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Abstract
Cephalopods, among other marine animals, use jet propulsion for swimming. A simple
actuator is designed to loosely mimic pulsatile jet formation in squid and jellyfish. The
actuator is comprised of a cavity with an oscillating diaphragm and an exit orifice. Periodic
oscillation of the diaphragm results in the formation of an array of vortex rings and eventually
could generate a periodic pulsatile jet. A general formulation for calculating the velocity of a
steadily translating vortical structure in two-dimensional and axi-symmetric shear flows is
presented. This technique is based on taking the variational derivative of an energetic function
at its critical point. This technique is general, applicable to vortices in liquid and gas media,
with no limitation on the relative size of the vortex core. The technique is then implemented to
estimate the translational velocity of a vortex ring in a Helmholtz vortex ring generator.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and motivation

Squid, jellyfish and scallops belong to the diverse phylum
Mollusca. However, this is not their only similarity. These
marine animals are also jet-propelled swimmers. The
Cephalopoda, including squid, are a successful group of
the Mollusca and are related to bivalves such as scallops,
oysters and clams. Cephalopods, meaning ‘head foot’, are
characterized by a completely merged head and foot, with
a set of arms and/or tentacles surrounding the head. While
many of these molluscs, like the bivalves, do not have a head or
even a separate brain, cephalopods have well-developed senses
and large brains and are thought to be the most intelligent
of all invertebrates. They are also the most diverse of the
molluscs with more than 700 species to be found in all
of the world’s oceans and in depths beyond 5 km. Two
groups of cephalopods exist today: the Nautiloidea with a few
species of the pearly nautilus, and the Coleoidea, containing
squid, cuttlefish, octopods and vampire squid. Cephalopods’
characteristic organs, the funnel and arms, are modifications of

the molluscan foot [1]. Living cephalopods are categorized by
the internal or external shells and number of tentacles; see [2].

Squid, like other cephalopods, use jet propulsion [3].
Squid are not only the fastest cephalopods but also the fastest
swimmers of all aquatic invertebrates. During swimming, their
long tapered bodies form an ideally streamlined configuration
while their lateral fins provide stability; see figure 1(a). The
swimming cycle starts with drawing water from the free edge
of the mantle and finishes with expelling it through a siphon,
or funnel, on the squid’s underside. The length of the mantle
of a squid is covered by alternating rings of circular and radial
muscles, required for contraction of the cavity and respiration,
with connective tissue fibers in the muscle [4]. An opening in
the mantle cavity serves as an inhalant aperture, whereas the
funnel serves as the exhalent aperture. During the expulsion
cycle, the head is pulled back toward the body, sealing the
intake valves except the funnel. When the circular muscles
contract the cavity, the water is forced out of the funnel or
siphon. The flow of water can be controlled through a muscle
valve just inside the siphon’s opening, allowing the jet to
be vectored in the appropriate direction. Using such a jet
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(a) (b)

Figure 1. Jet-propelled marine animals: (a) Squid; (b) Jellyfish.

(a) (b)

Figure 2. Vortex ring actuator concept: (a) fluid ingestion; (b) fluid expulsion and vortex ring formation.

propulsion technique, common Pacific squid can travel at 5–8
miles per hour (mph), while larger species have been recorded
to move at around 20 mph. This suggests that pulsatile
jets could be a viable locomotion technique for the design
of underwater vehicles, as of yet unexplored in commercial
vehicles.

Another example of jetting marine animals is jellyfish [5].
The body of a jellyfish consists of a bell-shaped membrane,
enclosing its internal structure, with suspended tentacles; see
figure 1(b). Most jellyfish are passive drifters that feed on
plankton. As a result, low hydrodynamic drag and fast
swimming speed are not important to them. That could explain
their bluff hydrodynamic design. However, jetting and vortex
formation is important to them for slow moving and creating
water currents that collect and force food within reach of
their tentacles. Jellyfish rely upon repeated contractions of
an umbrella-shaped structure, or bell. During contraction,
circular subumbrellar muscles pull the sides of the bell inward,
reducing the volume of the subumbrellar cavity, and forcing
water out through the velar aperture. Water is drawn back into
the subumbrellar cavity during the relaxation phase. Because
jellyfish are sensitive to light, limited vertical movement can
also be important. The pulsating rhythm of the bell allows
for some regulation of vertical movement and collection of
food particles at the vortex core. The jellyfish can optimize
its propulsion by controlling the diameter and velocity of the
expelled jet at the exit of the velar aperture during vortex
formation.

