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a b s t r a c t

This study investigates soft composite sheets that undergo significant deformations. The fiber rein-
forcement in these systems not only increases the stiffness of sheets like a traditional composite, but also
controls the relationships between strains in orthogonal planar directions. Such an ability is useful in
controlling the deformation of soft robots, and also enhancing the output of soft actuation techniques
like electro-active polymer actuators (also called dielectric actuators). The inspiration for this work
comes from squid mantle structures that couple orthogonal components of strain using helical fiber
reinforcement. The resulting null space of deformations corresponding to the fiber restrictions creates a
family of body deformations that optimize propulsion.

The strain dynamics in the composite sheet are modeled geometrically from fiber orientations,
assuming that the fibers are inextensible. After the strain dynamics have been determined, the stress/
strain relationship is modeled by considering the matrix and reinforcing fibers to be two separate ho-
mogeneous systems interacting through local stresses. Both steps of this modeling technique are vali-
dated experimentally showing planar strains in a preferred direction to be as high as 16 times the
resulting planar strain of an equivalent unreinforced sheet by forcing negative strains in the orthogonal
planar directions. The work required for deformation is derived from the stress/strain relationship by
calculating the strain energy stored in the material, and an optimal balance between increased planar
strain output and increased material stiffness is analyzed. It is shown that for the specific materials used
to create the soft composite sheets (thermoplastic elastomer with cotton fibers) optimal fiber angles lie
between 15� and 25� to minimize work required for deformation, but this optimal range will increase
with increasing ratio of fiber to matrix modulus.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Much of the inspiration for this investigation into soft composite
sheets comes from observations that fiber reinforcement in soft
biological tissues serves a skeletal role, as well as increasing ma-
terial stiffness [1]. Flexibility is a defining property of propulsion in
marine animals [2]. In fish and marine mammals, body shape is
dictated by an internal rigid skeleton, and flexible tissues are
stretched over the internal structures. However, there are ap-
pendages and entire animals that are able to maintain their basic
shape without any such rigid elements. Often they rely on systems
l and Aerospace Engineering,
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known as ‘muscular hydrostats’ [3]. In structures such as these rigid
skeletal elements are completely absent, instead arrangements of
muscles and fibers provide both the forces to drive motion, as well
as the support to maintain the desired system geometry. Such
systems include elephant trunks and the tongues of various
mammals [4] to name a few.

When it comes to soft bodies with no rigid (skeletal) elements
whatsoever, there is a trade-off that exists between the possible
versatility of the body's movements and high performance of a
specialized action. This trade-off exists in biological organisms as
well as engineered systems. Here, we summarize, as a prime
example, the differences in the mantle structures of squid and oc-
topuses. The mantle is a hollow muscular cylinder surrounding the
visceral mass of cephalopods (e.g. squid, octopus, cuttlefish) that is
periodically filled with water for respiration and jet propulsion.
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Fig. 1. (left) Schematic of squid mantle tissue dominated by circular muscle fibers with both inner and outer tunics. (right) Schematic of octopus mantle tissue with circular, radial,
and longitudinal muscle tissue. Figures taken from Ref. [5].
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Fig. 1, which is composed of two figures from Ref. [5], illustrates the
structure of a portion of each animal's mantle wall. The octopus
mantle tissue is composed of three orthogonal muscle groups, i.e.
circumferential, radial, and longitudinal, and by activating these
muscle groups in various combinations can deform its body to
nearly any shape. This versatility is evidenced by the abundance of
complex behaviors exhibited by various octopus, from camou-
flaging themselves with a combination of changing body shape and
using a complex system of chromatophores, to their ability to pass
through tiny openings much smaller than their overall body size.

The squid mantle, on the other hand, is specialized to provide
the most effective jetting of any cephalopod. Squid mantles are
encompassed by an inner and outer shell of interwoven collagen
fibers called tunics (see Fig. 1). The tunic fiber angle is surprisingly
uniform from squid to squid. Ward & Wainwright [6] observed
tunic fiber angles of several specimen of Lolliguncula brevis to be at
27� ± 1�. If the mantle is assumed to be cylindrical and the fibers to
be inextensible, then there is a unique cylinder length and radius
for every tunic fiber angle. Vogel, following the example of other
studies on helically wound biological reinforcing fibers [7], plotted
the volume of the mantle cavity as a function of the fiber angle,
showing that for acute tunic fiber angles, a decrease in mantle
circumference results in a slight elongation, but a net decrease in
mantle volume corresponding to jet ejection [8]. Krieg & Mohseni
[1], having noticed that squid only eject a fraction of the total
mantle volume during jetting, demonstrated that the rate of change
of a cylindrical mantle volumewith respect to diameter contraction
reaches a maximum when the fiber angle is at z31�, very close to
the actual tunic fiber angles observed in Ref. [6]. This means that
the tunic fiber angles are aligned to provide maximum propulsive
jet volume, for a given circumferential muscle contraction. It can be
understood in this context that the role of the tunic fibers in the
squid mantle is to control the relationship between the circum-
ferential and longitudinal components of strain in the flexible
mantle. During jetting the mantle tissue becomes thicker with the
decreasing diameter because the tissue resists volume change, and
the tissue extends in the axial direction, the relationship between
the axial and azimuthal strain being controlled by the tunic fiber
angle.

Since the deformation of the squid mantle in the axial direction
is limited by the tunic fibers, it does not require longitudinal muscle
groups to oppose this extension. As a result, more of the muscle in
the mantle can be dedicated to the circular muscle groups
providing more power to contract the mantle and expel a jet with
higher velocity [9]. In addition, using tunic fibers to restrict defor-
mation of the squid in the longitudinal direction is a passive pro-
cess, whereas using longitudinal muscle groups to limit extension
requires appreciable energetic input. So the tunic fibers also in-
crease the efficiency of the deformation process. Squid mantles also
contain an array of flexible intramuscular (IM) fibers that stretch as
the mantle wall thickens during jetting, storing elastic potential
energy that re-expands the mangle following jetting and thereby
aids refilling the mantle cavity [10e13]. The action of the IM fibers,
reduces the need for radial muscle groups during refilling, and al-
lows for a further increase in the amount of circular muscle groups
driving jetting. It was shown specifically that IM-3 fibers' orienta-
tion allows for 90% of the maximum possible potential energy
storage [1]. The specialized mantle structure gives squid impressive
locomotory capabilities, including the fastest swimming speeds of
any marine invertebrate [14,15]. For a more complete summary of
reinforcing fiber arrays in biological systems, please refer to [7]. In
particular, the discussion about how the fiber angle of reinforcing
helical fibers in the cuticles of nematodes and other worm-like
organisms controls the stretching of the worm length relative to
the contraction of wormwidth is a concept which is investigated at
length in that study.

In a mathematical sense, the trade-off between versatility and
specialized performance can be described as a restriction of the
deformation space of a soft body. To help explain this concept,
consider a system of rigid elements connected by a series of joints.
The exact configuration of the system can be uniquely defined by
the angle at each connecting joint, meaning that the deformation
space of the system has a finite number of degrees of freedom equal
to the number of joints. Conversely, a completely deformable body,
with no rigid elements, has an infinite number of degrees of
freedom. By embedding the soft body with inextensible reinforcing
fibers, the original infinite deformation space is reduced to a null
space of possible geometries that satisfy the lack of extension in the
fibers. The advantages and disadvantages of this process are, as just
mentioned with the cephalopod mantle example, that muscles/
actuators can be increased in a desired direction, since they are not
required to counter deformation in the directions limited by the
fibers, but the resulting range of movement is restricted.

