
A ridge tracking algorithm and error estimate for efficient computation
of Lagrangian coherent structures

Doug Lipinski1 and Kamran Mohseni2,a�

1Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
2Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder,
Colorado 80309, USA

�Received 10 September 2009; accepted 9 November 2009; published online 5 January 2010�

A ridge tracking algorithm for the computation and extraction of Lagrangian coherent structures
�LCS� is developed. This algorithm takes advantage of the spatial coherence of LCS by tracking the
ridges which form LCS to avoid unnecessary computations away from the ridges. We also make use
of the temporal coherence of LCS by approximating the time dependent motion of the LCS with
passive tracer particles. To justify this approximation, we provide an estimate of the difference
between the motion of the LCS and that of tracer particles which begin on the LCS. In addition to
the speedup in computational time, the ridge tracking algorithm uses less memory and results in
smaller output files than the standard LCS algorithm. Finally, we apply our ridge tracking algorithm
to two test cases, an analytically defined double gyre as well as the more complicated example of
the numerical simulation of a swimming jellyfish. In our test cases, we find up to a 35 times
speedup when compared with the standard LCS algorithm. © 2010 American Institute of Physics.
�doi:10.1063/1.3270049�

One of the biggest problems in fluid dynamics is analyz-
ing data. As computational fluid dynamics (CFD) codes
become more sophisticated and produce larger and more
complex results for increasingly complicated flows, ex-
tracting meaningful results from the resulting fluid ve-
locities becomes ever more challenging. Over the past
several years, Lagrangian coherent structures (LCS)
have emerged as an excellent way to visualize and ana-
lyze such flow fields. These structures represent barriers
to transport and can be used to identify exact vortex
boundaries, providing an unambiguous visual character-
ization of the flow field. They may also be used to extract
quantitative measures of mixing and transport in the
flow. However, the Lagrangian nature of LCS makes
their computation extremely expensive, sometimes pro-
hibitively so. Computations in two dimensions are ex-
tremely expensive and in three dimensions the problem is
even worse. In this paper we present an algorithm which
takes advantage of the temporal and spatial coherences of
LCS to greatly speed computations. This algorithm
tracks the ridges in the finite time Lyapunov exponent
(FTLE) field at each time step, then approximates the
location of the ridges at the next time step by advecting
the LCS forward with the flow. A simple error estimate
shows that the difference between the advected LCS and
the actual LCS is typically very small. In the end, our
algorithm proves to be very useful for extracting the ma-
jor LCS present in a flow field and gives a speedup of up
to 35 times.

I. INTRODUCTION

LCS provide an effective way of visualizing many flow
fields, both complex and simple, and have seen increasing
use over the past several years. LCS were first proposed by
Haller and Yuan6 and their properties were further investi-
gated by Shadden et al.15 The well established properties of
LCS as barriers to transport make them an excellent candi-
date for analyzing mixing and transport in fluid flows. They
also establish unambiguous boundaries to vortices2,14 and are
relatively insensitive to small errors in the velocity field.5

However, despite their increasing use by the fluid dynamics
community, computational cost remains a significant barrier
in many situations. The large cost of computing LCS is due
to the Lagrangian nature of the structures. Following the
method established by Shadden et al.,15 computing the LCS
requires advecting large numbers of particles at a high den-
sity in the flow to compute the FTLE field.

For completeness, we repeat several key definitions from
Shadden et al.15 here. The FTLE is defined as

�t0

t0+T�x� = x�t0� + �
t0

t0+T

v�x�t��dt , �1�

� = �d�

dx
���d�

dx
� , �2�

�t0
T �x� =

1

�T�
ln	�max��� , �3�

where T is the integration time, � is the flow map, � is the
finite time Cauchy–Green deformation tensor, and � is the
FTLE.

a�Also at Department of Applied Mathematics, University of Colorado
at Boulder, Boulder, Colorado 80309, USA. Electronic mail:
mohseni@colorado.edu.

CHAOS 20, 017504 �2010�

1054-1500/2010/20�1�/017504/9/$30.00 © 2010 American Institute of Physics20, 017504-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

http://dx.doi.org/10.1063/1.3270049
http://dx.doi.org/10.1063/1.3270049
http://dx.doi.org/10.1063/1.3270049

The LCS are then defined as ridges in the FTLE field
and may either be explicitly extracted or �more commonly�
visualized by viewing a contour plot of the FTLE field. For
our purposes, we will define a ridge as a second derivative
ridge.

Definition: A second derivative ridge of � is an injective
curve c : �a ,b�→D satisfying the following conditions for all
s� �a ,b�:

�1� The vectors c��s� and ���c�s�� are parallel.
�2� H�n̂ , n̂�=min
u
=1 H�u ,u��0, where n̂ is a unit normal

vector to the curve c�s� and the Hessian of �, H, is
thought of as a bilinear form evaluated at the point c�s�.

