands,
drawing fluid into the bell and generating a slight
negative thrust and power. During the coasting primi-
tive, the velumundulations cause the pressure to oscil-
late slightly, but the power output from the cavity is
essentially zero during this time. That is, the hydro-
medusae is not performingmeaningful work.

Unlike the power output and cavity pressure, the
flow rate inflections are not well correlated with the
remaining dynamics. We believe that there are two
sources to this discrepancy. First, although the fluid
might be accelerating or decelerating in a particular
direction over the course of a primitive, the fluid velo-
city will not be altered instantaneously. Thus, the
alterations brought on by one primitive may persist in
the next. Secondly, most of the primitives embody
compound movements, which may have a complex
influence on certain variables.

A somewhat surprising finding is that the break-
points closely matched trends in thrust, skin friction
drag, and total drag [2] for figures 1–5. After analysis,
we determined that the reasoning for these relation-
ships is similar to that of power and cavity pressure, so
we will not discuss it in detail. The effect of vortex ring
impingement can be seen to a much greater degree in
the total thrust of the refill primitive, almost com-
pletely negating the negative thrust caused by vorticity
flux into the cavity during refilling. Similarly the
power output becomes negative during the refill pri-
mitive as fluid begins to do work on the jellyfish body
through impingement.

There is some physical significance to the inflec-
tion points of the thrust and drag: the last four break-
points begin when the jounce is zero. Jounce, which is
also referred to as snap, is the second time derivative of
acceleration and the first time derivative of jerk. Quali-
tatively, it is a gauge of how frequently a force is being
applied and removed. Therefore, we can think of the
breakpoints as being small-scale time periods where
there is a constant force being applied to the surface of
the velar opening. Phrased differently, the breakpoints
are defined when there appears to be a progression
fromone flowpattern to another.

Due to this clear segregation of the forces and
flows, it is our belief that there should be (near-)seam-
less transitions between motion primitives for certain
types of maneuvers. We speculate that these transi-
tions between maneuvers would not greatly degrade
propulsion efficiency. If the breakpoints were speci-
fied elsewhere throughout the cycle, it is plausible that
a bio-inspired platform would have to expend unne-
cessary effort to counteract amixture of inhibiting for-
ces. For example, if the second motion primitive
ended halfway, a propulsive vortex may not be formed
and ejected. Any motion primitives that followed
would thus need to re-pressurize the subumbrellar
cavity.
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3.3.Aequorea victoria results and discussion
The observations of theA. victoriaʼs (LMurbach andC
Shearer, 1902)movements were collected in the same
manner as that for the S. tubulosa. Our experiments
for A. victoria used a hydromedusa with a maximum
and minimum bell radius of 2.3 cm and 1.9 cm,
respectively. Additionally, the subumbrellar volume
had a maximum value of approximately 10.5 cm3 and
a minimum value of 7.4 cm .3 Applying our generative
model to a single, quasi-steady-state swimming cycle
returned a total of five primitives, summaries of which
are provided in table 2. The motion subsequences
defined by these primitives are displayed in figures 6–
10. For each subsequence, we have plotted the motion
at four time steps. As before, we have superimposed
the associated LCS.

Note that the selection of five primitives was auto-
matically made by our model, not us. Although a
swimming cycle of both S. tubulosa and A. victoria can
be described with the same number of primitives, the
motions and their effects are different.

3.3.1. Evaluating hydromedusa motions and their flow
fields
From the plots in figure 6, it can be seen that the first
primitive corresponds to a single motion taking place
over 0.29 s. During this time, themajority of the velum
is pulled inward. This bell contraction starts the vortex
ejection by generating a shear layer on the bell interior.
Ejecting this shear layer will result in a starting vortex
with counter-clockwise rotation. There is also a
relaxation vortex with clockwise vorticity present on
the interior of the bell margin at the beginning of this
primitive. The relaxation vortex was formed during
the previous expansion phase and is clearly seen in the
backward LCS. This relaxation vortex is ejected with
the starting vortex during the contraction. These
attracting material manifolds exhibit a strong similar-
ity to results of previous dye visualization experiments
byDabiri et al [54] andCostello et al [55].

Not all of the fluid near the interior bell wall is
expelled during contraction. The forward structures in

figure 6 reveal that there is a pocket of fluid sur-
rounded by a forward LCS that takes the place of the
ejected fluid. The fluid within this forward LCS will
eventually combine with the fluid outlined by the for-
ward structure on the exterior of the hydromedusa to
form the next relaxation vortex. While this vortex
creation begins in the first primitive, it does not finish
until thefifth.

