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Abstract
In this paper, the lateral line trunk canal (LLTC) of a fish is modeled to investigate how it is
affected by an external flow field. Potential flow theory is adopted to model the flow field
around a fish’s body in the presence of a Karman vortex street. Karman and reverse Karman
streets represent the flow patterns behind a bluff body and a traveling fish, respectively. An
analytical solution is obtained for a flat body, while a fish-like body is modeled using a
Joukowski transformation and the corresponding equations are solved numerically. The
pressure distribution on the body surface is then computed employing Bernoulli’s equation.
For a known external flow, the flow inside the LLTC is driven by the pressure gradient between
a pair of consecutive pores, which can be solved analytically. Governing dimensionless
parameters are obtained from this analytical solution, and the effects of these numbers on the
amplitude or features of the velocity distribution inside the canal are studied. The results show
that the main characteristics of a vortex street including the magnitude of vortices, their
translational speed, their spacing, their distance from the fish’s body and the angle of the
vortex street axis can all be recovered by measuring the velocity distribution along the canal
and its changes with time. To this end, the proposed LLTC model could explain how a fish
identifies the characteristics of a Karman vortex street shed by a nearby object or a traveling
fish. It is also demonstrated that while this model captures the ac (alternating current)
component of the external velocity signal, the dc (direct current) component of the signal is
filtered out. Based on the results of our model, the role of the LLTC in a fish’s schooling and
its evolutionary impact on fish sensing are discussed.

(Some figures may appear in colour only in the online journal)

Nomenclature

a Radius of cylinder
b Vertical distance between vortices
c, c∗ Chord length of fish’s body, and its dimensionless form
c0 Coefficient of Joukowsky transformation

4 Author to whom any correspondence should be addressed.

d, d∗ Diameter of lateral line canal, and its dimensionless
form

h, h∗ Vertical distance between fish and vortex street, and
its dimensionless form

l Horizontal distance between vortices

L Length of lateral line

P0 Total pressure at far field

PL Pressure at left end of pipe

PR Pressure at the right end of pipe
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Psurf Pressure on the flat plate surface
r Radius in cylindrical coordinate
t, t∗ Time and its dimensionless form
u Velocity component in the x direction
uc Flow velocity inside canal
us Velocity of vortex street
U∞ Free stream velocity at infinity
Utr Velocity of vortex street in static fluid
v Velocity component in the y direction
Vin Characteristic velocity inside lateral line canal
Vsurf Velocity on the flat plate surface
W Complex potential
x, x∗ Coordinates along the fish’s body axis, and its

dimensionless form
z Complex coordinates after Joukowski transformation
�, �∗ Circulation strength of vortex, and its dimensionless

form
δ Thickness of fish-like body
�L Distance between adjacent pores in lateral line
ζ Complex coordinates before Joukowski transforma-

tion
ζn, ζ̄n Coordinate of vortex in the ζ -plane, and its complex

conjugate
θ Angle between the vortex street axis and fish’s body
λ Thickness ratio of fish-like body
μ Dynamic viscosity of fluid inside canal
ν, ν∗ Kinetic viscosity of fluid inside canal, and its

dimensionless form
	 Dimensionless velocity inside lateral line canal
ρ Density of external fluid
φ Velocity potential
ψ Stream function
ω Angular velocity
ω∗

D Kinetic Reynolds number

1. Introduction

Fish possess a mechanosensory lateral line system, which
responds to the motion of the surrounding water relative to the
fish’s skin. This sensing system could consist of a superficial
neuromast (SN) and a canal neuromast (CN) subsystems. SNs
are located on the outer surface of a fish, extending into the
external fluid, while CNs are buried inside the lateral line canal
(see figure 1). The basic sensing unit of the two is the fish’s
hair cell. Such hair cells will deflect as the result of oncoming
flow, thus allowing for detection. SNs are generally smaller
in diameter but greater in height than CNs and contain fewer
hair cells [1]. Research on the lateral line has shown that SNs
respond to changes in external flow velocity, whereas CNs
respond to changes in external flow acceleration (associated
with corresponding changes in external flow pressure) [2]. A
simple interpretation would be that CNs sense information
regarding pressure gradients, while SNs sense the velocity of
the surrounding flow. From another perspective, SNs respond
best to the dc (direct current) and low-frequency components
(less than approximately 30 Hz) of the incoming flow, whereas
CNs respond best to high-frequency components of the flow
(approximately 30–150 Hz) [3]. The lateral line organ is

Figure 1. A schematic of LLTC and canal structure.

capable of diverse sensing tasks, ranging from the detection
of near field motion [4] produced by prey [5], predators [6] or
during schooling [7] to the perception of water currents and
static obstacles [8]. Although individual behavioral roles of
SNs and CNs have not been well distinguished, it has been
found that SNs control rheotaxis at low current velocities [9],
whereas CNs control the orienting response of fish to the initial
prey detection [3]. It is believed that CNs are important for fish
schooling [10].

In hydrodynamic studies of the lateral line, models using
potential flow theory have been proposed to find the pressure
distribution on a fish’s skin in the presence of a stimulus. In
potential flow theory, the fluid’s viscosity is neglected; thus,
the boundary conditions around a solid body require only
that the velocity normal to the wall be equal to the wall’s
velocity. The potential flow model serves to approximate the
pressure outside the boundary layer. This pressure essentially
equals the pressure on the body’s surface, because the pressure
across the thickness of a thin boundary layer can be accurately
approximated as being constant [11]. Consequently, potential
flow is a fair model as long as the study is confined to CNs that
respond to pressure gradient. The potential dipole source flow
equations have been used to model a vibrating sphere near a
fish’s body [12]. The same equations were used by Kroese
to compute the slip velocity along the fish’s skin caused by
a nearby vibrating sphere [13]. Potential flow around a three-
dimensional slender body with circular cross-section has been
obtained by Handelsman and Keller [14]. Hassan adapted this
solution to investigate the cases of fish moving in open water,
gliding toward a plane’s surface [15], gliding alongside or
above a plane’s surface [16], and near an oscillating sphere
[17]. Various stimuli sensed by the lateral line have been the
subject of many research investigations over the years. These
stimuli usually involve a vibrating sphere, moving objects,
an approaching wall and vortices [18–23]. In this paper, we
specifically consider Karman vortex street sensing. We will
develop a model of the lateral line sensing and show that
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measurement in such a model provides enough information to
detect the most important parameters of such a vortex street,
namely the vortex strength, the lateral and flow wise spacings,
translational velocity and the orientation of the vortex street.