In the past, LCS have been used in many situations and
computed from experimental data, CFD data, and analytical
velocity fields. Examples of experimental data include high
frequency radar data in Monterey Bay,16 jellyfish
swimming,11 unsteady separation,20 and two dimensional
�2D� turbulence.19 The output of CFD software has been
used to compute LCS in turbulence,4,10 vortex shedding be-
hind an airfoil,8 and jellyfish swimming.9,21 Typically, in
these examples it is desirable to compute the LCS at a few
hundred time steps to visualize the time evolution of struc-
tures in the flow. Although LCS algorithms parallelize very
well, the necessary computational time is often prohibitively
long.

The nature of LCS, ridges in a field, makes this compu-
tation seem like a natural candidate for a more efficient al-
gorithm. Since the ridges are the only part of the FTLE field
which is of interest, any FTLE values which are computed
away from the ridges are essentially wasted computational
time. There are two broad classes of algorithms which seem
well suited for this situation. The first is adaptive mesh re-
finement �AMR�. By starting with a coarse grid of points on
which the FTLE field is calculated and refining the grid only
in areas where ridges are detected, it is possible to achieve
very high resolution near the ridges with large computational
savings when compared with a uniform mesh at the same
resolution. There are many possible variations to this type of
algorithm, but at its heart, it only requires a criterion to de-
termine where the mesh should be refined. Two recent papers
provide examples of such criteria.3,12

A second type of algorithm involves detecting and track-
ing a ridge in the FTLE field. In this type of algorithm, there
must be some initial way to detect a point on the ridge, after
which the ridge may be “grown” in either direction. This
method has the advantage of only computing points along a
ridge, but there are several drawbacks as well. Image pro-
cessing techniques have been applied to tracking one dimen-
sional �1D� ridges in a 2D field �see Tran and Lux17 for
example�; however this does not readily generalize to higher
dimensions.

In this paper, we focus on this second class of algorithm,
ridge tracking. We present a ridge tracking algorithm for
computing and extracting the LCS of a system. We use the
fact that LCS are coherent in time as well as space to speed
computations. In the case of a time dependent flow field, the
LCS at one time step may be used to provide an excellent
estimate of the location of the LCS at the next time step. In

fact, Shadden et al.15 showed that LCS are “nearly” material
lines and that the fluid flux through LCS is usually on the
order of numerical error. This means that, to a good approxi-
mation, LCS are simply advected with the flow. In the algo-
rithm presented here, we take advantage of this property by
using the LCS at time t to predict the location of LCS at time
t+�t. We then make a small correction to ensure that the new
points at time t+�t are actually on the LCS and then extract
the rest of the LCS via the ridge tracking algorithm. We also
derive an estimate of the distance between a LCS and par-
ticles which begin on the LCS after some time �t has
elapsed.

This manuscript is organized as follows. We first present
and prove an estimate of the difference between the motion
of LCS and that of a passive fluid particle. We then present a
ridge tracking algorithm to compute LCS while taking ad-
vantage of spatial and temporal coherence of the structures.
Finally, we present two examples using this algorithm, an
analytically defined double gyre flow and the numerically
computed flow created by a swimming jellyfish.

II. ESTIMATING THE DIFFERENCE BETWEEN LCS
MOTION AND LAGRANGIAN PARTICLE
MOTION

Shadden et al.15 showed in their seminal paper that LCS
are nearly material lines by providing an estimate of the flux
through LCS. Here, we provide an estimate of the amount by
which the time dependent motion of LCS differs from the
motion of Lagrangian particles in the fluid. The relevant re-
sult from Shadden et al.15 is

�dL�x,t�
dt

�
L=0

=
�t̂,��
�n̂,Hn̂

� t̂,
�n̂

�t
− Jn̂� + O�1/�T�� , �4�

where L is the signed distance from the nearest LCS, � is the
FTLE field, H is the Hessian of the FTLE field, J is the
Jacobian of the velocity field, and n̂ and t̂ are the unit normal
and tangent vectors to the LCS.

Given this result, it is trivial to estimate the distance
between the LCS and a fluid particle initially located on the
LCS via a Taylor expansion

L�x�t + �t�,t + �t� = L�x�t�,t� + �dL�x,t�
dt

�
L=0

�t + O��t2� .

�5�

Since L�x�t� , t� is chosen to be zero at time t, we have
the following theorem:

Theorem II.1:

L�x,t� =
�t̂,��
�n̂,Hn̂

� t̂,
�n̂

�t
− Jn̂��t + O��t/�T�� + O��t2�

The algorithm we present in this paper relies heavily on
this distance being small. Since this is such a key result, we
now provide a sketch of an alternative proof of Theorem II.1.
Our proof is formulated in a way which makes it clearer that
we are estimating the difference between the motion of LCS
and material particles. We first estimate the motion of a point
on a LCS, then use a Taylor series approximation to the

017504-2 D. Lipinski and K. Mohseni Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

motion of a material point and calculate the difference be-
tween the two. This results in a slightly more direct proof
than by going through the flux estimate provided in Shadden
et al.15

A. Definitions

Our proof will use the following definitions as dia-
gramed in Fig. 1. Let x be a point on the LCS at time t and
let �t be a small increment in time. Then, let x be the point to
which x is advected �i.e., x=x+�t

t+�tv�x��� ,��d��. Let y be
the intersection of the line through x normal to the LCS at
time t and the LCS at time t+�t. Finally, � is the distance the
LCS moves in the normal direction.