The second primitive, as highlighted in figure 7,
continues the propulsive rowing stage of the motion
through the bell contraction and inward twisting of
the velum. A byproduct of these twomovements is the
separation of the hybrid starting/relaxation vortex
structure. During this primitive the fluid that made up
the relaxation vortex begins to elongate due to the
influence of the stronger starting vortex. Additionally,
even though this vortex pair has been ejected, back-
ward LCS remain that connect the ejected vortices to
the tip of the bell. These backward structures represent
an attracting material line of converging flow where
dye or other particles will collect during swimming.
There is negligible flow across these LCS.

When compared to the propulsive vortex of the S.
tubulosa, there is a conspicuous lack of forward LCS
for the vortex produced by A. victoria. This is due to
the relatively small amount of stretching near the vor-
tices in forward time due to the much weaker vortices
generated byA. victoria. The slowlymoving vortices of
A. victoriamove only about one body radius per swim-
ming cycle compared to about 10 body radii per cycle
for S. tubulosa, further indicating a much weaker vor-
tex. Finally, the vortices generated by A. victoria are
located away from the axis of symmetry. This is due to
the paddling or rowing propulsion rather than the jet-
ting propulsion used by S. tubulosa.

The third through fifth primitives, shown in
figures 8–10, constitute the relaxation phase of the A.
victoria, which lasts 0.64 s. During the third primitive,
the bell of the hydromedusa begins to expand near the
middle and drags the bell tip outwards while bending
it slightly down. By the fourth primitive, the expansion
has mostly ceased and only the outer fringes of the bell

Table 2.A summary of the geometry, physical, andflow characteristics formotion primitives ofA. victoria.

PHASE GEOMETRY/PHYSICAL CHANGE FLOW EFFECTS

Bell compression The bell compresses inward. Themaximum thrust in the

upstreamdirection is achieved. A localmaximum for power

is achieved.

There is strong outwardflow across the velum. A

hybrid relaxation-propulsive vortex is formed.

Vortex separation The velar flap rotates inward. The bell continues to compress

inward and theminimum exit diameter and cavity volume

are achieved.

The hybrid relaxation-propulsive vortex separates

from the hydromedusa.

Refill The bell expands outward. The power output is highest due to

thework performed during expansion. The drag ismax-

imized initially and settles to a localminimum.A small

upstream thrust is generated due to suction.

The inward flow rate increases rapidly due to a low

pressure region drawing influid.

Vortex formation The velar flap rotates outward. The suction effect subsides and

the upstream thrust disappears.

Fluid continues to flow into the cavity. A relaxation

vortex is also formed.

Coasting The tip of the velarflap rotates outward slightly. An upstream

thrust is generated.

The flow switches from inward to outward.

14

Bioinspir. Biomim. 10 (2015) 066001 I Sledge et al



flex outward. There are few movements that occur for
the final primitive, and those that do serve to only
slightly shift the velar tip.

3.3.2. Evaluating hydromedusa motions and dynamics
quantities
The motion primitives shown in figures 6–10 show
promise for use as controllers. This is because the
distinct modes present in each motion primitive
represent discrete body motions associated with

muscular actuations. Such changes in muscular for-
cing may be decomposed for further optimization for
a desired purpose.

To substantiate that there are unique dynamics
and forces for each primitive, we have plotted various
physical quantities in figures 6–10. The quantity that
we contemplate are the velar opening diameter and
subumbrellar volume. From a cursory inspection, it
can be seen that the breakpoints closely track trends in
these twomeasurements. During the course of the bell

Figure 6.The firstmotion primitive, bell compression, forA. victoria, where the velarflap compresses and a propulsive-relaxation
vortex is released. (left)Plots of the Lagrangian coherent structures for four near-equally spaced time steps over the duration of the
primitive (t 0.01, 0.09, 0.21, 0.28= s). Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots, blue
curves represent the forward structures and the red curves represent the backward structures.Mixtures of the forward and backward
structures are given in gray, where thewhiter values denote lower-magnitude transport. The bell of the hydromedusa is displayed in
black. (right)Plots of the velar diameter, subumbrellar volume, flow rate, power output, thrust coefficient, total drag, and skin friction.
In these plots, the gray shaded region denotes the time inwhich themotion primitive takes place. Since the propulsivemotionwas
cyclic, we have plotted two periods.
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compression and vortex separation primitives, both
values monotonically decrease as the vortex ring is
released. Similarly, over amajority of the last three pri-
mitives, the values constantly increase as the sub-
umbrellar cavity is refilled. We surmise that the
breakpoints for A. victoria were better correlated with
dynamics than those for S. tubulosa due to the nature
of the propulsive mechanisms. More specifically, the
inertial forces generated by paddling are sensitive to

the bell characteristics, since they can either peak or
drop at the stroke transitions [56].