The role of reinforcing fibers can go beyond just restricting
unwanted deformation, it can in fact drive negative strains in un-
wanted directions to further increase extension in a desired di-
rection. As an example, one common actuation technique used in
the field of soft robotics is Electro-Active Polymer actuators (EAPs),
sometimes called dielectric elastomer actuators (DEAs), due to their
fast response times, high power density, and large degree of flexi-
bility [16]. The basic concept of this type of actuator is that flexible
conducting plates sandwiching a layer of elastomer are charged,
squeezing the plates together due to capacitive force, resulting in
an outward expansion of the elastomer layer by conservation of
volume. It has been shown that the performance of EAPs driving
motion in a single direction can be greatly increased by prestraining
the elastomer layer in the opposite direction [17]. The effectiveness
of prestraining EAPs is mostly due to the fact that prestraining
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increases the dielectric constant of the elastomer, but also partially
lies in the ability to control the relative strains in each individual
direction by changing the stress/strain properties. When the elas-
tomer is compressed, more force is required to stretch in the planar
direction that is already prestrained. As a result, there is an
increased strain in the desired planar direction. An alternative but
unexplored methodology to change the stress/strain properties is
to embed reinforcing fibers in the elastomer layer to control the
relative amounts of strain in each direction, as described above for
the mantle tunic fibers. The fundamentals of this method are as
follows.

Fig. 2 shows a schematic diagram of the basic concept. On the
left is shown a basic section of elastomer. Under compressive
forcing, the elastomer expands outwards in the x and y directions.
The sum of strains in the x and y directions is governed by the
Poisson ratio of the elastomer, but the strains in each direction
relative to each other are governed by the geometry and homoge-
neity of the elastomer. If fibers with high tensile stiffness are sus-
pended within the elastomer, then the material is free to bend and
stretch in directions tangent to the fibers, but is restricted in the
direction along the fiber's axis. Therefore, if all the fibers are aligned
parallel in a given direction then the resulting planar strain after
compression will only exist perpendicular to the fibers. If alterna-
tively, the fibers are aligned at a given angle relative to each other
then the strain in the dominant direction will result in an increase
in the fiber angle, which under constant fiber length assumptions
actually results in a negative strain in the opposite direction.
Therefore, by embedding reinforcing fibers, the soft material can be
made to deform only in a single direction or even increase desired
strain by driving negative strain in the orthogonal planar direction.
Adjusting the fiber's tensile stiffness allows the relative strains in
the lateral direction to be controlled to any desired value. The
current study, however, will only focus on inextensible fibers.

The use of reinforcing fibers in elastomer composites has
become commonplace in bicycle tire fabrication [18]. Hence, there
has been some attempt to ascertain the anisotropic stress/strain
properties of these materials. The fabrication process for this type
of application, however, generally introduces fibers into the elas-
tomer matrix as a pulp containing discontinuous short fibers that,
even after processing, only attain a statistical distribution around
any given axial orientation. Furthermore, tire and belting
Fig. 2. Diagram illustrating the basic mechanics of a
applications are mostly concerned with increasing the stiffness and
tear resistance of stiffer classes of rubbers, so experimental analysis
has largely focused on statistical increases in stiffness, rather than
the alteration of stress dynamics within the soft composite mate-
rial. This modeling has been very similar to traditional laminate
theory used to model composites. Accordingly, composites are
assumed to be homogeneous at large scales, but anisotropic, and
the modulus of the composite material is calculated from the in-
dividual moduli of the matrix and the fibers and their respective
volume fractions, along with an efficiency or Krenchel factor ac-
counting for the fiber reinforcement [19].

The few studies that take a more in depth look at the material
deformation dynamics in fiber reinforced elastomers have typically
taken this traditional approach. Experimental studies have char-
acterized the non-linear elastic modulus of soft composites for a
variety of fiber volume fractions, for straight [18] and wavy or zig-
zag [20,21] reinforcing fibers. A large degree of stiffening has been
observed, associated with fiber straightening and reorientation, but
observed nonlinearity is typically fitted to heuristically determined
curves. Clark [20] observed a bi-linear stress/strain dynamic for the
zig-zag fibers, and Lou and Chou [21] fit the strain energy to a 4'th
order polynomial function of the strain for both straight and wavy
fibers. Peel performed tensile testing of soft composite struts and
modeled the stress/strain relationship with a non-linear laminate
model [22], though again the nonlinear behavior is attributed to
fiber reorientation, but not directly modeled. Helical fiber orien-
tation has also been identified as a parameter that directly affects
the performance of pneumatic actuators [23]. However, similar to
the studies just mentioned, the output is directly correlated to
actuator pressure without modeling the strain dynamics in the
pneumatic tube.

Our approach assumes inextensible fibers to first solve for the
strain dynamics of the soft composite sheet. Next, the stress/strain
relationship is modeled by considering the elastomer and fiber
arrays to be independent systems that interact through local planar
stresses required to generate the strains determined geometrically.
Finally the strain energy stored in the composite is calculated for
the elastomer and fibers separately, having relaxed the inextensible
fiber assumption.

Section 2 derives the strain dynamics of the sheets assuming
that the length of the reinforcing fibers remains constant. The stress
soft composite with tunable strain properties.
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interactions between the fibers and matrix under the solved strain
dynamics are the presented in section 3. The experimental appa-
ratus used to validate the modeling is described in section 4, and
the resulting performance, model accuracy, and model shortcom-
ings are provided in section 5. In addition, section 5 predicts
optimal fiber angles that minimize potential energy storage in the
material under various conditions.

2. Modeling planar strain of soft composites

This first section of the soft composite sheet model derives re-
lationships between the primary components of strain under
geometric limitations of the reinforcing fibers. In the following
section the model is extended by deriving the force interactions
between the elastomer and the fibers based on the kinematic re-
lationships defined here.

Consider a flexible sheet with an array of regularly spaced fibers
embedded within it, as illustrated in Fig. 3. For the purposes of this
model we will assume that the fibers are inextensible, but provide
no resistance to bending, and that there is perfect bonding between
the fibers and the surrounding elastomer matrix. For this primary
investigation, however, we assume that stress loading is uniform,
so that bending will not be considered in the fibers, despite the lack
of bending stiffness.

2.1. Conservation of volume and Poisson's ratio

Poisson's ratio, n, which is the opposite of the ratio of strain in
the transverse directions to the strain in a direction under loading,
is typically characterized for different materials and treated as a
constant for small deformations. This ratio is directly coupled to the
compressibility of a material. If a material is compressed in one
direction, and it is incompressible, then it must expand out in the
transverse directions. For very soft materials, like the elastomer
used as a matrix in this study, the low resistance to deformation
results in volume being very nearly conserved in most de-
formations. Stiffer materials, on the other hand, experience more
compression and have lower Poisson ratios.

For small material strains, conservation of volume is equivalent
to a Poisson ratio of n ¼ 0.5. This is not the case for larger de-
formations. Consider a cube that is placed under compressive
strain, which we will refer to as the z-direction. As the cube is
compressed down to an infinitesimal thickness, the length scales in
the x and y directions grow to infinity. Since the z strain ranges from
Fig. 3. Illustration showing a network of fibers suspended in an elastic
0 to�1, while the planar strains range from 0 to∞, the Poisson ratio
ranges from 0.5 to ∞ depending on the scale of the deformation.