B. Alternative proof of the error estimate

We start by expanding �� �y,t+�t and �L �y,t+�t about �t=0
and taking the inner product, ��L ,�� �y,t+�t, as is done in15

���y,t+�t = �� + �Hn̂ +
���

�t
�t + O��t2� ,

�L�y,t+�t = �L +
��L

�t
�t + O��t2� .

Taking the inner product gives

��L,���y,t+�t = ��L,�� + ��L,�Hn̂ + ���L,
���

�t
�

+ � ��L

�t
,��� + � ��L

�t
,�Hn̂��

+ O��t2� , �6�

but since �L= n̂ and ��
 t̂ on the LCS we know that
��L ,�� �y,t+�t=0 and ��L ,��=0.

Also, Corollary 4.1 of Shadden et al.15 states that on the
LCS, and for an arbitrary vector u,

�n̂,Hu = �n̂,Hn̂�n̂,u , �7�

so

� ��L

�t
,�Hn̂� = ��H

�n̂

�t
,n̂� = ��n̂,Hn̂�n̂,

�n̂

�t
� = 0.

So Eq. �6� may be rearranged as

��n̂,Hn̂ = − ����,
�n̂

�t
� + �n̂,

���

�t
���t + O��t2� .

Finally, we use Corollary 3.1 of Shadden et al.,15 which
states

���

�t
= − J � � − Hv + O�1/�T�� , �8�

to arrive at

��n̂,Hn̂ = ����,Jn̂ −
�n̂

�t
� + �n̂,Hv��t + O��/�T��

+ O��t2� . �9�

Equation �9� gives an estimate for the motion of the LCS
based only on properties of the system. However, this is not
useful in practice due to the difficulty in computing these
quantities. Instead, we use the motion of a Lagrangian fluid
particle which begins on the LCS to approximate the motion.
Taking the difference between the motion of the Lagrangian
particle and the LCS gives us an error estimate.

A Taylor approximation gives the motion of the particle
as

�x = v�t + O��t2� .

We then apply the Hessian to this vector and take the inner
product with the unit normal to the LCS,

�n̂,H�x = �n̂,Hv�t + O��t2� ,

which, using Eq. �7�, implies

��x,n̂�n̂,Hn̂ = �n̂,Hv�t + O��t2� . �10�

Finally, subtracting Eq. �9� from Eq. �10� gives, after
some algebra,

� − ��x,n̂ =
��

� t̂,

�n̂

�t
− Jn̂�

�n̂,Hn̂
�t + O��t/�T�� + O��t2� ,

�11�

which is the same result as Thm. II.1. It is worth noting that
here, we have actually computed the difference between the
motion of the LCS and the normal projection of the particle
motion. However, to first order, the particle motion tangent
to the LCS does not affect the distance of the particle from
the LCS so, to first order, L�x , t+�t�=�− ��x , n̂.

The most important characteristic of this estimate is that
it is typically very small. For more details, see Shadden et
al.,15 but this term is typically of the same order as numerical
errors. The term
��
 is asymptotically zero for time inde-
pendent systems and represents the rate at which the ridge is
rising or falling. It is typically small along most of the ridge.
The term �n̂ ,Hn̂ appears in the denominator and is locally
maximized in norm on the LCS �by the definition of LCS�.
Finally, the term �t̂ ,�n̂ /�t−Jn̂ represents the difference be-

x

y

x

δx

αn̂

L(ξ, t) = 0

L(ξ, t + δt) = 0

FIG. 1. x, x, �x, y, and � are defined as shown here.

017504-3 Ridge tracking algorithm for LCS Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

tween the rotation of the LCS and the rotation of vectors
normal to the LCS by the Eulerian velocity field.

III. A RIDGE TRACKING ALGORITHM

In this investigation we will focus on the extraction of
LCS via a ridge tracking algorithm. This algorithm has the
advantage of computing the FTLE field at a minimum num-
ber of points, so it provides a very large speedup over meth-
ods which compute the FTLE field over the entire domain.
Additionally, since fewer particles are used, less memory is
required for the computations, and since the output consists
only of the LCS lines rather than the entire FTLE field, the
output files are much smaller as well.

A. The first time step

The first time step requires that we somehow find at least
one point on the LCS to be extracted, as well as the orienta-
tion of the corresponding ridge in the FTLE field. We accom-
plish this by computing the FTLE value along lines which
crisscross the domain. These lines of FTLE values then have
local maxima where they cross a ridge in the FTLE field so
we initialize the ridges at these points. To obtain a more
accurate estimate, we use the locally maximum value, plus
the value on either side to approximate the FTLE values
around the ridge by a parabola and locate the maximum of
this parabola �see Fig. 2�. We also require that these points
have a FTLE value above some threshold �experience shows
that an appropriate threshold is usually in the range of 50%–
80% of the maximum FTLE value� since we generally wish
to extract only the “strongest” LCS. As a side note, for in-
compressible flows, the FTLE value must be non-negative.
This has caused some confusion in the past since negative
FTLE values have been reported for incompressible flow �for
example, see Fig. 6 of Shadden et al.15�. For a proof of this
property, see the Appendix.