As we briefly touched on above, the low formation
time signals a thin cored vortex ring, whereby the
maximum axial velocity is moved outward radially
from the central axis. The same conclusion can be
reached from inspection of the coherent structures.
That is, the velocity dominates near the bell margins
and quickly decays as the radial distance beyond the

Figure 7.The secondmotion primitive, vortex separation, forA. victoria, where the velar flap curls inward and pinches off the vortex.
(left)Plots of the Lagrangian coherent structures for four near-equally spaced time steps over the duration of the primitive
(t 0.29, 0.35, 0.46, 0.51= s). Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots, blue curves
represent the forward structures and the red curves represent the backward structures.Mixtures of the forward and backward
structures are given in gray, where thewhiter values denote lower-magnitude transport. The bell of the hydromedusa is displayed in
black. (right)Plots of the velar diameter, subumbrellar volume, flow rate, power output, thrust coefficient, total drag, and skin friction.
In these plots, the gray shaded region denotes the time inwhich themotion primitive takes place. Since the propulsivemotionwas
cyclic, we have plotted two periods.
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boundary grows, leaving the flow largely undisturbed.
These results greatly differ from those of S. tubulosa,
which produced velocity disturbances only near the
axis of symmetry. Additionally, the coasting phase for
A. victoria is shorter, and each swimming cycle is
essentially a continuous transition from contraction to
relaxation and back to contraction. Due to these dis-
tinctions, it is not possible to calculate the average
pressure and power output forA. victoria in the simple
fashionwe did for S. tubulosa.

Since the cavity is only weakly pressurized, we
approximate the work done via an alternate repre-
sentation: as a normalized, temporal integral of the
power output from the surface of the hydromedusa
to the surrounding fluid [2]. The associated plots for
this term reveal that the motion segmentation closely
conforms with its evolution. Throughout the bell
compression primitive, the power coefficient steadily
grows, due to the vorticity flux, and reaches a local
maximum value. During the vortex separation

Figure 8.The thirdmotion primitive, refill, forA. victoria, where the bell expands near themiddle and pulls influid. (left)Plots of the
Lagrangian coherent structures for four near-equally spaced time steps over the duration of the primitive (t 0.52, 0.58, 0.7, 0.76= s).
Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots, blue curves represent the forward structures
and the red curves represent the backward structures.Mixtures of the forward and backward structures are given in gray, where the
whiter values denote lower-magnitude transport. The bell of the hydromedusa is displayed in black. (right)Plots of the velar diameter,
subumbrellar volume, flow rate, power output, thrust coefficient, total drag, and skin friction. In these plots, the gray shaded region
denotes the time inwhich themotion primitive takes place. Since the propulsivemotionwas cyclic, we have plotted two periods.
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primitive, the power quickly drops then raises. The
former event is likely due to a modest influx of fluid
into the subumbrellar cavity around the oral open-
ing, which is confirmed by the dip in the flow rate,
thrust, and total drag. The refill primitive sees a huge
increase in power output. At the beginning of the
primitive there is a large acceleration in cavity
volume and the half-sink-like acceleration circula-
tion results in a simultaneous peak in thrust. Unlike
S. tubulosa, the peak in thrust and power for A.

victoria could hypothetically result in lower relative
power since the boundary velocity moving against
these pressure forces is low [43]. At the end of the
refill primitive the acceleration terms become negli-
gible and the power becomes negative, signifying that
the fluid is doing work on the jellyfish. During the
vortex formation and coasting primitives, there are
fluctuations in the power. These fluctuations likely
stem from the flexing of the velar flap. That is, the
flap moves in a way that causes the low-pressure