The compressibility of a material can also be characterized by a
term called the volumetric strain or compressibility strain, which is
defined,

εV ¼ V � V0

V0
¼ ð1þ εxxÞ

�
1þ εyy

�ð1þ εzzÞ � 1; (1)

where V is the volume of a material element, εxx, εyy, and εzz are the
strains of the material element in the Cartesian directions, and the
subscript 0 refers to the value taken at an initial undeformed
configuration. The kinematic relationships derived here can be
described more simply in terms of the volumetric strain, εV, but in
all locations the volumetric strain can be replaced by the Poisson
ratio according to the relationship,

n ¼
1�

h
1þεV
1þεzz

i1=2
εzz

: (2)

In fact the link between volumetric strain and Poisson ratio has
been observed by others, and the relationship between εV and hy-
drostatic stress was used to characterize a negative Poisson ratio
and negative compressibility in anisotropic foams [24]. For small
deformations where volume is conserved εV ¼ 0 and n ¼ 0.5, but in
general both will be considered variable functions of the loading.
2.2. Geometric constraints

The smallest indivisible element of this soft composite structure
is a diamond element in between fiber crossings like diamond
ABCD highlighted in Fig. 3. Since reinforcing fibers are much stiffer
than the elastomeric matrix, theywill be considered inextensible in
the model. As such, characteristic fiber lengths l1 and l2 of the basic
element will remain constant throughout deformation. Even
though Fig. 3 is drawn with equivalent distances between fibers in
different directions, resulting in equivalent lengths l1 and l2, the
theory derived here will be applicable to any configuration of fiber
lengths and spacing. In order to maintain a single fiber length scale
we introduce the fiber length ratio l¼ l2/l1. Wewill characterize the
orientation of the basic element by the relative angle between fi-
bers, q. Here it should be noted for the sake of completeness that in
biological fiber reinforcement studies fiber angle is typically
defined as the angle between fibers and the longitudinal axis of the
matrix sheet, highlighting the smallest basic element of the array.
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body, which corresponds to one half of the fiber angle as it is
defined here. The fiber angle is defined on the range q2[0:p/2], so
that it always refers to the smaller angle in the parallelogram
element.

We assume that loading on the sheet is uniform so that the fiber
angle, q, may change, but the fibers remain straight throughout
their length. This will not be the case for localized stresses. In
addition to uniform compressive stress, it is assumed that the
compressive strain is also uniform across the thickness of the sheet.

The volume of the basic element cut out by diamond ABCD is
Vol ¼ l21l sinðqÞ h, where h is the thickness of the sheet. When the
sheet thickness is reduced the planar area must increase to some
degree, depending on how much the material volume is com-
pressed. By assuming that the volumetric strain is some arbitrary
function of the sheet parameters, εV ¼ f(q,h), we derive a relation-
ship between the differential change in fiber angle, dq, for a cor-
responding differential change in sheet thickness, dh,

sinðqÞdhþ cosðqÞhdq ¼ sinðqÞh
�

1
1þ εV

��
vεV
vq

dqþ vεV
vh

dh
�
:

(3)

Separation of variables can be used to solve this expression
explicitly for the total change in fiber angle to account for a given
compressive strain, εz,

qf ¼ arcsin
�
sinðq0Þ

1þ εV

1þ εzz

�
; (4)

It should be noted that there is a maximum fiber angle that can
be reached through compression of the soft composite. When the
fiber angle reaches q ¼ p/2 the element attains a maximum area,
meaning that any further decrease in sheet thickness can only be
balanced by expansion of the elastomer just above or below the
fibers themselves, contradicting the assumption that strains are
uniform across the thickness, or through significant material
compressions. For any given initial fiber angle, the maximum
compressive strain is,

εzz;max ¼ sinðq0Þ
�
1þ εV

�
q0; εzz;max

��� 1; (5)

which requires knowledge of the functionality of the volumetric
strain, εV.
2.3. Planar strain components

Since the fibers are inextensible, and the area of each element
can only be altered by changing the fiber angle, the local material
does not stretch in the directions normal to the fibers during a
given instant of the deformation. We denote the directions of each
fiber with the unit vectors bel1 and bel2, respectively (see Fig. 3),
which change dynamically throughout deformation. The distance
between opposing points AC and BD, denoted by l3 and l4 respec-
tively, either increase or decrease with deformation depending on
whether the compressive strain is positive or negative. The unit
vectors in the direction of these lengths are similarly denoted bel3
and bel4, respectively, and are not necessarily orthogonal if the fiber
ratio l is not equal to one.

For an inertial Cartesian coordinate system whose z-axis is
aligned normal to the composite sheet, the planar strains can be
completely described by the orthogonal normal strains εxx and εyy

and the shear strain gxy. The deformation of the element, though,
occurs in the characteristic directions bel3 and bel4 . Since the exact
layout of the fiber elements is uniquely determined by the fiber
angle, q, and the fiber scaling, l1 and l, we define the characteristic
deformations with respect to the only parameter not held constant,

dl3
dq

¼ l1
lsinðqÞh

1þ l2 þ 2lcosðqÞ
i1=2 ; (6a)

dl4
dq

¼ l1
lsinðqÞh

1þ l2 � 2lcosðqÞ
i1=2 : (6b)

In addition, we have the trivial deformations dl1/dq ¼ 0 and dl2/
dq ¼ 0 associated with the inextensibility of the reinforcing fibers.
Since the initial and final fiber angles are known, the total change in
lengths l3 and l4 can be determined from these relationships. Un-
fortunately, since the orientation of these characteristic lengths
may change throughout the deformation, the total length change
cannot be directly related to the inertial strain components εxx and
εyy except in the case where l ¼ 1.

The inertial strain components can be calculated by segmenting
the sample compression into differential steps and translating the
characteristic strains into the inertial directions at each differential
step. Alternatively, it can be shown that simplified strain dynamics
actually still represent the more complex geometries, as we will
discuss next.
2.4. Special case: equal fiber lengths

The geometric strain modeling is simplified drastically if the
fiber ratio l ¼ 1, meaning that fiber lengths l1 and l2 are equal to
each other. For this case, no matter what the fiber angle q is, or how
much compression the basic element undergoes, the characteristic
lengths l3 and l4 do not change orientation. This means that the
overall change in the characteristic lengths can be related to the
overall strain of the material in those directions. In terms of the
initial and final fiber angles, the material strain components in the
orthogonal l3 and l4 directions are,

εl4 ¼
h1� cos

�
qf

�
1� cosðq0Þ

i1=2 � 1; εl3 ¼
h1þ cos

�
qf

�
1þ cosðq0Þ

i1=2 � 1: (7)

Substituting equation (4) for the final fiber angle, allows the
strains in the principle axes to be calculated in terms of the initial
fiber angle and the total compressive strain,

εl4 ¼
"1�

h
1� sin2ðq0Þ ðεVþ1Þ2

ðεzzþ1Þ2
i1=2

1� cosðq0Þ

#1=2
� 1;

εl3 ¼
"1þ

h
1� sin2ðq0Þ ðεVþ1Þ2

ðεzzþ1Þ2
i1=2

1þ cosðq0Þ

#1=2
� 1:

(8)

These material strains can then be related to the inertial strain
components, εxx, εyy, and gxy, through a rotational strain trans-
formation governed by the angle b, shown in Fig. 3,

εxx ¼ εl4cos
2
�
p� q

2
� b

�
þ εl3sin

2
�
p� q

2
� b

�
; (9a)

εyy ¼ εl4cos
2ðq=2þ bÞ þ εl3sin

2ðq=2þ bÞ; (9b)

gxy ¼ �
εyy � εxx

�
sinðp� q� 2bÞ: (9c)

For simplicity, all samples used in testing have an initial orien-
tation set to b0 ¼ (p�q0)/2 so that,
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εxx ¼ εl4 ¼
h1�

�
1� sin2ðq0Þ ðεVþ1Þ2

ðεzzþ1Þ2
	1=2

1� cosðq0Þ
i1=2 � 1; (10a)

εyy ¼ εl3 ¼
h1þ

�
1� sin2ðq0Þ ðεVþ1Þ2

ðεzzþ1Þ2
	1=2

1þ cosðq0Þ
i1=2 � 1; (10b)

gxy ¼ 0: (10c)

Herewe showed that for the special casewhere fiber lengths are
equal (l ¼ 1) the primary components of strain do not change di-
rection, and therefore, can be solved analytically from the fiber
angle dynamics. Next, we go on to show that these simplifications
can be made even when the fiber lengths are not equal.