The ability of a fish to detect vortices by its lateral line
has been demonstrated in experiments [24, 25]. Franosch et al
[26] followed the method used by Hassan [15–17] to model
the flow due to a three-dimensional vortex ring next to the
fish’s body. Their results showed that information about the
orientation of a vortex ring is encoded in the input of the lateral
line, and thus is accessible to the nervous system. Barbier has
studied numerically the two-dimensional flow field due to a
vortex street behind a prism [27]. He also investigated the
three-dimensional flow inside the LLTC in the presence of
the hair cells. However, he studied the flow in a subsegment
between two adjacent pores but did not consider this internal
flow over the entire length of the canal. Because of openings
along the canal, internal flow velocity is expected to be non-
uniform, which suggests that the distribution of velocity along
the LLTC may contain rich information on external flow. The
purpose of this study is to investigate the information captured
by the LLTC in the presence of a Karman vortex street and
to determine the relevance of this for schooling behavior.
Potential flow theory is used to create a two-dimensional
model of the external flow field created by a gliding fish,
and the pressure distribution along the fish’s surface is
calculated accordingly. The internal flow inside the canal is
also modeled analytically to calculate the velocity distribution
along the LLTC. Finally, this information is inverted in order to
determine how the original flow parameters may be gleamed
from the local data available to a fish. A preliminary result
from our group in this direction was presented in [28].

2. Theoretical modeling

In this section, a fish’s body is approximated by a flat plate,
and a two-dimensional potential flow model is presented
to determine the pressure field around this body next to a
vortex street, after which an analytical model is developed
to characterize the flow inside the LLTC. For simplicity, this
model is one-way coupled, meaning that the flow inside the
LLTC is driven by the external flow with no feedback from
internal to external flow. That is an acceptable assumption,
considering the higher viscosity of the fluid inside the canal
and small pore sizes which results in a very low Reynolds
number flow inside the canal.

2.1. External flow field modeling

In potential flow theory, an infinite single row of vortices with
separation l and strength � has a complex potential

W (z) = φ + ψ i = �

2π i

+∞∑
n=−∞

ln (z − nl)

= �

2π i
ln sin

(πz

l

)
. (1)

The wake of an obstacle or a swimming animal is generally
in the form of a Karman vortex street, which is a staggered

Figure 2. A schematic drawing of parameters governing the flow
field considered in this investigation. A fish-like body in a
background uniform flow superimposed on a Karman vortex street.

arrangement of two vortex rows with opposite orientations.
With the vertical spacing between two vortex rows denoted by
b, the stability analysis on this vortex street indicates that the
ratio b/l has a constant value of about 0.28. Accordingly, the
vertical distance between vortices is kept at b = 0.28l in
the present study. In a static fluid, such a double-layered vortex
street moves itself at an induced velocity utr which is a function
of the vortex street properties as given by

utr = − �

2li
cot

[π

l
(l/2 + bi)

]
= �

2li
tan

(
πbi

l

)
. (2)

Here, the sign of � is determined by the upper vortex street.
Superposing a free stream velocity, the total velocity of this
vortex street becomes

us = U∞ + utr = U∞ − �

2li
cot π (0.5 + 0.28i)

= U∞ + 0.3536�

l
. (3)

At this point, we introduce a fish in this background flow.
We will consider two simplifying cases. In the first case, the
fish is modeled as a simple flat plate. While this is simplistic,
it is a reasonable model for fish with a low thickness-to-length
ratio. As will be shown shortly, the case of the flat plate in
a vortex street background flow can be solved analytically.
This is quite helpful in order to understand the role of each
parameter in the overall flow. For a more realistic presentation
of a fish, what we call a fish-like body in the following sections,
we will present a two-dimensional fish by a symmetrical
airfoil. As a boundary layer forms around the fish’s body
in the presence of a free stream, its surface approximates a
straight line parallel to the fish’s body [29]. As noted earlier, the
pressure predicted by the potential flow outside the boundary
layer is equal to the pressure inside the boundary layer. For
simplicity we assume that this flat body lies along the x axis
of the complex z-plane with a Karman vortex street parallel
to one side of the fish’s body; see figure 2. In order to make
the body surface streamlined, the method of images is used
by introducing another vortex street on the other side of the
body, so that the flow field is symmetric about the x axis. The
complex potential of such a flow field can be written as

W (z, t) = U∞z

+ �

2π i
[ln sin A − ln sin B − ln sinC + ln sin D], (4)
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where

A = π

l
[z − ust + 0.5l − i(h + 0.14l)] , (5)

B = π

l
[z − ust + 0.5l + i(h + 0.14l)] , (6)

C = π

l
[z − ust − i(h − 0.14l)] , (7)

D = π

l
[z − ust + i(h − 0.14l)] . (8)

Here A, B, C and D terms indicate the locations of the four
vortex trains. The complex velocity is then given by the
derivative of the complex potential, W , to be

u − vi = ∂W

∂z
= U∞ + �

2li
[cot A − cot B − cotC + cot D].

(9)

On the body’s surface, where z = x + 0i, the velocity normal
to the body’s surface should be zero, namely v|z=x = 0. Thus,
we have the surface velocity

Vsurf = u|z=x = U∞ + �

2li
[cot A − cot B − cotC + cot D]z=x.