The next step is to find the orientation of the ridges in
order to begin stepping along the ridge to extract the LCS.
For each initial point, this is accomplished by computing the
FTLE value of the eight points surrounding the point at a
distance of one step size. We then find the adjacent point
with the maximum FTLE value and again use a parabolic
approximation to provide a better estimate of the location of
the highest surrounding point. Finally, we note the orienta-

tion of the ridge as the vector from the initial point to this
highest surrounding point. We then begin stepping along the
ridge in both directions from this initial point.

B. Tracking the ridge

Given a point on the ridge and the orientation of the
ridge, we step forward by taking a step in the direction of the
given orientation, computing the FTLE value at three points
on a line normal to the step direction, approximating the
FTLE value by a parabola, and estimating the location and
value of the true local max along this normal line �see Fig.
2�. The first several steps along a ridge are shown in Fig. 3.
To help prevent the trajectory from jumping from one side of
the true ridge to the other, after the second step we update the
trajectory based on the average of the last two steps. Expe-
rience also dictates that the spacing of the points on the nor-
mal line �used to compute the parabolic approximation�
should be about 1/2 of the step size along the ridge. Finally,
when making the parabolic approximation, one must ensure
that the parabola has the appropriate concavity �concave
down� and that the maximum occurs between the points on
the normal line. If either of these tests fails, it is best to step
to the point on the normal line with the maximum FTLE
value. If these tests fail because the ridge has ended or the
algorithm has lost the ridge, then the stopping criteria �pre-
sented below� will prevent the ridge from growing any fur-
ther.

C. Stopping criteria

It is important to know when to stop tracking a ridge
because either the ridge has ended or the algorithm has lost
the ridge. We have selected three criteria which will cause
the algorithm to stop tracking a ridge. The criteria and their
results are as follows:

�1� The end of the ridge leaves the domain of the computa-
tions: stop tracking the ridge.

�2� The ridge hits the start or end of another ridge: join the
two ridges into one.

�3� The FTLE value on the ridge falls below the threshold
value �we use 0.8 max�FTLE��: either the ridge is end-
ing or the algorithm has lost the ridge so stop tracking
the ridge.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

x

F
T

LE
va

lu
e

x(i−1) x(i) x(i+1)x−max

FTLE(i−1)

FTLE(i)

FTLE(i+1)

FTLE−max

Parabolic
approx.

FIG. 2. The actual local maximum of the FTLE is estimated with a para-
bolic approximation of the ridge.

1.475 1.48 1.485 1.49 1.495 1.5

0.075

0.08

0.085

0.09

x

y

FIG. 3. The first several steps along a ridge beginning at the right end. The
estimated next point based on the ridge trajectory is shown as a circle. The
other points on the normal line are shown as 	’s and the actual trajectory is
drawn as a line.

017504-4 D. Lipinski and K. Mohseni Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

D. Later time steps

Once all the ridges have ended by meeting one of the
stopping criteria, we move on to compute the LCS at the
next time step. To avoid the cost of initially detecting points
on the ridges we simply advect some points on the ridge
forward to the next time. For efficiency, we only advect ev-
ery 15th and 16th point along the ridge, but this is a tunable
parameter which may be used to help optimize the algorithm.
We advect pairs of points so that we can easily determine the
orientation of the new ridge and eliminate some error by
taking their average position as the estimated new initial po-
sition on the ridge. We also compute two additional points on
the line normal to the new ridge and use the parabolic ap-
proximation to more precisely locate the new ridge. Once
these new initial points and orientations have been com-
puted, we throw out any points below the threshold value
and proceed exactly as for the first time step.

Even if a few of the advected points miss the new LCS
ridges the other points on the ridge will grow the ridge to fill
in the gap. In practice, this rarely happens and all the ad-
vected points lie very near the new ridge. Also, it is possible
�and likely� that entirely new LCS will be created elsewhere
in the flow domain. This algorithm will not detect these new
ridges so it is necessary to occasionally repeat the initial
detection part of the algorithm as performed in the first step.
The frequency of repeating this step is entirely dependent on
whether or not it is deemed acceptable to miss a newly cre-
ated LCS for a few time steps. Also, if it is critical that all
ridges are detected and a new ridge appears during this reini-
tialization, the previous time steps may be recomputed by the
same method �only advecting the points backward in time�
until the ridge is no longer present.

IV. RESULTS

To demonstrate the capabilities of this algorithm we
present the results from two examples accompanied by the
FTLE field over the entire domain. The first is an example
which has become a standard test case for computing LCS,
the time dependent double gyre. Second, we present the re-
sult of computing the LCS created by swimming jellyfish.
This example was analyzed by our group and is further dis-
cussed in another paper.9 In both examples, the ridge track-
ing algorithm represents a significant increase in perfor-
mance.