2.5. Equivalence of parallelagram elements

For a basic fiber array element with unequal fiber lengths
(meaning that there is a different spacing between opposing sets of
parallel fibers), the orientation bel3 and bel4 between opposite nodes
of the parallelogram changes dynamically as the element deforms.
As the fiber angle approaches zero, the lengths, l3 and l4, become
nearly parallel. Similarly as the fiber angle approaches p/2, the
angle between the lengths increases. Because of the changing
orientation of these lengths, we cannot use their initial and final
values before and after deformation to determine material strain
properties of the soft composite sheet.

However, it can be shown graphically that the strain dynamics
are equivalent to an element with equal fiber lengths and the same
fiber angle. Fig. 4 shows a basic fiber element, where the fiber
spacing is unequal so that l1 s l2, and the fibers are shown
extending some distance beyond the intersections points since the
element is considered part of a larger array. The figure also shows a
hypothetical basic fiber element with new sides l01 and l02 by
creating new hypothetical intersection points further down the
length of the fibers. The new intersection points are chosen so that
the fiber length l01 is equal to the length of the longer edge of the
original element, l2. Since the new intersections points are
extended an equal distance along the fibers, the new side l02 will be
Fig. 4. Diagram illustrating how a theoretical rhomboid element can be imposed on
top of a parallelogram element with non-equal fiber lengths.
parallel to the original side l2, which causes the new hypothetical
element to have an identical fiber angle q. Furthermore, any line
segment parallel to l2 extending between the two fibers corre-
sponding to the l1 sides will have the same length l2. Therefore this
new hypothetical element satisfies all of the original governing
assumptions (i.e. l01 and l02 remain constant throughout deforma-
tion), despite the fact that l02 does not lie on an actual reinforcing
fiber, the strain dynamics of the soft composite can be determined
from l03 and l04 according to (8). This means that the strain dynamics
of a soft composite sheet is only dependent on the fiber angle q, and
does not depend on the exact fiber lengths or length ratio.

Here it is worth discussing the new deformation space of the
sheet. An unreinforced elastomeric sheet has a truly infinite
deformation space, and the 9 (6 for isotropic materials) principle
components of strain can all vary independently, depending on the
loading of the sample. With fiber reinforcement, the deformation of
the sample is greatly restricted. As can be seen from equations (9)
and (10) the planar strains εxx, εyy, and gxy are all uniquely defined
by the change in thickness, εzz, and the material compressibility εV.
Therefore, equations (9) and (10) define the null space of de-
formations that satisfy the lack of extension in the fibers. Even
though the possible deformations are now limited, if the goal is to
drive planar deformation from transverse loading, εxx can be greatly
increased without any additional planar loading. This is demon-
strated in section 5.

3. Modeling stiffness and energetics

3.1. Elastic modulus and stress

The approach we take here is to model the elastomeric matrix
and fiber arrays as independent systems that interact through
stresses in the planar directions that would be necessary to create
the constrained deformations. The unreinforced elastomer is an
isotropic, homogeneous material, meaning that compressing a
sheet of the elastomer results in an outward strain in each of the
planar directions as governed by the material's Poisson ratio. When
the sheet is reinforced by fiber arrays, then the planar strains are
instead governed by the fiber orientation, as described in the pre-
vious section. The stresses transferred between the fibers and
elastomeric matrix in the planar directions can then be calculated
as the stresses required to create the reinforced sample strains.

In tensorial notation, the relationship between any strain
component and the different components of stress for an isotropic,
homogeneous material is given by, εij ¼ 1

E ½sijð1þ nÞ � ndijskk� [25],
where E is the elastic modulus of the material, s is the stress in the
material, and d is the Kronecker delta. Considering only normal
stresses and strains the dynamics for the homogeneous material
can be written,

εxx ¼ 1
E



sxx � n

�
syy þ szz

��
; (11a)

εyy ¼ 1
E



syy � nðsxx þ szzÞ

�
; (11b)

εzz ¼ 1
E



szz � n

�
sxx þ syy

��
: (11c)

Here, the different options for modeling the stress strain re-
lationships in soft composites become clear. One option is to treat
the material as a non-isotropic composite which only requires a
simplified version of (11c) to describe the dynamics, since there is
only an external stress in the z-direction. However, the elastic
modulus, E, must then be modeled for the non-linear material,
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often done heuristically. Here we instead model the elastomeric
modulus as an isotropic material, but include stresses in the planar
directions exerted on the material by the reinforcing fibers needed
to create the planar strains. During the deformation the reinforc-
ing fibers are placed in tension, and first we will consider the
general case where l1 s l2; such that fibers aligned in the directionbel1 have a different tension, T1, than fibers aligned in the bel2 di-
rection with tension T2, as shown in Fig. 5. By making a cut in the
material in the y�z or x�z planes, the total forces transferred from
the fibers to the elastomer are the product of the fiber tensions
projected normal to the cut and the number of fibers. The planar
stresses, sxx and syy, can then be calculated by the force balance
between fibers and elastomer, and dividing the total fiber force by
the cut area. The planar stresses in terms of fiber configuration and
fiber tensions are

sxx ¼ �1
h0sinq0

�
cosb0
l1

T1cosðqþ bÞ þ cosðq0 þ b0Þ
l2

T2cosðbÞ
	
;

(12a)

syy ¼ 1
h0sinðq0Þ

�
sinb0
l1

T1sinðqþ bÞ þ sinðq0 þ b0Þ
l2

T2sinðbÞ
	
:

(12b)

Inserting equations (12) and (10) into (11) for the planar stress
and strain terms, respectively, provides a system of three equations
to solve the three unknown forcing terms, szz, T1, and T2 in the
general system. For the remainder of the analysis, for simplicity, we
will restrict ourselves to the casewhere l1¼ l2 and b¼ (p�q)/2, such
that all fibers have the same tension, T. For this simplification, the
planar stress terms can be rewritten,

sxx ¼ C1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosðqÞ

q
T ; C1 ¼

ffiffiffi
2

p
sin

�
q0
2

�
h0sinðq0Þl1

; (13a)

syy ¼ C2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðqÞ

q
T ; C2 ¼

ffiffiffi
2

p
cos

�
q0
2

�
h0sinðq0Þl1

: (13b)

For these conditions, the forcing terms are defined by,

T ¼
E
�h

1�cosðqÞ
1�cosðq0Þ

i1=2 � 1þ nεzz
�

C1
�
1� n2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosðqÞ

p
� C2nð1þ nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðqÞ

p ; (14a)
Fig. 5. Diagram illustrating a hypothetical cut through a soft composite sheet, and the balan
material strain.
szz ¼ Eεzz þ n

�
C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosðqÞ

q
þ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðqÞ

q �
T ; (14b)

and cos(q) is a function of the z strain and volumetric strain,

cosðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ðq0Þð1þ εV Þ2

.
ð1þ εzzÞ2

r
: (15)

In this derivation it is assumed that the stress and strain of the
elastomeric matrix have a linear relationship over the entire range
of compressions. Hence, the elastic modulus, E, has a constant
value. It will be shown in section 5 that the matrix stress-strain
relationship is only linear for compressive strains smaller than
approximately 0.5, after which the stress increases at an expo-
nential rate. Although the present investigation does not necessi-
tate higher order modeling of the stress-strain relationship, the
elastic modulus in equations (11) and (14) can easily be replaced
with some function of the compressive and volumetric strains
E(εzz,εV) without affecting the general procedure.
3.2. Strain energy and deformation work

The work required to enact a given deformation, ignoring any
possible loading associated with specific applications, is equal to
the potential energy stored in the soft composite during the
deformation process. Since the force interaction between the fibers
and the elastomeric matrix has already been defined, we will
similarly calculate the necessary deformation work as the sum of
the strain energy stored in the elastomer and fiber systems. For the
purposes of this derivationwewill again be assuming that the fiber
lengths are equal, l1 ¼ l2, and that b0 ¼ (p�q0)/2 such that all fibers
have the same tension, T, and the characteristic strains of the fiber
element line up with the inertial axes (10).