Motivated by squid jet propulsion, we have recently
designed zero-mass flux vortex generators for low speed
maneuvering of underwater vehicles [6–8]. Similar to squid
or jellyfish, our actuator consists of a flexible cavity with an

exit orifice. Through cyclic deflection of the diaphragm, low
momentum fluid is ingested into the cavity and then expelled
with a much higher momentum; see figure 2.

The initial structure of a starting jet is dominated by vortex
ring formation [9, 10]. Periodic operation of a zero mass flux
vortex generator results in the formation of a periodic array
of vortex rings. A simple momentum balance analysis at
the opening of such an actuator reveals that the net thrust
generation depends on the wake structure and velocity of the
generated vortex rings. To this end, this paper proposes a
technique for estimating the speed of a vortex ring from the
characteristics of the device that generate the vortex ring.

Most of the early experimental investigations on vortices
were often limited to relatively thin vortices; see e.g.,
[9, 11, 12]. More recently, thicker vortices were investigated
[10, 13]. Theoretical investigation on the translational velocity
of a vortex ring is an old topic dating back to Kelvin [14] and
Helmholtz [15]. Kelvin’s result was extended to higher orders
for the translational velocity of a thin axi-symmetric vortex
ring in inviscid incompressible fluids; see e.g., [16–19]. All of
these works are focused on relating the vortex velocity to the
associated kinematic variables. In this investigation, however,
we would like to extend these results to obtain the velocity of a
general inviscid vortex from its intrinsic invariants of motion.
Considering that in high Reynolds number vortex formation
the flow invariants do not change during the vortex formation,
one expects to calculate them from the characteristics of the
vortex generator rather than the final vortices.

This paper is organized as follows. In the next section
we will describe the morphology of a starting jet, in particular
the formation of the leading vortex ring. Section 3 describes
a bio-inspired vortex ring actuator that loosely mimics the
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Figure 3. Piston-cylinder mechanism. Dr is the toroidal diameter of
the vortex core. In Norbury notation this is 2l.

propulsion of a squid. A general theory for estimating the
translational velocity of a steadily moving vortical system
is presented in section 4. Application of this formulation
to vortex actuators is described in section 5. Finally our
concluding remarks are presented in section 6.

2. Starting jets and vortex formation

The roll-up of an ejected shear layer from a nozzle or an
orifice and the formation of vortex rings marks the initial
phase of a starting jet. Vortex rings have captured the
attention of many researchers over the last century. Vortex
rings have relatively simple and persistent three-dimensional
structure and at high Reynolds numbers they decay slowly.
The generation, formation, evolution and interaction of vortex
rings have been the subject of numerous investigations (see,
e.g., Shariff and Leonard [20] and the references therein). This
study is focused on estimating the speed of the resulting vortex
in a starting jet from the characteristics of the actuator.

In a laboratory, vortex rings can be generated by the
motion of a piston pushing a column of fluid through an orifice
or nozzle; see figure 3. The boundary layer at the edge of the
orifice or nozzle will separate and roll up into a vortex ring.
The vortex ring has an induction velocity causing it to
accelerate while the vortex ring grows. This combination of
vortex ring enlargement and acceleration continues until the
shear layer is unable to inject any more vorticity to the leading
vortex ring. In this case the leading vortex ring is detached
from the vortex sheet and the remaining vortex sheet becomes
unstable and forms a trailing vortex ring. Continuation of this
process in axi-symmetric flow will result in the formation of a
periodic array of vortex rings.