(10)

Owing to the symmetry of the flow field, the stream function
on the body equals zero and this value does not change over
time. As a result, the complex potential, W , on the body is
a real-valued function which equals the velocity potential, φ.
Accordingly, the time derivative of the complex potential is
also a real-valued function
∂W

∂t

∣∣∣∣
z=x

= ∂φ

∂t

∣∣∣∣
z=x

= �us

2li
[− cot A + cot B + cotC − cot D]z=x . (11)

Bernoulli’s equation can be employed in order to obtain a
pressure distribution P along the fish’s body

Psurf =
[

P0 − 1

2
ρV 2

surf − ρ
∂φ

∂t

]
z=x

. (12)

Here, P0 is the total pressure at the far field. For convenience,
we let P0 = 1

2ρU2
∞. Substituting (3), (10) and (11) into (12),

one obtains the following equation for the pressure distribution
along the fish’s body:

Psurf = ρ�2

8l2
(cot A − cot B − cotC + cot D)2

+0.3536ρ�2

2l2i
(cot A − cot B − cotC + cot D). (13)

The created pressure gradient along the body of the fish
is the driving force behind the flow inside the LLTC. For
simplicity, we assume that the pressure on the canal openings
is determined only by the external flow and not affected by
the flow inside the canal, meaning that the outside and inside
flows are one-way coupled.

2.2. Model of the flow inside the canal

In the previous section, we obtained the pressure distribution
on the body’s surface. In order to predict the response
of hair cells inside the canal to this external pressure, a
model of the flow inside the canal is required. In this study,
the canal is modeled as a long, slender circular pipe with

Figure 3. A schematic drawing of our model of a canal lateral line.

pores uniformly distributed along the surface of the pipe at
certain intervals (see figure 3). For simplicity, the presence
of hair cells inside the canal is not considered in the flow
calculations. While the morphological characteristics of the
trunk lateral line neuromasts vary across different species,
averaged common values are used for several parameters in
our model. Consequently, the diameter of the pipe, d, is taken
to be 250 μm, the diameter of each pore, dp, to be 250 μm
and the interval between two adjacent pores, �L, to be 4 mm
[30]. Because the fluid inside the canal is more viscous than
that outside [31] and the diameter of the canal is small, the
Reynolds number for flow is much smaller than 1. As a result,
the governing momentum equation of this flow simplifies to
Stokes’ linear equation.

The flow inside the canal is driven by the pressure
gradient between adjacent pores. The linearity of the governing
equation allows one to consider the flow in each segment
separately. Previous computational results indicate that the
value of the pressure at a cross section of the canal located at
the pore is essentially the external pressure at that opening [27].
Therefore, the pressure on the body’s surface where the canal
openings are located determines the flow inside the canal.

For an infinitely long and periodic vortex street passing a
fish, a periodic pressure wave is expected at each pore location.
Accordingly, the pressure gradient between adjacent pores can
be expanded in terms of a Fourier series. Here, the case of
cosinoidal pressure difference is considered, namely

PL − PR = |PL − PR| cos ωt, (14)

where PL and PR are the pressures at the left and right ends of
the pipe, respectively. |PL − PR| and ω are the wave amplitude
and angular frequency, respectively.

Flow driven by a periodic pressure gradient inside a
circular pipe of diameter d and length �L has been investigated
before by analytical techniques [32]. As the kinematic
Reynolds number ω∗

D = ω(d/2)2/ν < 4, where ν is the
kinematic viscosity of the fluid inside the pipe, the induced
velocity in the pipe is in phase with the pressure oscillation.
The flow velocity uin of the fluid inside the pipe, written in
cylindrical coordinates, is given by

uin(r) = K

4ν
[(d/2)2 − r2] cos ωt

= 1

4μ�L
[(d/2)2 − r2](PL − PR), (15)

where

K = |PL − PR|/ρ�L, (16)

and ρ and μ are the density and dynamic viscosity of fluid
inside the canal, respectively. We digress here to discuss the
validation of this assumption. A small ω∗

D can be obtained,
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as long as the oscillation frequency of the pressure gradient
is low. Since the viscosity, ν, of the fluid inside the canal is
approximately five times that of water [31], the assumption of
ω∗

D < 4 is satisfied as long as the frequency is below 200 Hz.
The exact frequency limit for the validity of this assumption
changes slightly with the canal diameter and fluid viscosity
inside the canal which both vary from one species of fish to
another. For the pressure gradient created by a vortex street, it
can be shown that this stimulus contains only low-frequency
components and hence the model applies for this specific case.
For an arbitrary stimulus that changes in time, however, the
model only applies to its low-frequency components. In other
words, the model is valid for stimuli of which the leading
components are within the frequency limitation. Nevertheless,
the stimuli detected by fish are often in the low-frequency
range [33].

According to equation (15), the amplitude of the velocity
inside the canal is proportional to the pressure gradient
between two adjacent pores, and the change of velocity is
in phase with the pressure oscillation. For simplicity, here we
assume that the spacing of adjacent pores is infinitely small
so that the pressure gradient dp/dx could be approximated
by �p/�L. In this sense, the flow velocity distribution inside
the canal is assumed to be driven by a continuous pressure
gradient. The validation of this assumption and its produced
errors will be discussed in a later section.

The local flow velocity inside the canal is characterized
by the mean flow velocity over the cross-sectional area of the
canal. By substituting (13) into (15) in the limit of �L → 0
and averaging over r, one obtains

Vin = ūin = πd2�2

128νl3
(− cot2 A + cot2 B + cot2 C − cot2D)

× (cot A − cot B − cotC + cot D − 0.77072i). (17)

For simplicity, no interactions between the inside flow and
the neuromasts are considered here, but one can expect
the local flow velocity to be detected by hair cells located
between adjacent pores. As has been shown by van Netten,
the combined frequency response of the canal and neuromast
results in a nearly constant sensitivity to pressure gradient for
frequencies up to approximately 100 Hz [34]. This enables
us to neglect the frequency response of the system, since the
problem considered here is in the low-frequency range.