A. The time dependent double gyre

The time dependent double gyre is an oscillating pertur-
bation to two counter-rotating gyres. The velocity field for
this system is

u = −
A sin�
f�x��cos�
y� , �12�

v =
A cos�
f�x��sin�
y�
� f

�x
, �13�

where

f�x,t� = a�t�x2 + b�t�x , �14�

a�t� = � sin��t� , �15�

b�t� = 1 – 2� sin��t� . �16�

For this investigation we choose the parameters

A = 0.1, � = 0.1, � =
2

10

and integration time T= 15 which gives a system with an
oscillation period of 10.

For reference we have computed the full FTLE field and
the forward and backward FTLE fields are shown in Figs.
4�a� and 4�b�, respectively. This field was computed with
grid spacing of 0.0025, resulting in an 801	401 grid and the
computation took 137.74 s per time step to run. FTLE values
were computed using central differencing on this grid result-
ing in a finite difference spacing of �x=0.005. This grid
spacing was chosen to be 1/2 of the step size used in the
ridge tracking. Since the ridge tracking algorithm can only
correct steps along the ridge by up to 1/2 step size, we feel
this grid spacing provides a fair comparison between the two
methods.

The LCS extracted from this same system with the ridge
tracking algorithm is shown in Fig. 5. The results are shown
only for time t=0, but are typical of all times and are indis-
tinguishable from the ridges seen in Figs. 4�a� and 4�b�. For
this example, we have chosen to use a step size along the
ridges of 0.005, a spacing of points used to compute para-
bolic approximations of 0.0025, and FTLE values were com-
puted with central differencing on a four point stencil with
spacing �x=0.005 �the same as the spacing used above to
compute the full FTLE field�. Finally, we used a threshold
value of 80% of the maximum computed FTLE value.

(a)

(b)

FIG. 4. �Color� The �a� forward and �b� backward FTLE fields for the time
dependent double gyre system at time t=0 with A=0.1, �=0.1, �=2
 /10,
and T=−15.

017504-5 Ridge tracking algorithm for LCS Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

As mentioned previously, it is necessary to reinitialize
the ridge tracking algorithm occasionally to ensure that any
newly formed LCS is captured. For this system, we chose to
compute the LCS at time steps of �t=0.02 and to reinitialize
ten times per period �at t=0,1 ,2 ,3 , . . .�. Since the length of
the LCS ridges present varies with time, so does the compu-
tation time. To account for this, we have taken the ten win-
dows of 50 time steps each �which makes one period of the
system� and averaged the time taken at each time step. The
first time step takes 9.76 s while the 50 time step windows
take an average of 4.28 s per time step. This represents a
speedup of 2.3 times speedup from the first time step to
subsequent step �due to the prediction step�. The overall av-
erage time step for this run represents a 32.2 times speedup
over the full FTLE calculation.

Finally, if we include the time necessary to write the data
to a file, we see additional savings. The ridge tracking algo-
rithm only needs to write the ridgelines to a file, while the
other algorithm must write the FTLE values over the entire
domain. This results in a total speedup of 35.0 times.

B. Jellyfish swimming

In our second example, we examine the flow created by
a swimming jellyfish. The jellyfish is a specimen of Sarsia
tubulosa. The flow around the swimming jellyfish is in the
form of data files output from a CFD code. The deformation
of the jellyfish body was obtained from videos of an actual
swimming jellyfish and used as input to an arbitrary
Lagrangian–Eulerian �ALE� CFD code. This code then com-
putes the flow field around the swimming jellyfish on a mov-
ing, unstructured quadrilateral mesh. For additional details
on the CFD process and the ALE method used, see Sahin and
Mohseni.13

The CDF simulations were performed in axisymmetric,
swirl free cylindrical coordinates and the FTLE computa-
tions were also performed in this coordinate system. This is
only a minor change and corresponds to changing d� /dx to

d�

dx
=�

�rf

�ri
0

�rf

�xi

0
rf

ri
0

�xf

�ri
0

�xf

�xi

� , �17�

where ri, rf, xi, and xf are the initial and final radial and axial
coordinates of a particle in the flow. This particular jellyfish
uses a jetting type of propulsion and ejects a very strong
vortex during swimming.9 We have chosen this example for
two reasons, to test our algorithm on a discrete velocity field
which is stored in data files and to examine the performance
on a more realistic flow field with more complicated struc-
tures than the double gyre.

In cases where the velocity field is stored in data files
instead of analytically defined, several additional consider-
ations must be made to implement this ridge tracking algo-
rithm. First and foremost, depending on the size and format
of the velocity files, velocity readins may actually be a lim-
iting factor for algorithm performance. It is very important to
choose an efficient data format to minimize velocity readin
time. In this case, we have chosen to use the NETCDF data
format.18 In our experience, this format has proven to be
efficient and flexible.

Second, a ridge tracking algorithm requires computing
FTLE values for each step along a ridge. If this is done by
reading in the velocity for each time step as it is needed
during the advection process, then the velocity files may
each need to be read in hundreds of times. To avoid this, the
ridge tracking algorithm should only be applied to situations
where the velocity field for one complete period of integra-
tion can fit in memory.