The experiments of Gharib et al [10] have shown that for
large piston stroke versus diameter ratio (L/D) in a piston-
cylinder mechanism, the generated flow field consists of a
leading vortex ring followed by a trailing jet. The vorticity field
of the formed leading vortex ring is disconnected (pinched-off)
from that of the trailing jet at a critical value of L/D (dubbed
the ‘formation number’), for which the vortex ring attains
a maximum circulation. The formation number was in the
range of 3.6 to 4.5 for a variety of exit diameters, exit plane
geometries, and non-impulsive piston velocities.

Mohseni and Gharib [21] considered a relaxational model
for the vortex ring pinch-off process, claiming that the

formation of vortex rings at relatively high Reynolds numbers
is mainly an inviscid process. Therefore, the invariants of
motion, namely the energy E, impulse I and circulation � must
be the same initially and after the formation of vortex rings.
Note that apart from the energy, impulse and circulation all the
other invariants of motion (higher order vorticity moments) are
lost during the mixing process and will not significantly affect
the formation process [22]. The initial state was approximated
by a fluid slug moving at a fixed velocity (piston velocity) and
the final state was approximated by a vortex in the Norbury
family of vortices [23]. They predicted an average formation
number of 4 for the vortex ring pinch-off. It is important to
note that the formation number of 4 is only achieved if the rates
of generation of the integrals of motion are constant during the
formation process. One can change the formation number by
varying the rate that the invariants of motion are delivered to
the system. It has been suggested [21, 24–28] that one can
change the pinch-off formation number and consequently the
size of the resulting vortex by varying: (i) the nozzle diameter
or (ii) the speed of the shear layer (speed of the ejected fluid
slug) during the formation process. Accelerating the shear
layer results in a larger vortex ring while decelerating the shear
layer results in a smaller vortex ring and consequently smaller
critical formation number. This is verified numerically in high
Reynolds number flows [24]. Note that these simulations also
verified the assumption that the main invariants of motion in
the pinch-off process are the kinetic energy, circulation and
impulse and that the higher enstrophy densities did not play a
significant role as long as the Reynolds number was relatively
high [22]. Pulsation also has beneficial thrust augmentation.
Krueger and Gharib [29] showed that the time-averaged thrust
of an incompressible fully pulsed jet containing a period of no
flow between pulses could be 90% higher than an un-pulsed
jet. They traced back the origin of the thrust augmentation to
vortex ring formation. All these observations point to a viable
technique for thrust generation in underwater locomotion. A
biomimetically inspired pulsatile jet actuator is described in
the next section.

3. Biomimetic vortex actuators for locomotion of
underwater vehicles

A major challenge in the design of autonomous underwater
vehicles (AUVs) and remotely operated vehicles (ROVs) is
maneuverability at low speeds. This is of particular importance
during docking procedures. Inspired by the jet propulsion in
cephalopods, described in section 1, we recently proposed
a novel vortex ring generator for application in low speed
maneuvering and propulsion of small underwater vehicles;
see [6, 7, 30, 31].

Vortex ring jets can be generated using a variety of
mechanical devices. While a squid generates vortex rings by
muscle contraction around the mantle, we proposed a simple,
yet effective mechanism for periodic vortex ring generation.
To this end, prototypes of pulsatile jet vortex generators using
the Helmholtz cavity concept (figure 4) were designed and built
in our group. The jet propulsion of a squid is mimicked by the
movement of a diaphragm wall of a cavity with an exit orifice.
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(a) (b) (c)

Figure 4. CU Boulder vortex ring actuator prototype: (a) CAD model of the actuator design; (b) plunger and solenoid assembly; (c) actual
fabrication of the vortex ring actuator.

(b) (a)

Figure 5. UUV test bed at the University of Colorado: (a) Colorado UUV; (c) exit nozzle of the SJA on the Colorado UUV.