First consider the elastomeric matrix. In the absence of any
shear stresses, the potential energy stored in a differential element
of the elastomer volume is equal to the sum of the three normal
components of stress integrated over their respective strains [25].

dUmatrix ¼
0@Zεzz

0

szz d~εzz þ
Zεxx
0

sxx d~εxx þ
Zεyy
0

syy d~εyy

1AdV ;

¼
Zεzz
0

�
szz þ sxx

vεxx
vεzz

þ syy
vεyy
vεzz

�
d~εzz dV :

(16)

In this energy equation, ~εxx, ~εyy, and ~εzz are dummy variables for
ce of forces between the normal component of tension in the reinforcing fibers and the
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the principle strains, and the three integral terms are combined
under a single integration by changing the variable of integration
utilizing the strain relationships dεxx/dεzz and dεyy/dεzzwhich can be
calculated from (10),

vεxx
vεzz

¼ �sin2ðq0Þð1þ εV Þ2
2


cos2ðqÞð1� cosðqÞÞð1� cosðq0ÞÞ

�1=2ð1þ εzzÞ3
; (17a)

vεyy
vεzz

¼ sin2ðq0Þð1þ εV Þ2
2


cos2ðqÞð1þ cosðqÞÞð1� cosðq0ÞÞ

�1=2ð1þ εzzÞ3
: (17b)

Fortunately, the terms for stresses from the fibers in the planar
directions cancel out, and the strain energy for the differential
element can be rewritten as simply,

dUmatrix ¼
0@Zεzz

0

Eεzz þ n

�
C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosðqÞ

q

þ C2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðqÞ

q 	
T d~εzz

1AdV ; (18)

where T, C1, C2, and cos(q) were all defined previously as functions
of εzz and εV. It can be understood in this equation that the first term
in the integrand, Eεzz, corresponds to the potential energy storage
that would be found in an unconstrained homogeneous sample.
The additional term in the integrand is the additional energy
required to deform the reinforced material, corresponding to the
increase in stiffness associated with the coupled planar strains.

Now consider the fiber arrays themselves. Clearly, a much
simpler system, since the tension force, T, extends in the direction
of the fiber axis. It should be noted that the fiber was assumed to be
inextensible since they have a much higher stiffness than the
elastomermatrix, so that the strain of the fibers would bemuch less
than the strain in the elastomer. The high tensile modulus also
means that there is appreciable energy stored in the fibers, despite
the very low strain.

We assume that the fibers have a linear stress/strain relation-
ship in this low strain range with a constant modulus, Ef. Therefore,
the total energy stored in the fibers is half the product of the stress,
strain, total fiber length, and number of fibers. This can be rewritten
in terms of the tension and initial configuration,

Ufibers ¼
W0L0

l1Ef
�
pr2f

�2
sinðq0Þ

T2; (19)

where rf is the radius of the fiber.
The total work required to create the deformation in the soft

composite is the sum of the strain energy of the fibers and elasto-
meric matrix, U ¼ Umatrix þ Ufibers.

3.3. Planar loading

The theoretical modeling of principle stresses done in this sec-
tion as well as the strain dynamics modeling of the soft composite
sheet done in the previous section were both derived with the
framework in place that the sheet is being loaded in the z-direction
(across the thickness). The only assumptions being made about the
system, however, are valid whether the sheet is being compressed/
stretched in thickness, or being compressed/stretched in one of the
planar directions. The relationships between different components
of strain and different components of stress, therefore, are also still
valid for planar loading configurations. For convenience of future
research working on soft composites with loading in the planar
directions, we have performed algebraic manipulation on the
fundamental stress and strain relationships in order to calculate the
useful parameters in terms of the planar starting conditions.

For simplicity, we assume the case where l ¼ 1 and b ¼ (p�q)/2
so that the characteristic deformations are aligned with the prin-
ciple inertial axes, and in order to be consistent with previous
definitions fiber angle is defined from the acute angle in diamond
element ABCD and the inertial coordinates are aligned so that the y-
axis is parallel to length l3. Under these definitions, the pertinent
parameters of the composite during deformation q, εzz, T, and sxx,yy
are all defined in Table 1 for cases where external stresses are
applied in both x and y directions. Althoughwe list this table for the
reader's convenience, the model is only validated for cases where
loading is applied in the z-direction in section 5. It should also be
noted that loading in the planar directions does not result in a
critical fiber angle at q ¼ 90�, and is only limited when the fibers
become parallel to the loading.
4. Materials and methods

We fabricated a set of soft composite sheets constructed out of
Maxelast C4900 (from APS elastomers), a soft thermo-plastic
elastomer (TPE). Embedded within the rubber is an array of cot-
ton yarn fibers that can be considered to be inextensible along their
length, as their tensile strength, 1.9 GPa, is orders of magnitude
higher than that of the elastomer matrix, 150 kPa. Each sample is
63.5 mm (2.500) square by 6.4 mm (0.2500) thick. Each sample is
created by first stretching the fibers out on custom loom, then
inserting them between two halves of a square mold. Finally the
mold is injected with the elastomer matrix with a Medium-
Machinery Mold Press. A summary of all samples used in testing,
and their fiber orientations, is provided in Table 2.

The samples are then compressed to a consistent thickness us-
ing an apparatus that consists of an arbor press and a custom
compression jig, as shown in Fig. 6a. The purpose of the compres-
sion jig is to spread the force of the press over the entire soft
composite sample, while at the same time providing visibility of the
planar deformation of the sample, and is shown in more detail in
the CAD image in Fig. 6b. The jig consists of two
127 � 127 � 12.8 mm (5 � 5 � 0.5 in) rectangular plates. The top
plate is made out of aluminum and bottom plate is made out of
acrylic. The aluminum plate has a square pocket cut into it which
fits to the press foot in order to prevent excessive movement during
testing. Four threaded rods were fastened to the aluminum plate
and pressed onto a buffer plate, or washer, that is set on top of the
acrylic plate in order to spread the load and reduce the risk of
cracking the brittle plastic. The rods and the buffer plate transfer
the force from the press onto the clear acrylic plate which com-
presses the test samples. A mirror is suspended at an angle within
the compression jig so that the top view of the samples can be seen
from the front.

The entire frame is set on top of each sample and pictures are
taken with a high resolution Nikon SLR of the sample in both the
compressed and uncompressed state. A ruler is fixed to the bottom
acrylic plate in both the horizontal and vertical directions, in case
there is any parallax from the angled mirror to be corrected. Three
sets of rigid rectangular struts with thicknesses of 5.1 mm (0.2 in),
4.8 mm (3/1600), and 4.1 mm (0.16 in) are set on either side of the
sample. The struts guarantee that the compression jig settles at a
consistent final thickness and guarantee uniform compressive
strain over the entire sample. Here it should be noted that some of
the samples have fiber angles too high to reach these standard final
thicknesses. As the sample compresses and the area of the basic



Table 1
Useful composite parameters and states are defined for cases where loading is applied in either the x or y-directions. Consistent with previous definitions q is the fiber angle at
any time in the deformation, εzz is the resulting strain in the z-direction, T is the tension in the fibers, and sxx,yy is the stress needed to create planar strains either εxx or εyy.

Loading in x-direction Loading in y-direction

q acos½1� ðεxx þ 1Þ2ð1� cosðq0ÞÞ� acos½ðεyy þ 1Þ2ð1þ cosðq0ÞÞ � 1�
εzz 1þεV

1þεxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðq0Þ

p ð1þεV Þsinðq0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðεyyþ1Þ2ð1þcosðq0ÞÞ

p
T �Eð1þεV Þ

nð1þεxxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcosðq0Þ

p
C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cosðqÞ

p
þC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcosðqÞ

p � Eð1þεV Þsinðq0Þ
n½C1ð1�cosðqÞÞþC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2ðqÞ

p
�

sxx/yy C1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosðqÞ

p
T C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðqÞ

p
T
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fiber element increases, the fiber angle also increases. When the
fiber angle reaches 90� (p/2), the area of the basic element is
maximized and further compression is only possible through
stretching of the matrix above and below the fiber plane, which
contradicts the uniform compression strain assumption of the
model. Therefore, samples with sufficiently high starting angle had
reduced final compression, as is reflected in Table 2 and discussed
further in section 5.