Finally, since the mesh is unstructured, it is very impor-
tant to use an efficient search algorithm to locate elements
before interpolating the velocity during particle advections.
In the case where the mesh is also moving, it is necessary to
us a search algorithm which does not have a large setup cost
since each time step will require a new setup. The most
popular geometric search algorithms include nearest neigh-
bor �NN�, digital trees, and structured auxiliary mesh �SAM�.
Khoshniat et al. provide an excellent comparison of these
three methods.7 NN search scales as O�n�, tree searches scale
as O�log2�n�� and SAM searches require large setup time.
Due to low setup cost and good speed, we have chosen to use
an Alternating Digital Tree.1 This method creates a tree con-
taining the elements to be searched and each level in the tree
represents a partition in the x or y direction. If an element lies
on the boundary of two partitions, we choose to add it to
each. The setup cost and initial search combine to take only
a few seconds for the full FTLE field calculations in this
example. Once the particles have been located initially,
search during the advection process is performed by check-
ing whether or not a particle is in the same element as the
previous time step. If it is not, the elements are traversed
sequentially, based on the element connections and their lo-
cation relative to the particle.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

FIG. 5. �Color� The extracted LCS with the ridge tracking algorithm for the
time dependent double gyre system at time t=0 with A=0.1, �=0.1,
�=2
 /10, and T= 15. Forward LCS are shown in blue and backward
LCS are shown in red. Also, the relative height of the ridge is indicated by
the shade of the color. As the ridge height decreases to the threshold value,
the color fades to black.

017504-6 D. Lipinski and K. Mohseni Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

For comparison, we have again computed the full FTLE
field using the standard algorithm. The thresholded contour
plots of the forward and backward FTLE fields for this jel-
lyfish are presented in Figs. 6�a�–6�d�. This computation was
performed at mesh spacing of 0.0025 with an integration
time of 0.40 s �40 time steps�. On average, computing and
writing the FTLE field for each time step took 874.6 s or
about 14.6 min.

The resulting LCS from the ridge tracking algorithm are
also shown in Figs. 6�e�–6�h�. The ridge tracking algorithm
took an average of 60.8 s per time step to run and captured
all the major features of the LCS seen in the full FTLE field.
This represents a speedup of 14.4 times, as the time to com-
pute each time step was cut from 14.6 min to just over 1 min.
While this is not as drastic a speedup as we saw for the
double gyre example, it is still a substantial savings.

In both sets of figures, we can clearly see all the major
LCS present at this time in the flow. The jellyfish begins
contracting its bell to produce a vortex and propel itself for-
ward �Figs. 6�a� and 6�e��. In Figs. 6�b� and 6�f�, the ejected
vortex is moving away from the jellyfish and beginning to
pinch off. We can also see lobes formed by the forward
�blue� LCS around the velar opening. These lobes contain the
fluid which will be drawn into the subumbrellar cavity as the
jellyfish relaxes the bell.

Next, in Figs. 6�c� and 6�g�, the forward LCS lobes near
the bell opening have been drawn into the bell as the bell
relaxes. The fluid contained in these lobes is exactly the fluid
which is entrained into the bell. The vortex continues to
move away from the jellyfish and vortex pinchoff is com-
plete �note the forward LCS which closes the back of the
vortex�. Also, there is another vortex present in the bell of
the vortex in both Figs. 6�c� and 6�g� and Figs. 6�d� and 6�h�
as the expelled vortex continues to move away before the
next contraction.

It is important to note that the major structures detected
by the standard algorithm are also present in the ridge track-
ing algorithm’s results. In fact, because the results of the
standard LCS computation are often visualized with a thresh-
olded contour plot, they often do not appear as clear lines
where the ridges are present, but rather as narrow regions of
high FTLE value. The ridge tracking algorithm suffers from
no such drawback. Although there is a slight loss of detail in
the vortex core seen in Figs. 6�f� and 6�g�, we are able to
extract a single, 1D line along each ridge. This is well dem-
onstrated in Fig. 6. For example, the results of the ridge
tracking algorithm display the structures in the bell in Figs.
6�h� more cleanly than the standard algorithm �Fig. 6�d��.

The structures discussed here exactly match the struc-
tures we have previously seen.9 We are even able to observe
the complicated structures within the bell which have not
been previously observed. The characteristic swimming
mechanism is also well shown �see Fig. 7�. The jellyfish
emits a single, highly energetic vortex ring during each con-
traction. This vortex ring separates from the jellyfish very
rapidly at a Strouhal number �fL /v� of 0.1. This means that
the vortices produced separate from the jellyfish at a rate of
about 10 radii per swimming cycle. This gives very little
opportunity for feeding during swimming since the fluid
moves past the jellyfish so quickly. In contrast, various other
jellyfish use a paddling type of swimming which actually
complements feeding. For example, we have previously
found the jellyfish Aequorea victoria to swim at a Strouhal
number of 1.1. For a complete discussion of the swimming
of this jellyfish, see Lipinski and Mohseni.9

This algorithm is very well suited for picking out the
most major LCS. As the integration time is increased, the
LCS that are revealed become increasingly complex and
close together. The total length of LCS present in the domain

FIG. 6. �Color� The LCS for several time steps as computed with both the standard algorithm as well as the ridge tracking algorithm. Forward LCS are shown
in blue and backward are red. The results of the standard algorithm are shown in �a�–�d� and the ridge tracking algorithm is show in �e�–�h�. The four different
time steps are evenly spaced at 0.25 s intervals and make up one complete swimming cycle �1 s�.