Figure 4 shows the structure and appearance of a pulsatile
jet actuator prototype. The driving diaphragm consists of
a rigid disk with a flexible surround. Various actuation
techniques can be employed for actuating the diaphragm.
These include, but are not limited to, the use of solenoids,
acoustic speakers, electrostatic and piezoelectric actuation.
Currently a solenoid actuator is used to generate the diaphragm
motion. In this design the inward movement of a diaphragm
draws fluid into a chamber as depicted in figure 2(a).
The subsequent outward diaphragm movement in figure 2(b)
expels the fluid, forming a vortex ring or a jet depending on
the formation number. Repetition of this cycle results in a
pulsatile jet. Because of the asymmetry of the flow during the
inflow and outflow phases, a net fluid impulse is generated in
each cycle, even though there is no net mass flux through the
chamber over one cycle. The experimental prototypes also
allow easy substitution of different sized orifices and different
sized chambers. In this way, physical parameters can be easily
varied so that theoretical models can be compared against
actual experimental results in different parameter regimes.
This design has many advantages including its simplicity, few
moving parts, and compactness. Figure 5 shows an unmanned
underwater vehicle equipped with this technology. This
vehicle served as a model test-bed for hybrid vehicle designs
that combine pulsatile jets with conventional propellers and
torpedo-like bodies. Note the proposed propulsion scheme
has no protruding components that increase drag, has very
few moving parts, and takes up relatively little volume. Such
hybrid designs which incorporate both a main propeller and
a distributed set of pulsatile jet actuators will improve low

speed underwater vehicle performance. While propellers
clearly perform best at cruising speeds, pulsatile jets can
significantly augment low speed maneuverability, and enable
occasional loitering/hovering actions. Such pulsatile jets can
also implement drag-reducing flow control (similar to what
has been used in air and reported in [32]) while the vehicle is
cruising under propeller power.

4. Translational velocity of a steady vortical system

The result of evolution of a pair of starting shear layers in
two-dimensional and a shear tube in axi-symmetric flows are
steadily translating vortices. In this section we derive an
equation for the translational velocity of the resulting vortical
system based on the overall parameters of the shear layer.
To avoid lengthy calculations, we derive the formulae for the
two-dimensional case. The axi-symmetric case can be derived
similarly.

Consider a two-dimensional inviscid flow in unbounded
regions. The equations of motion in stream function–vorticity
(ψ–ω) are

∇2ψ = −ω; (1)

∇ · u = 0; (2)

where u is the velocity field. We are interested in flow
states that are steady in some translating and rotating frame
of reference with translational velocity (U, V ) and rotational
velocity �. In this system, the energy E = ∫

ψω dA,
linear impulses Ix = ∫

ωy dA, and Iy = − ∫
ωx dA, angular

impulse J = − 1
2

∫
ωr2 dA, and moments of the vorticity
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In = ∫
ωn dA are conserved. Kelvin stated that for isovortical

perturbations the steady solutions of the two-dimensional and
axi-symmetric inviscid flows are the extremum of

H = E − UIx − V Iy − �J, (3)

where U,V and � are the Lagrange multipliers [33]. In
applications of interest in this paper we assume a zero angular
impulse. Now, if one chooses x in the direction of the overall
translational velocity, one can reduce this function to

H = E − UI, (4)

where I is the impulse in the translational velocity direction.
This formulation is more suitable for our purposes. Now
variation of H subject to isovortical perturbations and
constraint I is

δH = δE − UδI =
∫

(ψ + Uy) δω dA. (5)

Note that δE = ∫
ψδω dA. For area preserving perturbations

one can show that [34]

δω = − ∂e

∂y

∂ω

∂x
+

∂e

∂x

∂ω

∂y
(6)

for an arbitrary function e. Hence, integrating by parts results
in

δH =
∫ ((

∂ψ

∂y
+ U

)
∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
e dA. (7)

For a steady case δH = 0. Now in a frame of reference
moving with velocity U, equation (7) reduces to

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
= 0, (8)

which is exactly the equation of motion. Consequently, the
equation of motion for steady inviscid flow is an extremum
of function H. In other words, the two-dimensional steady
Euler equation and the variational approach presented by the
equation δH = 0 are equivalent. This provides the context for
an equation for the translational velocity of a steadily moving
vortical system based on equation (5). That is

U = δE

δI

∣∣∣∣
for isovortical perturbations.