Up to this point, we have derived an analytical expression
of the inside flow velocity that is related to the external flow
field. Yet this equation needs to be nondimensionalized in
order to understand the effect of each variable.

2.3. Nondimensionalization

There are nine parameters involved in the velocity
equation (17) inside the canal. These are

U∞ Vin � x l h d t
[LT −1] [LT −1] [L2T −1] [L] [L] [L] [L] [T ]

ν

[L2T −1].
(18)

The dimension of each variable is shown in brackets. Using the
Buckinghan 	 theorem, one can write the expected functional
relationship as

π∗ = Ua1∞V a2
in �a3 xa4 la5 ha6 da7ta8νa9 . (19)

Considering that the rank of the coefficient matrix is 2,
one expects seven independent nondimensional numbers.
In the following, we use l and U∞ as the proper length
and velocity scales for nondimensionalization. These seven
nondimensional numbers are

x∗ = x

l
, h∗ = h

l
, d∗ = d

l
, �∗ = �

U∞l
, V ∗ = Vin

U∞
,

t∗ = U∞t

l
, ν∗ = ν

U∞l
. (20)

Accordingly, the dimensionless internal velocity equation is

V ∗ = π(d∗�∗)2

128ν∗ (cot2 A − cot2 B − cot2 C + cot2 D)

× (cot A − cot B − cotC + cot D − 0.7072i), (21)

with

A∗ = π [x∗ + (0.71�∗ − 1)t∗ + 0.5 − i(h∗ + 0.14)], (22)

B∗ = π [x∗ + (0.71�∗ − 1)t∗ + 0.5 + i(h∗ + 0.14)], (23)

C∗ = π [x∗ + (0.71�∗ − 1)t∗ − i(h∗ − 0.14)], (24)

D∗ = π [x∗ + (0.71�∗ − 1)t∗ + i(h∗ − 0.14)]. (25)

As seen, A∗, B∗, C∗ and D∗ terms are functions of �∗, x∗, h∗

and t∗. At the initial time t∗ = 0, these terms reduce to

A∗
0 = π [x∗ + 0.5 − i(h∗ + 0.14)], (26)

B∗
0 = π [x∗ + 0.5 + i(h∗ + 0.14)], (27)

C∗
0 = π [x∗ − i(h∗ − 0.14)], (28)

D∗
0 = π [x∗ + i(h∗ − 0.14)]. (29)

We now recast equation (21) to its nondimensional form to
read
128V ∗ν∗

π(d∗�∗)2
= (cot2 A∗

0 − cot2 B∗
0 − cot2 C∗

0 + cot2 D∗
0)

× (cot A∗
0 − cot B∗

0 − cotC∗
0 + cot D∗

0 − 0.7072i). (30)

Now defining a rescaled velocity

	 =:
128V ∗ν∗

π(d∗�∗)2
= 128νVinl3

πd2�2
, (31)

equation (30) can be reduced to

	 = g0(x
∗, h∗). (32)

From this equation, one can see that the contribution of
�, l and d to the inside velocity is simply to scale its
amplitude uniformly along the canal, while the general shape
of the velocity distribution along the canal is given by 	 =
g0(x∗, h∗). This dimensionless function is plotted in figure 4.
Since, for each h∗, the velocity profile is determined uniquely
by (32) up to a scaling factor, one may think of h∗ as a parameter
which controls the characteristic features (e.g., locations of
peaks and troughs) of the velocity profile.

We now turn our attention to equation (21) in order to
investigate the time dependence as the vortex street translates
with respect to the fish. Since the effect of increasing t∗ is
equivalent to increasing x∗, the shape of the velocity plot does
not change as the vortex street moves in time, t∗ > 0, and it
moves downstream at the same speed as the vortex street us.

5
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Figure 4. (a) The surface plot of 	 = g0(x∗, h∗). (b) The plot of 	 = g0(x∗, h∗) as a function of x∗ for several values of h∗. Since the inside
flow velocity is proportional to 	, the shape of the curve is essentially the velocity distribution along the entire canal.

2.4. Analytical results for a flat body

In the previous section, we investigated the qualitative
dependence of each dimensionless variable to the velocity
distribution along the canal. This velocity distribution is driven
by the differential pressure at the pores which represent the
external pressure outside a thin boundary layer. To this end, one
might hypothesize that a fish senses the flow inside its lateral
line canal without direct knowledge of the external velocity
field. This is in contrast to SNs where it is believed that the
external velocity field is directly measured. It is of interest to
see how much information can potentially be retrieved by a
fish if it is able to precisely measure the flow velocity inside the
lateral line canal. In this section, we will study the possibility
of recovering these variables once the velocity distribution
inside the canal is measured.

The main parameters identifying a vortex street are the
vortex strength, �, the streamwise spacing between vortices,
l, the distance between the vortex street and the body, h, and
the velocity of the vortex street, us. According to the analytical
solution given by equation (17), the flow velocity inside the
canal is a function of these variables. As previously seen in
equations (31) and (32), the amplitude of the velocity inside
the canal is controlled by �, l and d, while the dependence of
the velocity on x∗ and h∗ is captured by the function g0(x∗, h∗).
This function has a periodicity of 1, inherited by the periodicity
of the problem.

As shown in figure 4, the features of 	 = g0(x∗, h∗)
plot along the x∗ axis change as the value of h∗ is varied.
Consequently, one may expect to be able to calculate h∗ from
these changes. For small values of h∗, a near-flat section is
found between a positive peak and a negative trough. As h∗

increases, this section degenerates and eventually disappears
around h∗ = 0.5. Besides small shifts in the locations of the
peaks and troughs, no visible qualitative change in features
of the scaled velocity 	 is observed for constant h∗ > 0.5.
The distance between adjacent peaks and troughs is found to
depend exclusively on h∗. This conclusion can also be verified

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

h*

x* L
 −

 x
* H

Figure 5. The distance between an adjacent peak and trough versus
the dimensionless number h∗.

by analyzing the analytical solution. The x∗ locations of the
peaks and troughs of the function g0(x∗, h∗) can be determined
by

∂g0(x∗, h∗)
∂x∗ = 0. (33)

This calculation results in two roots, namely x∗
H = h1(h∗) + n

and x∗
L = h2(h∗) + n (n = 1, 2, 3, . . .), which represent the

locations of the peaks and troughs, respectively. Therefore, the
distance between an adjacent peak and trough can be calculated
to be x∗

L − x∗
H = h2(h∗) − h1(h∗). This relation is shown in

figure 5. As the value of l is easily determined from the mean
velocity distribution inside the canal, the value of h is simply
obtained by h = h∗l.