017504-7 Ridge tracking algorithm for LCS Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

increases as well. In many applications such as flow control
and for identifying major flow structures, only the most ma-
jor LCS needs to be computed. For these purposes, this al-
gorithm provides a huge time savings over the standard al-
gorithm.

V. CONCLUSIONS

Finding LCS is a computationally intensive process. To
date, they have been used in many applications despite this
cost due to their many useful properties for visualizing and
understanding fluid flows. However, as the problems to
which LCS are applied grow in size, the computational cost
becomes prohibitive. To help solve this issue, fast algorithms
are needed which can take advantage of the nature of LCS as
ridges in the FTLE field and avoid computing the FTLE field
at unnecessary points far from any ridges. Several AMR
strategies have been proposed in the past. In this paper we
fully outline a new ridge tracking algorithm which also takes
advantage of the temporal coherence of LCS to further speed
calculations after the first time step.

For an analytically defined velocity field, our algorithm
gives a speedup of 35.0 times over the standard LCS algo-
rithm. Due to the additional complexities of dealing with a
discrete velocity field and the more complex LCS present in
the example of the swimming jellyfish, we only see a 14.4
times speedup in this case, but we believe that future refine-
ments of the algorithm may increase this speedup. Addition-
ally, all the major LCS were successfully captured in each
example. The speedup is achieved without a loss of detail or
accuracy in finding the most significant LCS in a system.
This ridge tracking algorithm also provides additional sav-
ings in terms of memory usage and size of the output files.

We believe that using the locations of LCS at a given
time to predict the next time step will play a major role in
future algorithms as well. This is a very general idea which

could also be used as part of an AMR routine or other algo-
rithms. For example, an AMR algorithm could use this infor-
mation to immediately create a fine mesh only where the
LCS are predicted to be located and skip all �or most� inter-
mediate refinement steps in these areas.

In the future, we plan to implement AMR algorithms
which also use the temporal coherence of LCS to speed com-
putations. We would also like to continue to develop and
refine the ridge tracking algorithm in two dimensions to im-
prove the stability of the algorithm in areas of very compli-
cated flow. Finally, computing LCS in three dimensions is an
even more computationally demanding task. We would like
to develop a similar algorithm which is able to track 2D LCS
surfaces in a three dimensional domain. While it is more
complicated to grow outward along a surface than a line,
such an algorithm could provide tremendous computational
savings.

ACKNOWLEDGMENTS

Financial support by the Office of Naval Research under
the contract 09PR06473-00/1053746 is gratefully acknowl-
edged.

APPENDIX: PROOF THAT ��0 IF � ·u=0

For incompressible flows, the contraction of a fluid in
one direction must be balanced by expansion in another di-
rection. In terms of LCS, this translates to the following
theorem:

Theorem A.1: For incompressible flows, the FTLE field
is non-negative,

� · u = 0 ⇒ �t
T�x� � 0 ∀ x,t,T .

This may be used as a simple check of the results ob-
tained from FTLE calculations on an incompressible flow.
Additionally, for compressible flows, if the FTLE values in
some region are negative, this implies that the fluid is locally
contracting in every direction over the chosen integration
time.

Proof of Theorem A.1: The gradient of the flow field,
commonly denoted as d� /dx, is the same as the Jacobi ma-
trix J, which appears in many Lagrangian fluid dynamics
texts. It is a well known result that if the flow is incompress-
ible the determinant of the Jacobi matrix is 1: det�J�=1.

Also, for general matrices A and B,

det�AB� = det�A�det�B� ,

det�AT� = det�A� ,

det�A� = �
i=1

d

�i.

Then, using the definition of the FTLE field, we have

FIG. 7. �Color� Backward �a� and forward �b� LCS for Sarsia tubulosa as
computed with the standard LCS algorithm.

017504-8 D. Lipinski and K. Mohseni Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

� = J�J ,

det��� = det�J��det�J� = 1 = �
i=1

d

�i��� .

� is positive definite since

�x,�x = �x,J�Jx = �Jx,Jx =
Jx
2 � 0

and

det��� = 1.

So �i����0 and

�max��� = max
i

��i���� � 1

and

� =
1

�T�
ln	�max��� �

1

�T�
ln	1 � 0.

1Bonet, J. and Peraire, J., “An alternating digital tree �ADT� algorithm for
3D geometric searching and intersection problems,” Int. J. Numer. Meth-
ods Eng. 31, 1–17 �1991�.

2Cardwell, B. and Mohseni, K., “Vortex shedding over a two-dimensional
airfoil: Where the particles come from,” AIAA J. 46, 545–547 �2008�.

3Garth, C., Gerhardt, F., Tricoche, X., and Hagen, H., “Efficient computa-
tion and visualization of coherent structures in fluid flow applications,”
IEEE Trans. Vis. Comput. Graph. 13, 1464–1471 �2007�.

4Green, M. A., Rowley, C. W., and Haller, G., “Detection of Lagrangian
coherent structures in 3d turbulence,” J. Fluid Mech. 572, 111–120
�2007�.