(9)

In the case of simplified vortex distribution, such as
uniform vorticity density distribution in Norbury vortices, the
isovortical perturbations could be limited to constant vortex
volume and circulation.

A similar calculation for axi-symmetric flows, not
repeated here, results in similar formulae for the translational
velocity. It should be pointed out that the same equation for
thin axi-symmetric vortex rings was also proposed by Robert
and Donnelly [17, 35] using a different derivation. Here, this
result was extended to a more general set of vortices.

The challenge is now to calculate the variational derivative
of kinetic energy with respect to impulse for isovortical
perturbations for any vortex generators. For this reason it is of
great importance to know the rate of generation of invariants
of motion for a particular vortex generator. In fact, we believe
that to a first-order approximation a vortex generator can be
characterized by the rate of creation of kinetic energy, impulse
and circulation. This will become evident in the next section
when an estimate for the translational velocity of a vortex ring
at the exit of a nozzle in actuators described in section 3 is
presented.

Figure 6. Actuation of a zero mass flux vortex actuator.

5. Translational velocity of an axi-symmetric
shear tube

There are various experimental and numerical methods to
generate vortex rings. Each of them generates invariants of
motion at a particular rate. In order to predict the translational
velocity of the ejected vortical system for each vortex generator
one needs to estimate the rate of injection of invariants of
motion for that particular vortex ring generator.

Consider an arbitrary generator of axi-symmetric vortex
sheets. A popular example is a piston-cylinder mechanism,
where a cylindrical shear layer is ejected from the exit of
a cylinder at a particular speed, approximately the piston
velocity1 Up (see figure 3). This is similar to ejection of
a fluid slug from a vortex generator as depicted in figure 6.
Note that the length of the ejected slug in this actuator can be
calculated by equating the volume of the ejected fluid slug to
the total volume change due to the movement of the flexible
diaphragm.

As described in section 2, the flow field of an impulsively
started jet consists of a leading vortex ring followed, if the
piston stroke versus diameter ratio is large, by a trailing jet. In
order to model this process we use the technique proposed in
[22]. We approximate the initial state by a column of fluid with
diameter D = 2R and length L moving at a constant velocity
Up (piston velocity) and the final state is approximated by a
vortex in the Norbury family of vortices. The slug model
is characterized by the following relations for the energy,
circulation and impulse of the ejected fluid:

E = 1

8
πD2LU 2

p = I�

L
(10)

� = LUp

2
= I

2πR2
(11)

I = 1

4
πD2LUp = 1

2
πD2�. (12)

1 We assumed that the jet velocity is approximately Up , but for jets ejected
through an orifice the jet velocity may be substantially higher than Up due to
jet contraction past the jet exit plane. These effects are not considered here.
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Figure 7. Volume of core in Norbury vortices.

The slug model provides an estimate of the invariants of motion
initially injected into the medium. On the other hand, we
assume that the invariants of motion after the formation can
be estimated by the invariants of motion for a vortex in the
Norbury family of vortices.

5.1. Translational velocity of a vortex ring

Velocity of a steadily translating axi-symmetric vortex is a
constant of motion in inviscid flows. Theoretical prediction of
translational velocity of thick vortex rings is a challenging
task. Translational velocity depends on the rate at which
the invariants of motion are provided to the system. In the
slug model we can estimate the translational velocity from
equation (9),

Utr = δE

δI

∣∣∣∣
constant �and vortex volume.

(13)

Considering zero variation in the vortex ring circulation,
equation (10) yields

δE

δI
= �

L
− E

L

δL

δI
= Up

2
− E

L

δL

δI
. (14)

(a) (b)

Figure 8. Variation of the translation velocity of a vortex ring (in slug model—Norbury vortices) with (a) the mean core radius, and
(b) formation number L/D. Circles are the data points and the solid line is the curve fitted data points.