Now, assume that a fish can measure the velocity
magnitude Vin inside the canal at the location of the hair
cells. As discussed before, a fish is able to determine h∗

from the measured velocity inside the canal. It also has access
to information on the dimensionless velocity 	 at the same
location through the functional relation of 	 to h∗ and x∗.
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Figure 6. A flow chart showing the process of recovering the parameters of a vortex street from a measured velocity distribution inside the
LLTC.

Therefore, a fish has enough information to calculate the
strength of the vortices in a vortex street from

� =
√

πd2	

128νVinl3
, (34)

where the canal diameter, d, and the viscosity of fluid inside
the canal, ν, are known for a given fish.

The translation of a vortex street outside the fish’s body is
accompanied by a similar periodic variation in the measured
velocity inside the canal. As a result, the velocity us of the
vortex street is essentially the rate of motion of the sensed
velocity peaks inside the canal. Therefore, one can imagine
that a fish detects us by detecting the distance traveled by the
sensed peak or trough velocity during a certain time period.

So far we have developed an analytical solution for the
flow around a fish represented by a 2D flat surface in the
presence of a vortex street. We were also able to show that
there is enough sensed information in an LLTC to recover all
of the main parameters of a vortex street. A summary of our
discussion for detecting these parameters is shown in figure 6.
In order to extend this analytical analysis from a flat plate to
a fish-like body in the presence of a vortex street, a few of the
steps need to be conducted computationally. This will enable
us to investigate the effect of body thickness on the sensing
capabilities of an LLTC. This is presented in the following
section.

3. Numerical method for fish-like body

3.1. Joukowski transformation

In this section, we approximate the shape of a fish by a
symmetric airfoil. In order to take advantage of some of our
theoretical findings from the previous section, we restrict this
study to the realm of potential flow theory. The shape of a fish’s
body can be obtained using a Joukowski transformation [35].
The flow over a cylinder of radius a located at a point (c0−a, 0)

can be mapped onto a symmetric airfoil (see figure 7), namely
a fish-like body, by

z = ζ + c2
0

ζ
. (35)

The chord length, c, and the thickness, δ, of the body are then
determined by

c = 2c0 − [
(c0 − 2a) + c2

0

/
(c0 − 2a)

]
, (36)

δ = 3
√

3

2
(a − c0). (37)

The Karman vortex street is modeled by placing two
rows of staggered, periodic 2D vortices on one side of the
airfoil. We are not able to obtain a simple closed form analytic
formulae for this case. As a result, we model the infinite
array of vortices by including enough terms in the series so
that the value of velocity potential difference at a specific
surface point, after one cycle of the finite vortices moving
downstream, is less than 0.5% of the initial potential value.
In this sense, the resulting flow field near the body is a good
approximation to the infinite vortex street case. The locations
of the point vortices are first determined in the z-plane, and
then their corresponding locations in the ζ plane are calculated
according to the inverse Joukowski transformation. Solving the
inverse Joukowski transformation (z to ζ coordinate mapping)
in equation (35) for ζ results in a multi-valued solution

ζ = 1
2

(
z ±

√
z2 − 4c2

0

)
. (38)

The implication of this function is that there are two possible
ζ coordinates in the cylinder frame (ζ -plane) for each z
coordinate in the airfoil frame (z-plane). One of the ζ

coordinates is outside the cylinder and the other is inside the
cylinder. Therefore, in order to properly map a z coordinate to
the appropriate ζ coordinate, the following condition is applied
in order to ensure that the mapped area is outside the cylinder.
The ζ coordinate corresponding to a given vortex located at a z
coordinate will be the solution in equation (38) if the distance

7
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(a) (b)

Figure 7. The flow field before and after Joukowski transformation.

to the center of the circle is greater than the radius of the
cylinder (|ζ | > a). In this case, the inverse transform remains
single valued. For |ζ | = a, the positive imaginary solution of
equation (38) is chosen.

As vortices are placed outside the cylinder in the ζ -plane,
a set of image vortices are introduced inside the cylinder in
order to preserve the shape of the cylinder [36]. The complex
potential in this case can be finally written as

W (ζ ) = U∞

[
ζ + a2

ζ

]
+ i�

2π

N∑
n=1

[ln(ζ − ζ0) + ln(ζ − ζn)

− ln

(
ζ − ζ0 − a2

ζ̄n − ζ0

)]
,

(39)

where ζ0 is the center of the cylinder and ζn is the coordinate
of each vortex with its complex conjugate denoted by ζ̄n.
The real part of the above function is the velocity potential
φ. The flow velocity on the body surface can be determined as
the gradient of this function on the fish’s body surface, that is,

U (z) =
⎡
⎣

√(
∂φ

∂x

)2

+
(

∂φ

∂y

)2
⎤
⎦

z=z0

. (40)

Assuming a quasi-steady flow, the velocity potential
around the fish at any instant of time can be modeled by
the 2D potential in equation (39). In order to obtain the
pressure distribution around the fish’s body, P(z), we employ
the Bernoulli equation[

P(z)

ρ
+ 1

2
U2(z) + ∂φ

∂t

]
z=z0

= P0, (41)

where P0 is the total pressure at the far field. Just as with
our analytical model in the previous section, here we let
P0 = 1

2ρU2
∞ for convenience. Once we have computed the

external pressure distribution, we may continue to use the same
analytical model presented in the previous section to calculate
the flow inside the canal. The results of this numerical model
are discussed in the next sections in comparison with the results
from our analytical calculations for a flat-body object.