Figure 9.The fourthmotion primitive, vortex formation, forA. victoria, where the tip of the velum curls outward and a relaxation
vortex develops. (left)Plots of the Lagrangian coherent structures for four near-equally spaced time steps over the duration of the
primitive (t 0.77, 0.81, 0.88, 0.92= s). Since the jellyfish is axisymmetric, we showonly two-dimensional plots. In these plots, blue
curves represent the forward structures and the red curves represent the backward structures.Mixtures of the forward and backward
structures are given in gray, where thewhiter values denote lower-magnitude transport. The bell of the hydromedusa is displayed in
black. (right)Plots of the velar diameter, subumbrellar volume, flow rate, power output, thrust coefficient, total drag, and skin friction.
In these plots, the gray shaded region denotes the time inwhich themotion primitive takes place. Since the propulsivemotionwas
cyclic, we have plotted two periods.
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relaxation vortex to create a suction effect, which
yields thrust in the upstream direction [57, 58].

From this analysis, we may infer that the conven-
tional division of motion into either contraction or
expansion is a bit coarse. There is, in fact, amore diverse
aggregation of movements, which becomes obvious
once paired with the dynamics. Akin to the breakpoints
for the S. tubuolsa, those forA. victoria beginwhen there
is no variation in force and when there is a switch in
movement direction and speed for some portion of the

anatomy. This leads us to again believe that such primi-
tives have someutility for path planning and control.

We feel it prudent to mention that, from a control
standpoint, it is advantageous to have a large number
of short-term primitives versus fewer longer-term
ones. The former case provides an opportunity to
interrupt a planned course and handle unforeseen
events. Comparably, the latter could pose problems in
certain scenarios. One instance that we can envision
entails the dissipation of the relaxation vortex, either

Figure 10.The fifthmotion primitive forA. victoria, which is a coasting phase. (left)Plots of the Lagrangian coherent structures for
four near-equally spaced timesteps over the duration of the primitive (t 0.93, 0.99, 1.11, 1.16= s). Since the jellyfish is axisymmetric,
we showonly two-dimensional plots. In these plots, blue curves represent the forward structures and the red curves represent the
backward structures.Mixtures of the forward and backward structures are given in gray, where thewhiter values denote lower-
magnitude transport. The bell of the hydromedusa is displayed in black. (right)Plots of the velar diameter, subumbrellar volume, flow
rate, power output, thrust coefficient, total drag, and skin friction. In these plots, the gray shaded region denotes the time inwhich the
motion primitive takes place. Since the propulsivemotionwas cyclic, we have plotted two periods.

19

Bioinspir. Biomim. 10 (2015) 066001 I Sledge et al



from a large shear gradient in the flow or the passage of
enough time without meaningful motion. The loss of
this vortex would adversely affect propulsion effi-
ciency for oblate-based platforms, as the kinetic
energy lost in the wake would be increased due to a
higherfluid rotation [54].

The S. tubuolsa takes advantage of its jetting cycle
to produce large accelerations that help it escape pre-
dators and reposition itself for feeding. In contrast, the
A. victoria experiences much lower accelerations and
uses swimming as an extension of its feeding mechan-
ism. Aside from the physical differences, the negative
velocities along the symmetry axis indicate that a large,
added mass force hinders its actions. Although A. vic-
toria has a lower overall thrust, metrics like the Froude
coefficient show it to be more efficient. While it might
be tempting to think that nature has perfected the
motions, we hypothesize that there are ample oppor-
tunities to further enhance them for specific applica-
tions. For example, a higher stroke amplitude during
A. victoriaʼs fourth and fifth primitives should, over
the first and second primitives, export a larger net
energy into the wake as a strong vortex shedding. Such
an alteration will promote faster swimming, albeit at
the expensive of a higher locomotive cost. As another
instance, if we increased the pulsing frequency, we
would expect a higher circulation shedding rate and
hence a higher overall velocity. However, the effort
required to achieve this would likely be more than if
we simply adjusted the stroke amplitude [59].

4. Conclusions

We have developed a systematic approach for seg-
menting and characterizing the non-rigid-body
motions of hydromedusae. The essence of our
approach is twofold. The first component is a hier-
archical, Bayesian statistical model that relies on latent
stochastic processes to mathematically describe the
body deformations. The latent processes act as high-
dimensional dynamical systems over parts of the phase
space. The other component is a projection-based
mixture model for constructing coarse-grained ver-
sions of the models on a reduced space. Due to the
judicious selection of nonparametric priors, themodel
can adapt to the observed hydromedusae motions and
self-tune its parameters. This functionality is particu-
larly helpful: it permits the number of motion
subsequences, or motion primitives, to be determined
automatically in an unsupervisedmanner.