To simplify the variational derivative on the right-hand side of
equation (14), one can employ equations (11) and (12) for the
impulse to calculate

δI = 2I

R
δR. (15)

By substituting δI into equations (14) one obtains

δE

δI
= Up

2
− ER

2LI

δL

δR
. (16)

In order to proceed we employ Norbury’s result to calculate δL
δR

.
Norbury vortices are steady solutions of Euler equations with
one parameter α, non-dimensional mean core radius. The
vorticity density distribution � = ω/r is constant in each
vortex. Norbury vortices range from vortex rings of small
cross section as α approaches zero to Hill’s spherical vortex
for α = √

2. Using the non-dimensionalization employed by
Norbury one can write

E = (�α2l2)2EN ; (17)

� = (�α2l2)l�N ; (18)

I = (�α2l2)l3IN ; (19)

where the subscript N indicates the corresponding non-
dimensional quantity for a Norbury vortex. Here, l is the
vortex radius [23].

By equating the non-dimensional impulse from the slug
model with the same quantity calculated from the Norbury
family of vortices one obtains

L

D
=

√
π

2

I
1/2
N �3/2

EN

= g(α). (20)

We assumed that D ≈ 2l. Note that the right-hand side of
equation (20) is a function of α only. Here we derive an
explicit formula for the translational velocity of a vortex ring
with a mean core radius of α.

From equation (20) one obtains

δL

δR
= L

R
+ 2g′(α)R

δα

δR
. (21)

The constraint on the volume of the vortex ring is employed to
derive an equation for δα/δR. Norbury [23] provided results
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for the vortex ring volume as a function of the mean core
radius, namely Vc = f (α)R3. f (α), produced in figure 7, is a
function of the mean core radius α only. Hence

R
δα

δR
= −3

f (α)

f ′(α)
. (22)

Now equation (21) can be recast as
R

L

δL

δR
= 1 − 3

g′(α)

g(α)

f (α)

f ′(α)
. (23)

Finally, the translational velocity in equations (13) and (14)
can be written as

Utr

Up

= 1

4

(
1 + 3

g′(α)

g(α)

f (α)

f ′(α)

)
. (24)

This function is depicted in figure 8 using Norbury’s data
[23]. There are slight fluctuations in this graph, which is a
consequence of calculating derivatives from relatively coarse
data from Norbury [23]. For most values of the mean core
radius, particularly for 2 � L/D � 5 the slug model predicts
a translational velocity around Up/2 with slight velocity
increase as the formation number increases. This is consistent
with a previous assumption in [21]. At higher values of α

which corresponds to larger formation number L/D in the slug
model there is a significant drop in the translational velocity.
This is a limitation of the slug model which assumes that the
relative rate of injecting invariants of motion is constant and
not dependent on the formation number. However, in reality,
the formation and growth of boundary layers at the orifice
walls will change the effective velocity and diameter of the
ejecting fluid [26]. It is expected that inclusion of such effects
results in better prediction of the translational velocity for
larger formation numbers. In general, the slug model is not a
good representation of the invariants of motion for very large
or very small formation numbers.

6. Conclusions

A technique for calculating the translational velocity of a
steady vortical structure is derived. The technique uses the
critical point of a functional defined based on the invariants
of motion during the formation process. This technique
was employed for estimating the translational velocity of a
vortex ring ejected from a zero mass flux vortex generator.
The particular vortex generator investigated is designed to
mimic the jet propulsion of cephalopods. An equation for
the translational velocity of a vortex ring is derived from a
combination of the slug model and Norbury vortices. The
resulting velocity is a function of the mean core radius α

of the vortex or the formation number L/D. The same
technique could potentially be used to estimate the speed of
a vortex ring (for axi-symmetric flows) and a vortex pair (for
two-dimensional flows) in other vortex generators. Future
work involves accommodation for an improved slug model
such as circulation correction by Krueger [36] and effects
of the boundary-layer growth on the jet centerline velocity
[26, 37]. Although this paper is mostly focused on application
of the theory to pulsatile jets, it should be noted that similar
calculations can be conducted to connect the vortex theory of
animal flight to its wake structure and wing kinematics. This
will be the topic of a future investigation.
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