5Haller, G., “Lagrangian coherent structures from approximate velocity
data,” Phys. Fluids 14, 1851–1861 �2002�.

6Haller, G. and Yuan, G., “Lagrangian coherent structures and mixing in
two-dimensional turbulence,” Physica D 147, 352–370 �2000�.

7Khoshniat, M., Stuhne, G. R. , and Steinman, D. A., “Relative perfor-

mance of geometric search algorithms for interpolating unstructured mesh
data,” Med. Image Comput. Comp. Assist. Interv. – MICCAI, Part 2 2879,
391–398 �2003�.

8Lipinski, D., Cardwell, B., and Mohseni, K., “A Lagrangian analysis of a
two-dimensional airfoil with vortex shedding,” J. Phys. A 41, 344011
�2008�.

9Lipinski, D. and Mohseni, K., “Flow structures and fluid transport for the
hydromedusae Sarsia tubulosa and Aequorea victoria,” J. Exp. Biol. 212,
2436–2447 �2009�.

10Mathur, M., Haller, G., Peacock, T., Ruppert-Felsot, J. E., and Swinney,
H. L., “Uncovering the Lagrangian skeleton of turbulence,” Phys. Rev.
Lett. 98, 144502 �2007�.

11Peng, J. and Dabiri, J. O., “Transport of inertial particles by Lagrangian
coherent structures: Application to predator-prey interactions in jellyfish
feeding,” J. Fluid Mech. 623, 75–84 �2009�.

12Sadlo, F. and Peikert, R., “Efficient visualization of Lagrangian coherent
structures by filtered AMR ridge extraction,” IEEE Trans. Vis. Comput.
Graph. 13, 1456–1463 �2007�.

13Sahin, M. and Mohseni, K., “An arbitrary Lagrangian-Eulerian formula-
tion for the numerical simulation of flow patterns generated by the hy-
dromedusa Aequorea victoria,” J. Comput. Phys. 228, 4588–4605 �2009�.

14Shadden, S. C., Dabiri, J. O., and Marsden, J. E., “Lagrangian analysis of
fluid transport in empirical vortex ring flows,” Phys. Fluids 18, 047105
�2006�.

15Shadden, S. C., Lekien, F., and Marsden, J. E., “Definition and properties
of Lagrangian coherent structures,” Physica D 212, 271–304 �2005�.

16Shadden, S. C., Lekien, F., Paduan, J. D., Chavez, F., and Marsden, J. E.,
“The correlation between surface drifters and coherent structures based on
hf radar in Monterey Bay,” Deep-Sea Res., Part II 56, 161–172 �2009�.

17Tran, T. T. H. and Lux, A., “A method for ridge extraction,” Asian Con-
ference on Computer Vision, Jeju, Korea, 2004 �unpublished�, p. 960.

18Unidata. Netcdf �network common data form�. http://
www.unidata.ucar.edu/software/netcdf/, September 2009.

19Voth, G. A., Haller, G., and Gollub, J. P., “Experimental measurements of
stretching fields in fluid mixing,” Phys. Rev. Lett. 88, 254501 �2002�.

20Weldon, M., Peacock, T., Jacobs, G. B., Helu, M., and Haller, G., “Ex-
perimental and numerical investigation of the kinematic theory of un-
steady separation,” J. Fluid Mech. 611, 1–11 �2008�.

21Wilson, M., Peng, J., Dabiri, J. O., and Eldredge, J. D., “Lagrangian co-
herent structures in low Reynolds number swimming,” J. Phys.: Condens.
Matter 21, 204105 �2009�.

017504-9 Ridge tracking algorithm for LCS Chaos 20, 017504 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp

http://dx.doi.org/10.1002/nme.1620310102
http://dx.doi.org/10.1002/nme.1620310102
http://dx.doi.org/10.2514/1.35223
http://dx.doi.org/10.1109/TVCG.2007.70551
http://dx.doi.org/10.1017/S0022112006003648
http://dx.doi.org/10.1063/1.1477449
http://dx.doi.org/10.1016/S0167-2789(00)00142-1
http://dx.doi.org/10.1088/1751-8113/41/34/344011
http://dx.doi.org/10.1242/jeb.026740
http://dx.doi.org/10.1103/PhysRevLett.98.144502
http://dx.doi.org/10.1103/PhysRevLett.98.144502
http://dx.doi.org/10.1017/S0022112008005089
http://dx.doi.org/10.1109/TVCG.2007.70554
http://dx.doi.org/10.1109/TVCG.2007.70554
http://dx.doi.org/10.1016/j.jcp.2009.03.027
http://dx.doi.org/10.1063/1.2189885
http://dx.doi.org/10.1016/j.physd.2005.10.007
http://dx.doi.org/10.1016/j.dsr2.2008.08.008
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://dx.doi.org/10.1103/PhysRevLett.88.254501
http://dx.doi.org/10.1017/S0022112008002395
http://dx.doi.org/10.1088/0953-8984/21/20/204105
http://dx.doi.org/10.1088/0953-8984/21/20/204105