3.2. Effects of body thickness

To evaluate the accuracy of the numerical method, we consider
the flow around a flat-body object as a test case. A flat-body

object could be considered as the limit of a fish-like body from
the previous section when the body thickness approaches zero.
In this case we will be able to compare our numerical procedure
with the exact analytical result for a flat-body object. In order
to evaluate the effect of body thickness, we define the thickness
ratio, as illustrated in figure 8(a), to be body thickness over
body length

λ = δ/c. (42)

Figure 8(b) shows the variation in the pressure distribution
as λ is changed from a flat plate to a relatively rounded fish
body with λ = 0.08. For larger λ when the fish’s body
is rather bluff, a sharp drop in pressure along the body is
observed as one moves away from the stagnation point on
the fish’s head. After that initial drop, pressure gradually
increases along the body toward the tail. By increasing the
thickness ratio, the pressure around the head region will be
dominated by the stagnation pressure, which is dictated by the
incoming free stream. The existence of a vortex street hardly
alters the pressure distribution in this region. Since the induced
velocity in the canal is proportional to the external pressure
gradient, the inside velocity in this region does not contain
much information on the vortex street. Also based on the fact
that the LLTC often does not extend to the fish’s head, in this
study we assume that the LLTC ranges from 0.1c to 0.9c along
the fish’s body.

For convenience, the value of l is measured in the cord
length, c, units. The variable with a star is still scaled by l as
previously defined. The data shown in figure 9(a) use the same
λ values as before with c∗ = 2, h∗ = 0.5 and �∗ = 0.6. For
smaller values of h∗, where the vortex street moves closer to
the fish’s body, a secondary positive peak-velocity appears on
the left side of the absolute peak-velocity value by increasing
the value of the thickness ratio λ. The adjacent locations
of the peak and trough velocities move closer to each other
by a small distance, and the amplitude evidently increases
especially at the negative trough. It seems that the enhanced
surface curvature in a fish-like body tends to amplify the peaks
and troughs in the velocity curve. It should be noted that
these features, created by the external vortices in the velocity
distribution, are much more distinct than the features of the
velocity induced by the pressure distribution due to the body
curvature in a uniform flow. Therefore, one might consider the
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Figure 8. (a) Drawing of fish-like bodies with thickness ratios, λ, ranging from 0 to 0.08. (b) The pressure distribution along the body
surface. Cp is the pressure coefficient defined as Cp = P/ 1

2 ρU∞ with c∗ = 2, h∗ = 0.5 and �∗ = 0.6. The results of four bodies with
thickness ratios of λ = 0.02, 0.04, 0.06 and 0.08 are shown in comparison with that of a flat body with λ = 0.
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Figure 9. A plot of the dimensionless velocity inside the canal, 	, along the LLTC. Four bodies with thickness ratios of λ = 0.02, 0.04, 0.06
and 0.08 are shown in comparison with a flat body. (a) c∗ = 2, h∗ = 0.5 and �∗ = 0.6; (b) c∗ = 2, h∗ = 0.8 and �∗ = 0.6.

effect of the canal on the flow signal as of a differential filter.
For larger values of h∗, the features of the velocity distribution
move slightly in the downstream direction for increasing body
thickness values; see figure 9(b). Aside from this phase shift,
the velocity plot maintains its main features, meaning that the
relative locations of the velocity peaks and troughs are rather
unchanged. For λ = 0.04 and higher, some perturbations in
the velocity profile are observed around the fish’s head where
the surface curvature is maximum. Because the fish’s posterior
body is fairly similar to a flat plate, the features of the inside
velocity distribution in this region are rather unchanged as
compared to the flat-body case (see also figure 4(b)). Similar
to the analytical results for a flat body, the value of l can
be determined as the distance between two corresponding
peaks or troughs as demonstrated in figure 10. In addition,

the variations in l do not change the general features of the
inside velocity distribution, as seen in figure 11.

Figure 12 demonstrates the effect of varying the vortex
strength. The dimensionless number �∗ does not change the
overall features of the velocity distribution inside the canal,
but it could change the amplitude of the velocity peaks.
This observation also agrees with our analytical result in the
previous section for a flat body. Inspired by the definition of 	

in our analytical model, we further consider a dimensionless
number 	�∗2

instead of 	. The result indicates that the
amplitudes of 	�∗2

at peaks and troughs fit a quadratic
polynomial with respect to �∗,

	�∗2 = a1�
∗2 + a2�

∗ + a3, (43)

where a1, a2 and a3 are functions of l and h. Since l and h may
be determined by sensed information available to a fish, these
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Figure 10. The plot of the dimensionless velocity inside the canal,
	, as a function of location along the LLTC for several values of l
with h∗ = 0.8, �∗ = 0.6 and λ = 0.06. The distance between two
corresponding peaks remains almost constant. That is, �x∗ ≈ 1.
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Figure 11. A comparison of the dimensionless velocity inside the
canal, 	, between two values of l with h∗ = 0.5 and �∗ = 0.6. Note
that the curve corresponding to c∗ = 5/3 is shifted one period along
the x∗ axis for comparison.

coefficients can also be calculated from the sensed data. If a
fish is able to measure the velocity inside the LLTC, 	, then
it can deduct the strength of the vortices, �∗, in an incoming
vortex street from the amplitude of the velocity peaks as shown
in figure 12(b).