Prior to compression, the contact faces of the samples were
lubricated with WD-40 in order to minimize the friction between
the elastomer and aluminum and acrylic plates, respectively. This
Table 2
Summary of all the experimental test samples. All samples have a starting thickness of 6.4
thickness.

Sample q0 qf

(@ εzz ¼ �0.2)

1 19.9� ± 0.9� 23.1� ± 0.6�

2 26.4� ± 0.8� 31.5� ± 0.7�

3 29.3� ± 1.5� 37.7� ± 1.4�

4 35.2� ± 1.3� 43.4� ± 0.5�

5 39.8� ± 1.4� 48.5� ± 2.0�

6 42.2� ± 1.2� 55.0� ± 1.5�

7 45.5� ± 1.5� 59.1� ± 1.5�

8 56.0� ± 2.4� 76.0� ± 1.7�

9 61.3� ± 1.7� 79.4� ± 1.5�

10 67.8� ± 2.7� 84.6� ± 3.6�

11 73.0� ± 1.6� 87.8� ± 2.3�

12 76.0� ± 4.0� 89.7� ± 1.6�

13 84.0� ± 1.5� 90.4� ± 2.8�

Fig. 6. The total soft composite sample compression apparatus is sh
helps to ensure uniform compressive strain. The images of com-
pressed and uncompressed samples were analyzed by identifying
intersections of the fiber arrays, and calculating the geometry of
several elements in each sample. The rulers fixed to the top acrylic
plate were used to calculate pixel scaling in the horizontal and
vertical directions independently. Nevertheless the scaling varied
by less than 1% between the different directions. Example images of
a resting and compressed sample in the compression setup are
shown in Fig. 7. A small section of the sample is enlarged in this
figure to emphasize the change in fiber angle of a basic elements in
the sample.
mm (0.2500) and length ratio l¼ 1, and the fibers run through the center of the sample

qf εxx εxx

(@ εzz ¼ �0.35) (@ εzz ¼ �0.2) (@ εzz ¼ �0.35)

27.8� ± 0.5� 0.20 ± 0.04 0.40 ± 0.07
38.6� ± 1.2� 0.23 ± 0.06 0.52 ± 0.06
43.5� ± 0.8� 0.23 ± 0.07 0.47 ± 0.11
49.2� ± 1.4� 0.25 ± 0.05 0.43 ± 0.06
58.9� ± 1.5� 0.25 ± 0.05 0.52 ± 0.05
62.6� ± 1.1� 0.33 ± 0.03 0.50 ± 0.06
68.0� ± 1.4� 0.27 ± 0.05 0.50 ± 0.05
79.6� ± 2.2� 0.35 ± 0.06 0.46 ± 0.07
88.4� ± 1.9� 0.33 ± 0.08 0.40 ± 0.08
88.2� ± 2.6� 0.31 ± 0.08 0.31 ± 0.07
90.4� ± 2.4� 0.25 ± 0.05 0.25 ± 0.05
91.2� ± 2.2� 0.23 ± 0.08 0.23 ± 0.08
92.8� ± 5.1� 0.13 ± 0.05 0.13 ± 0.05

own (a) along with CAD illustrations of the compression jig (b).



Fig. 7. A sample (sample 5 from Table 2) is shown in the compression setup both in the resting state (left) and under compression (right) with a compressive strain εzz ¼ 0.2. The
actual sample can be seen at the bottom of each image being pressed between two plates, and above is the mirror reflection of the top view. A small section of the sample in each
configuration has been enlarged to show the change in fiber orientation during compression.
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The compression force from the press is transmitted to the
compression jig through a Futek LLB300 load cell to measure the
compression force acting on the sample, which is divided by the
sample area is the compressive stress. When making stress/strain
measurements of the soft composite samples, the struts are
removed (since compression forces would be translated through
those struts) and the strain is instead measured with a linear
potentiometer also attached to the compression jig.

5. Results

5.1. Volumetric strain and compression

In order to model the stress, strain, and energy dynamics in the
soft composite sheets, a relationship between strains in a primary
direction and the resulting strains in the transverse directions must
be known. Typically this relationship is captured by a single term,
the Poisson ratio, which is coupled to the compressibility of the
material. Given the large strains that will be experienced, the
Poisson ratio cannot be treated as a constant, but instead a function
of the loading. Typically stiffer materials result in higher
compression, but the highly deformable elastomer, which in many
ways acts as a liquid, experiences very little compression. There-
fore, we will characterize the volumetric strain, and calculate the
Poisson Ratio from (2).

The volumetric strain is assumed to be a function of the driving
Fig. 8. The compressibility of the soft composite sheets is characterized by the volu-
metric strains for different fiber reinforcement angles and the three different levels of z
strain. Also shown are the volumetric strains predicted by (20), assuming that material
compressibility is proportional to the z strain energy and the fiber angle. The solid line
corresponds to εzz ¼ �0.2, the dashed-dotted line to εzz ¼ �0.25 and the dashed line to
εzz ¼ �0.35, respectively.
strain in the z-direction and the fiber angle. Furthermore, the
volumetric strain must vanish as εzz drops to zero, and must be
negative regardless of the direction of εzz. The simplest represen-
tation to capture these qualities is,

εV ¼ �q0ε
2
zz; (20)

which although simple, is a surprisingly accurate approximation.
Fig. 8, shows the volumetric strain measured in the test samples at
all three levels of compression and for all the initial fiber angles
tested. The significant fluctuations in the measured volumetric
strains is mostly due to the fact that the measured strains are very
small, many remaining below 5%. The figure also shows the volu-
metric strain predicted by (20), which is seen to capture the general
trend in material compression despite the large noise in the
experimental data.
5.2. Fiber angle dynamics

As the soft composite sheet thickness is compressed, the planar
area must increase to conserve volume. Since the reinforcing fibers
extend negligibly compared to the deformation of the elastomer,
the increase in volume can only be accounted for by increasing the
fiber angle. Fig. 9 shows the final fiber angle of all the test samples
after compression with respect to their original fiber angle. Also
shown is the final fiber angle predicted by equation (4) using (20) to
approximate the volumetric strain, given the initial fiber angle, q0,
and compressive strain, εzz. It can be seen in this figure that there is
Fig. 9. The final fiber angle vs. the starting fiber angle is shown for all soft composite
samples after compressions of εzz ¼ �0.2, εzz ¼ �0.25, and εzz ¼ �0.35 have been
applied. Error bars indicate the standard deviation of measured fiber angles. The final
fiber angles predicted by (4) with εV predicted by (20) are also shown.
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excellent agreement between the predicted and actual final fiber
angles, validating the geometric modeling of the soft composite
sheet.

As we mentioned in previous sections there is a maximum
possible compressive strain for any starting fiber angle, corre-
sponding to the fiber angle reaching the critical value, q¼ 90� (p/2),
where planar area can no longer increase. At a starting angle of
q0 z 50� the maximum compressive strain is reached in the
experiment, and all of the samples with higher starting angles
maintain the maximum final fiber angle. As the compressed fiber
angle approaches this maximum value, the actual final angle drops
slightly below the predicted fiber angle due to minor stretching in
the reinforcing fibers. The errors due to fiber stretching increase
with the increased compressive loading, but for all cases remain
fairly low.

Next we look into how reorienting the fiber array affects the
strain (deformation) dynamics of the soft composites.