Through experiments with the jetting-based S.
tubulosa and rowing-based A. victoria, our model
identified five motion primitives for each species. In
the case of S. tubulosa, the firstmotion primitive corre-
sponds to the pressurization of the subumbrellar cav-
ity in preparation for the creation of a propulsive jet.
This is followed by jet formation and jetting primi-
tives. Most of the work performed by the

hydromedusa takes place during these latter two pri-
mitives. The fourth primitive encompasses a refill
phase and serves to draw in surrounding fluid for the
next swimming cycle. The movement of fluid around
the subumbrellar flap and into the cavity leads to the
formation of a relaxation vortex. The remaining
motion primitive is a passive coasting stage, whereby
the hydromedusa relies on momentum delivered into
the wake to move upstream. For each of these primi-
tives, we have established links between the temporal
breakpoints and transitions in dynamics trends. This
finding validates that our breakpoints are not occur-
ring at random instants and hence have physical sig-
nificance. It also alludes that a great deal of dynamics
information is already present in the movements and
that they are a promisingmodality for analysis.

The motion primitives for A. victoria are distinct
from those of S. tubulosa, which stems from morpho-
logical differences. During the first primitive forA. vic-
toria, a hybrid propulsive-relaxation vortex is formed
by a compression of the bell. This vortex separates in
the second primitive. Due to the release of elastic
strain energy, the bell begins to expand outward in the
third primitive. This expansion triggers the creation of
a low-pressure region inside the cavity, which pulls in
surrounding fluid. The fourth primitive corresponds
with the formation of a relaxation vortex. A brief
coasting phase is observed in the fifth primitive. As
with the motion primitive breakpoints for S. tubulosa,
those for A. victoria occur during meaningful changes
in both body kinematics and flow field patterns. We
therefore believe that the identified motion primitives
encode unique actuation regimes.

The approach developed in this paper represents
part of the foundation for automating biomimetic
control. In our future endeavors, we will be using this
approach to analyze a wide range of swimming man-
euvers and characterize them as stochastic dynamical
systems. We envision eventually stringing together
series of these dynamical-systems-based motion pri-
mitives to control a soft-robotics platform. As well, we
intend to exploit properties of the motion primitives
to motivate the placement of actuators in such plat-
forms and determine a good number of such
actuators.

Appendix. Nonparametric Bayesian
inference

To apply the model in (4) to segment motions, we will
need to ascertain the posterior distribution of the
unknown parameters. Like most non-trivial Bayesian
models, the distribution is not directly calculable. We
thus turn to approximate inference and, in particular,
to Markov chain Monte Carlo samplers [41]. Such
samplers are principled randomwalks that simulate an
aperiodic, irreducibleMarkov chain with the posterior
as the invariant distribution.
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The generative story outlined above is rather
complicated, so we have elected to break it apart
and tackle the Gauss–Markov section separately.
Before we can deal with this section, though, there is
one issue with the current model: it is infinite twice
over, as there are an infinite number of Poisson pro-
cesses which each contain an infinite number of
points. To circumvent this issue, we first pare the
number of points to a finite amount such that i k
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update and is skipped here. As for the trim sizes of the
Poisson process, we look to a reversible-jump sam-
pler [62].
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Note that the rate at which Metropolis–Hastings
steps are taken can affect the search undertaken by the
Markov chain. To avoid slow convergence, we imple-
ment amultiple-try variant [63].

An advantage of the Bayesian formalism is that the
inferred posterior density may be employed to make
probabilistic predictions about the relevancy of the
model at future time instants and appraise themodel’s
goodness-of-fit [64]. Both capabilities can be realized
through Monte Carlo integration alongside the main
inference procedure. The reason that this is possible is
that the Bayesian formalism provides a non-arbitrary,
non-heuristic way to determine how skeptical one
should be of the model outcomes. Such functionality
is decisive whenever an initial subset of data provides a
tenuous account of the system behavior. It is also use-
ful for rejecting low-performing models. Lastly, this
functionality allows the model to communicate when
additional data should be used to enhance the model
performance.

If additional observations would help improve
the model’s quality, it would be convenient to incor-
porate them without having to abandon the current
model. Toward this end, we look to particle fil-
ters [42].
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