Having determined the effects of �∗ and l on the velocity
distribution inside the LLTC, one can conclude that, for a
given fish’s body, h∗ had a dominant effect on changing the
features of the velocity distribution inside the LLTC. The value
of h∗ can again be evaluated by detecting the distance between
consecutive maximum and minimum points in 	, similar to
the flat-body case. It should be noted that as a vortex street
is shifted away from the fish’s body, say that h∗ exceeds a
threshold value h∗

c , the influence of the vortex street on the
velocity inside the canal is diminished and the canal velocity
will only be influenced by the pressure created by the free
stream flow passing the body; see figure 13. On this view, the
fish with a larger thickness ratio has less sensitivity to measure
the vortex street at a greater distance, because its body induces
a larger pressure gradient which could overwhelm information
of other stimuli at a greater distance.

3.3. Vortex street on one side of the body

In our analytical model, we introduced vortex streets on both
sides of the fish’s body in order to preserve the streamlined
fish-like body in our theoretical solution. Yet, the case with
a vortex street on one side of the body is actually more
pertinent. This can easily be done by employing the numerical
technique in the previous section. This result is shown in
figure 14. As one can expect, there is no significant difference
between vortices on only one side and vortices on both sides
of the body, since the vortices on one side of the body have
little influence on the near-body flow of the other side. Only
the velocity near the body’s head and tail is altered. In this
sense, all the conclusions drawn in the previous sections could
be carried over to the case of a fish with a vortex street on one
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Figure 12. (a) The Plot of the dimensionless velocity inside the canal, 	, versus x∗ for several values of �∗ with c∗ = 2, h∗ = 0.5 and
λ = 0.04. The amplitude of the peaks changes with �∗, while the main features of the velocity distribution remain unchanged. (b) The
amplitude of 	 �∗2

at peaks and troughs (P1, P2, P3, . . . ) fits in a quadratic polynomial with respect to �∗.
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Figure 13. The plot of the dimensionless velocity inside the canal,
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overwhelmed by the background flow in the fish-like body case.
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Figure 14. A comparison of the dimensionless velocity inside the
canal, 	, between a vortex street on one side and vortex streets on
both sides of the body.

side. This, once again, matches with our analytical results for
the case of a flat-body.

It is also of interest to consider a more complex case
where the vortex street axis is not parallel to the fish’s body
axis. Assume that the angle between the vortex street axis
and the fish’s body is θ . The velocity distribution inside the
LLTC for several values of θ is shown in figure 15. The first
negative trough, which is near the body’s head, becomes more
distinct as θ increases, while the secondary negative trough
degenerates due to the departure of vortices. The presented
results could be interpreted as if the whole velocity curve is
rotated along with the vortex street. To this end, this might
provide enough information to a fish in order to determine the
angle of an incident vortex street with the fish’s body.

4. Discussion

In this investigation we considered modeling the LLTC of a fish
in a uniform background flow with a vortex street. A simplified
model of a vortex street is constructed if one knows the
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Figure 15. The plot of the dimensionless velocity inside the canal,
	, for several values of the angle θ between the vortex street and the
body. λ = 0.03, c∗ = 2, h∗ = 0.5 and �∗ = 0.6.

following parameters: the vortex strength, �, the streamwise
spacing between vortices, l, the distance between the vortex
street and the body, h, and the velocity of the vortex street
with respect to the fish, us. While the velocity of the vortex
street, us, can be easily determined by monitoring the peak
or trough velocities inside an LLTC, sensing or calculation of
the other parameters of a vortex street requires information
on the velocity distribution throughout the entire lateral line
canal of the fish. To this end, accurate sensing of the velocity
inside the LLTC, information about the spacing between the
pores and the overall length of the canal are all quite important
for processing this information. Equation (17) for the velocity
inside the LLTC shows that Vin is scaled with d2 and 1/ν.
Therefore, one could expect that fish evolved in an environment
with a low level of hydrodynamic activity, which favors
evolving a more sensitive sensing organ, will have a larger
canal diameter than those inhabiting a more hydrodynamically
active environment. This observation matches the measured
data from [37]. It should point out that, as noted earlier, it is
also desired to keep a small kinematic Reynolds number ω∗

D
for the flow inside the canal such that the velocity changes
in phase with the external pressure oscillation; otherwise the
inside flow velocity would exhibit a more complex profile,
which may impede the determination of the external pressure
gradient.

An interesting observation from our LLTC modeling is
that while the sensory system of LLTC provides enough
information for detecting all the relevant parameters of an
incoming vortex street, it is not able to detect the mean
incoming velocity U∞. This is an interesting result and
consistent with observations by others [33] that an LLTC
filters out the dc (direct current) component of an incoming
velocity signal. To this end, it would be interesting to see
whether a fish evolved to have more lines of SNs shows the
same signal filtering characteristics. Furthermore, is there any
environmental reason for this lack of sensitivity to the dc
component of a velocity signal? Can a line of SNs be used
to detect the parameters of a vortex street?

Our LLTC model consists of two parts: (i) predicting the
pressure gradient along the body of a fish and (ii) modeling
a sensed velocity inside the LLTC based on this pressure
gradient. While the second part (ii) is not applicable to a line of
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Figure 16. The flow velocity inside an LLTC with different pore spacings. (a) �L = 0.01c. (b) �L = 0.05c.

SNs, the first part (i) is still valid and applicable. Therefore, one
can still use equation (10) as a model to obtain an estimate for
the surface flow velocity outside the boundary layer using a line
of SNs. If the free stream velocity U∞ is much larger than the
surface-induced velocity by the rest of the terms representing
a vortex street, the response of the SNs will be dominated
by this term and it will not be sensitive to perturbations by
the vortex street. In contrast, the LLTC sensing system filters
out this dc component and only processes the signal from the
vortex street. As a result, our model predicts that a fish with
an LLTC is more sensitive in detecting a vortex street and its
parameters than a fish with a line of SNs.