5.3. Strain dynamics

If compression of soft elastomer sheets is applied for soft actu-
ation purposes, strain will be desired in one planar direction, and
the other planar direction is inconsequential. In these situations the
goal of the fiber reinforcement is to maximize the strain in the
desired planar direction and minimize the strain in the orthogonal
planar direction. By adding straight reinforcing fibers the strain in
the orthogonal direction can be held to zero increasing the strain in
the desired direction. One premise of this study is that the strain in
the desired direction can be increased even further, by reinforcing
with an angled array of reinforcing fibers, resulting in negative
strain in the planar direction orthogonal to the desired strain.

The maximum compressive strain of a sample, which results in
final fiber angles q ¼ 90�(p/2), is a function of the initial fiber angle
and volumetric strain at the critical loading (5). The theoretical
resulting planar strain, εxx, of soft composite samples with various
reinforcing fiber orientations compressed to their limit is plotted in
Fig. 10. This figure also contains the planar strains of the test
samples compressed experimentally, and the predicted strain at
the three compression levels.

All the test samples were compressed to εzz ¼ �0.2, εzz ¼ �0.25,
and εzz ¼ �0.35, except for those samples that reach the maximum
fiber angle, at which point the compression is terminated. The
resulting strains in the desired (εxx) direction are plotted in Fig. 10.
Since the z strain must be reduced after the critical fiber angle is
Fig. 10. Desired planar strain εxx normalized by the compressive strain driving deformation
the higher starting fiber angles, and showing good agreement with the predicted normaliz
region where constant strains intersect with the maximum in (b). The solid red line depicts
the normalized strains predicted by (10) for the different z strain cases. (For interpretation o
of this article.)
reached, the desired planar strain is normalized by the z strain to
allow a valid comparison for the high fiber angle cases. The
normalized desired strain,�εxx/εzz, calculated by (10) is also plotted
in Fig. 10. It can be seen that the strain modeling is quite accurate,
but the actual normalized strains at high fiber angles tend to be
larger than predicted due to the fiber stretching.

As is shown in Fig. 10, the maximum possible normalized planar
strain blows up at the two ends of the fiber angle spectrum q0 ¼ 0
and q0 ¼ 90�(p/2). For low fiber angles this is largely due to an
inconsistency in the range of compressive strains vs. the range of
tensile strains for highly deformable materials. Consider a soft
composite sheet with q ¼ 0, meaning that all the fibers are aligned
parallel to the y-axis. No matter how far the sheet is compressed,
the fibers will always remain in this parallel orientation, so for this
case there is no limit to the compressive strain due to reaching a
critical fiber angle. The theoretical limit to the compressive strain in
this case corresponds to the sheet thickness being reduced to zero,
εzz ¼ �1. If such a compression is exerted, then the strain in the x-
direction becomes infinite. There is an inconsistency since the
compressive strain ranges from 0 to �1, while the planar strain
ranges from 0 to ∞. For smaller (realistically attainable) values of
compressive strain, the normalized planar strain of a sheet with
parallel reinforcing fibers is z1. This is indicated by the values of
normalized strain for the curves corresponding to εzz¼�0.2,�0.25,
and �0.35, which is a more representative value of the normalized
strain at q ¼ 0.

On the other end of the spectrum, as the fiber angle approaches
q ¼ p/2 the geometric constraints on the planar deformation cause
the strain in the y-direction to become negative, which by con-
servation of volume increases the strain in the desired x-direction.
In this sense the higher normalized strain of the high fiber angles,
does correlate to amuch larger deformation in the desired direction
than is imposed in the z-direction. For all three curves representing
constant compressive strain, it can be seen that the desired strain
steadily increases with increasing initial fiber angle until the
compressive strain results in the critical maximum fiber angle. At
this point any higher fiber angle cannot support such high
compressive strains, and the desired strain must then follow the
maximum strain trend, further increasing the normalized planar
strain, but reducing the z strain. It can be seen that the soft com-
posite samples used for testing matched these trends throughout
the range of fiber angles tested, producing a strain in the desired
direction as much as eight times the compressive strain driving
deformation. This corresponds to 16 times the strain in x-direction
εzz is plotted against the starting fiber angle, showing significant normalized strains at
ed strains. The full range is shown in (a) and an enlarged inset showing the dynamic
the theoretical maximum normalized strain (5) and the 3 green dashed lines represent
f the references to colour in this figure legend, the reader is referred to the web version
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that would be produced by an unreinforced sample under the same
reduction in thickness.

In general the low fiber angles allow for maximum possible
absolute strains in the desired planar direction, but benefit little
from negative strains in the orthogonal planar direction. Contrarily,
high fiber angles generally result in higher normalized strains in
the desired direction because of the significant negative strains in
the orthogonal planar direction, but are limited to smaller absolute
strains possible before the critical fiber angle is reached.

The normalized planar strain has a physical meaning beyond
just allowing consistent comparison of resulting planar strains. It is
related to the efficiency of EAP-like deformation driving mecha-
nisms in a soft sheet. Whether the sheet is compressed with
muscles or muscle-like soft actuators, the work put into the sheet is
equal to the elastic spring force of the material integrated over the
distance that the sheet is compressed, and therefore, scales with
the strain in the z-direction. Since the desired output is the defor-
mation in the x-direction, then the normalized planar strain can be
considered an indicator of desirable deformations. In the next
subsections we validate the modeling for soft composite stress-
strain relationships, and investigate the effect of fiber orientation
on total energy required to create a deformation.
5.4. Compression force and variable stiffening

As we discussed in section 3, the elastomer matrix is considered
to be an isotropic homogeneous material that interacts with the
reinforcing fibers through normal stresses applied throughout its
volume. Therefore, it makes sense to first look at the elastic prop-
erties of the TPE without any reinforcement. A non-reinforced
sample was created with the same overall shape and size of the
soft composite samples, and the applied stress was measured
throughout compression along with the resulting compressive
strain. Fig. 11a shows the stress/strain relationship for the unrein-
forced sample, averaged over multiple trials. It can be seen in this
figure that over a fairly large range of the deformation, up to
εzz z �0.5, the stress/strain relationship remains linear with a
corresponding TPE elastic modulus of E ¼ 150 kPa, which is also
plotted in Fig. 11a for comparison.

Similarly the soft composite samples with varying fiber rein-
forcement orientations were compressed while simultaneously
measuring compressive stress and strain. Given the range of
compressive strain, the resulting fiber tension and compressive
stress were calculated from (14) using the elastic modulus just
determined, and the volumetric strain approximation provided by
Fig. 11. Stress strain relationship of the elastomeric matrix without any reinforcing fibers (a
The dashed line in (a) shows a constant modulus of E ¼ 150 kPa, and the solid lines in (b) ar
(20).
Fig. 11b shows the measured stress strain relationship for three

composite samples along with the stress strain relationship pre-
dicted by the fiber interaction modeling. These three samples,
samples 2, 5, and 7 in Table 2, are chosen because they span the
fiber orientation range without cluttering the figure, but it should
be noted that the modeling was similarly accurate for all other
samples. It can be seen that the modeling predicts the stress
required to compress the samples with excellent accuracy, which
validates the methodology that the elastomeric matrix and fiber
arrays can be considered independent systems that interact
through planar stresses throughout the volume.

It can also be observed that, as predicted, the composite sample
stiffness increases with both the initial fiber angle and with the
compressive strain that induces fiber reorientation. This is evident
by the fact that the samples with higher initial fiber angle require
more stress to create the same compressive strain, and by the non-
linear stress-strain relationship even in the small strain region.
Although an increased fiber angle will require a larger stress to
create a given z strain, it will also result in larger induced planar
strains. In the next sectionwe look into the potential energy storage
in the material to determine whether, from a design point of view,
the increased stiffness is justified by the increased output in the
desired direction.
5.5. Elastic potential energy and optimal fiber orientation

It was shown in the previous sections that the orientation of
arrays of antagonistic reinforcing fibers significantly affect the
stress and strain dynamics of soft composite sheets. More specif-
ically, strain in one specific planar direction can be increased
significantly, for a sheet under compression, while the strain in the
other planar direction actually becomes negative. This phenome-
non is clearly advantageous for applications like EAP actuation
where extension of soft material is achieved through compression
in a transverse direction. However, as was also shown, the increase
in planar strain comes at the cost of an increase inmaterial stiffness.
Here we address the question as to whether the increase in desired
planar strain decreases overall work required to create a given
deformation.