In the previous sections, the flow velocity inside the LLTC
was calculated to be proportional to the gradient of the external
pressure along the fish’s body. This is based on the assumption
that the pressure can be measured with an infinitely high spatial
resolution. However, in reality the spatial resolution of this
detection is dictated by the pore spacing �L. Any pressure
gradient changes over a distance smaller than this value may
not be detected by the LLTC. In order to detect a vortex street,
the spacing of the pores of an LLTC should be smaller than
the characteristic length of the incident vortex street. Figure 16
shows the effect of the pore spacing, �L, on the sensed velocity
inside the LLTC. A typical pore spacing for the LLTC of fish
is about 0.01 times of the body length. The pressure gradient
recorded by such a canal has a fairly good spatial resolution. As
pore spacing increases, the spatial resolution is decreased and
as a result some of the more detailed features of the surrounding
flow field could be lost during the measurement. This has also
been observed by Fernandez et al [38] in their studies on
a linear pressure sensor array for identifying small objects.
They concluded that the pressure sensor array should have a
sensor-to-sensor spacing of less than 0.03 times of the sensing
body length. One can imagine that if the streamwise period
of the Karman vortex street is less than the pore spacing, that
is, l < �L, a fish would have a very hard time in detecting a
vortex street. On the other hand, the length of the LLTC also
determines how much information regarding the vortex street

can be obtained. It is evident that a longer LLTC would be
helpful to collect more information on the surrounding flow
field. An LLTC with small overall length, on the other hand,
requires latency to experience the changes in the surrounding
flow field as it passes over the fish. If the overall length of the
LLTC is larger than the wavelength of the incident flow, the
parameters of the incident vortex street could be detected from
instantaneous measurements along the LLTC. On the other
hand, detection of signals with wavelengths larger than the
overall length of the LLTC, while possible, requires a longer
detection sensing period and more processing. Therefore, an
ideally fast LLTC sensing system should have its pore spacing
much smaller than the characteristic length of the signal to be
detected (e.g. its wavelength) and it should have a total length
greater than the wavelength of the incident flow. Thus, the
ratios of �L/l and L/l are of importance for the sensitivity of
the LLTCs of fish. This result may account for the generally
small pore spacings found in most fish, and for the fact that
the LLTC stretches nearly all the way along a fish’s body.

The results of our study may also be used to explain some
other fish behaviors, for instance, schooling behavior. It has
been demonstrated that a blind fish is still able to school and to
monitor the swimming speeds and directions of other fish in the
school using its LLTC [7]. To this end, it is believed that a fish
utilizes its LLTC sensing system to detect a vortex street wake
by other fish in the school. Many fish schooling observations
show that the preferred distance to the nearest neighbor for
schooling fish is about one body length [10]. Considering the
school structure, the vortex street shed by an anterior fish
is 0.5 times the fish’s body length, that is, h = 0.5c. The
vertical vortex spacing, b, could be approximated by the tail-
beating amplitude, which is estimated by 0.1c–0.21c according
to Wolfgang et al [39]. The downstream spacing of vortices
l is then determined to be around 0.4c–0.75c by the stability
requirement of a Karman street b/l ≈ 0.28. Accordingly, the
dimensionless number h∗ is in the range of 0.7c–1.25c, which
is well below the critical distance h∗

c , meaning that the vortex
street shed by anterior fish can be detected by the LLTC.

12



Bioinspir. Biomim. 7 (2012) 036016 Z Ren and K Mohseni

If a fish in a school swims at a lower speed than that of
its anterior neighbors, the relative speed of the vortex street
with respect to the fish’s body, us, increases. Furthermore,
it is expected that an accelerating anterior fish in a school
creates a vortex street with larger vortex spacing and strength,
marked by an increased l and �. Another fish following this
accelerating fish is then expected to sense these changes
(increased l and �) in the vortex street and thus to react
appropriately to catch up to the speed of the school. On the
other hand, if the anterior fish changes its direction, such
a change will also alter the velocity distribution inside the
LLTC, as discussed in the previous section. Again, the LLTC
provides enough information to a fish in a school about the
changes in the swimming direction for the anterior fish. In
summary, our model demonstrates that an LLTC can provide
enough information to a fish in a school in order to maintain
its direction and speed with its neighboring fish.

A vortex street, shed by a large fish, is expected to
have large distances between consecutive shed vortices. As
discussed before, the LLTC of a smaller fish is not ideally
suited for detecting such a vortex street instantly. On the other
hand, if a vortex street is shed by a much smaller fish, the
vortices’ strength is relatively small. Therefore, the detecting
fish must be sufficiently close to the wake in order to be able to
sense such a vortex street. This suggests that fish are especially
sensitive to the wakes created by other fish of a similar length.

5. Conclusions

In this paper, we developed an analytical model for the flow
field around a two-dimensional fish in proximity to a vortex
street. This model is used to calculate the pressure distribution
on the body surface. An analytical model for the LLTC of a fish
is also developed to correlate the inside canal flow velocity to
the external flow field. Nondimensional parameters governing
the flow detection are also identified. Our model demonstrates
the effects of each dimensionless number for a flat-bodied
fish. The properties of a vortex street can be theoretically
determined from the sensed velocity distribution inside the
canal. A strategy is proposed to determine the properties
of an outside vortex street, once a velocity distribution
inside the LLTC is sensed. We also developed a numerical
model to validate the result of our analytical model and
to extend our investigation to the case of a fish-like body.
The results of this numerical model show that the velocity
distribution retains similar features to that of a fish with a
small thickness ratio. Consequently, a similar technique to
the one we developed for a flat-bodied fish is applicable here
to identify the parameters of a vortex street from velocity
measurements inside the LLTC. Therefore, our model provides
a framework on how a fish might identify the parameters and
characteristics of a wake including its speed, amplitude of
vortices, spacing of vortices, angle of the vortex street axis,
etc. Such information could be used by a fish to identify the
size, speed and direction of fish traveling around it. Our model
also provides possible explanations on functional adaptation
of the LLTC’s morphology. These include the following: a
lengthened canal favors information collection, reduced pore

spacing favors sensing resolution and widened canal favors
sensing sensitivity. It is also argued that an LLTC could provide
enough information to a fish about the direction for swimming
or the accelerating/decelerating nature of the neighboring fish
in a school.
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