The total energy required to create a given deformation is the
sum of the potential energy stored in the elastomeric matrix (18)
and the potential energy stored in the fiber system (19). The inte-
gral equation that describes potential energy storage in the elas-
tomeric matrix cannot be easily solved analytically, so we
) and stress strain relationship for the soft composite sheets with various fiber angles.
e calculated for a soft composite sheet from (14) assuming εV of the form given by (20).



Fig. 12. Potential energy stored in different components of the soft composite sheets in
order to create a planar strain of 0.25 as a function of the starting fiber angle.

Fig. 14. Variation in the optimal fiber angle which minimizes deformation work due to
increasing/decreasing the ratio of fiber to matrix modulus.
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approximated this term numerically. For this process, first a desired
planar strain is prescribed, then the compressive strain required to
reach that planar strain is determined based on the initial fiber
orientation. Taking differential steps in the sample thickness
compression the stresses, fiber orientations, and rate of potential
energy storage are calculated for each differential step. The nu-
merical iteration and step size determination were done by a
Matlab integrator (ODE45).

As an example consider the case where a compression is needed
to create a desired planar stress of 0.25. The potential energy stored
in both the matrix and fiber array for this deformation is shown in
Fig. 12. It can be seen that as the initial fiber angle increases the
potential energy stored in the elastomeric matrix decreases due to
the fact that a lower compressive strain is required to reach the
prescribed planar strain. Conversely, the potential energy stored in
the fibers increases exponentially with the increased initial fiber
angle, since at higher angles more tension must be placed on the
fibers to drive the asymmetric planar expansion. For this case there
is an optimal initial fiber angle around 19� which balances the
decrease in required compressive strain with the increase in fiber
tension and sheet stiffness.

The optimal fiber orientation is sensitive to several parameters,
the most obvious being the planar strain prescribed at the start. We
generated soft composite energy storage curves, like the one seen
in Fig. 12, and determined the initial fiber angle that minimized the
work required to create a range of planar deformations ranging
from εxx ¼ 0 to εxx ¼ 1.5. The optimal fiber angle is plotted with
Fig. 13. The fiber angle that minimizes work required to create a given deformation vs. (
respect to the desired planar strain in Fig. 13a. In general the
optimal fiber angle decreases as the required planar strain in-
creases, because at higher strains the large tensions cause the po-
tential energy stored in the fibers to dominate the system potential
energy.

The tensile modulus of the reinforcing fibers and the elastic
modulus of the matrix also largely affect the interplay of energy
storage and optimal reinforcing fiber angle. This interplay can be
characterized by the ratio of the two moduli. Though we will not
consider soft composites with a very low ratio of fiber to elastomer
modulus, since this would violate the inextensible fiber approxi-
mation, we calculated optimal fiber angles for a range of modulus
ratios for two required strains. Fig. 13b shows the optimal fiber
angle for cases with required planar strains of 0.25 and 0.5, and a
range of modulus ratios. It can be seen that as the modulus ratio
increases so does the optimal fiber angle, since the stiffer fibers will
experience less deformation and hence less potential energy stor-
age. At the very high modulus ratio values we see that the optimal
fiber angle levels off indicating that the fiber stiffness is so high that
any extension in the fibers becomes insignificant, along with the
energy storage in the fibers, and any further increase in stiffness no
longer affects the energy dynamics in the sample. It should also be
a) the desired planar strain output, and vs. (b) the ratio of fiber to matrix modulus.
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noted that the change in optimal fiber angle between the two
desired planar strains is much less than the change in optimal fiber
angle reached by adjusting the modulus ratio. This is promising
from a design perspective, since we would like to optimize soft
composite design with respect to the materials employed as
opposed to any specific action or required planar strain.

Here it should be noted that the optimal reinforcement analysis
has not yet considered the option of ‘no reinforcement’. We,
therefore, calculated the required work to deform an unreinforced
homogeneous elastomer sample over a similar range of desired
planar strains and fiber to elastomer modulus ratios, along with the
work required to create the same planar deformation at the optimal
fiber orientation. Fig. 14 shows contours of decrease in required
deformation energy, due to inclusion of optimal fiber reinforce-
ment, over the desired strain modulus ratio space. It can be seen
that for low desired strains and low modulus ratios, deforming the
unreinforced elastomer requires less work, but as the desired
strains or modulus ratio become large the fiber reinforced soft
composites require significantly less energy because of the
decrease in necessary compressive strain. The decrease in required
deformation energy reaches as high as a 70% improvement.

The model assumes that the basic fiber element is small
compared to the overall size of the composite sheet, so that the
planar strains can be considered uniform throughout the sample.
Therefore, the kinematics and strain relationships discussed in
section 2 do not depend on the density/spacing of reinforcing fi-
bers. However, as can be seen from equations (14) and (19) the
stress in the z-direction and the potential energy stored in the fi-
bers both scale with the inverse of the characteristic length l1,
meaning that the stress and energy storage dynamics, as well as the
optimal fiber, angle do depend on the fiber density. As the density
of reinforcing fibers increases, the characteristic length scale of the
basic fiber element, l1, decreases resulting in a larger required stress
to achieve a given compression and a larger portion of energy being
stored by the fibers relative to the elastomer matrix. Since szz,
Umatrix, and Ufibers all scale with l1 to the same proportionality that
they scale with the elastomer modulus E, an increase in fiber
density can be considered an equivalent action to decreasing the
modulus ratio.

6. Conclusion

Soft composites are common in biological muscular hydrostat
systems. Unlike traditional composites, the fiber reinforcement in
these systems is not only used to increase material stiffness, but to
restrict body deformation to a set of possible geometries as well.
Such reinforcement in squid mantles has allowed specialized and
effective propulsive jetting, but sacrificed the versatility seen in
unreinforced octopus mantle structures. This paper investigates the
strain properties of fiber reinforcement in highly deformable
composite sheets. Specifically, we investigate the strain and stress
relationships in the sheet planar directions, with respect to fiber
orientationwhen the sheet thickness is compressed, as seen in EAP
and other soft actuator applications.

The strain dynamics are modeled geometrically, defining a null
space of possible deformations satisfying the inextensibility of the
reinforcing fibers. The strain modeling was observed to be quite
accurate, with only minor errors when the sample compression
reached a theoretical maximum causing the minimal stretching in
the fibers. It was also observed that the planar strain in a desired
direction was increased as much as 16 times the resulting strain of
an unreinforced sample for a given driving z strain. The stress/strain
relationship in the composite sheet was modeled by treating the
elastomeric matrix and reinforcing fibers as separate isotropic
systems that interact through local stresses as required to create
the modeled strain dynamics.
Finally, by integrating the stress over various sheet compres-

sions, we calculated the total energy required to create different
deformations with a variety of composite sheet properties. It is
shown that for the materials used to create the soft composite
sheets optimal fiber angles lie between 15� and 25� to minimize
work required for deformation, with optimal fiber angle decreasing
with increased desired deformation. The optimal fiber angle in-
creases as high as 68� if the ratio of the fiber to matrix modulus is
increased to the point where little to no potential energy is stored
in the fibers.

Future studies will improve the modeling of the volumetric
strain, examine non-uniform loading distributions (szz ¼ f(x,y)),
and extend the functional relationships to non-Cartesian
geometries.
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