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Abstract. A technique to obtain high resolution atmospheric data using small mo-
bile sensors is presented. A fluid based control scheme using smoothed particle
hydrodynamics (SPH) is implemented to perform field measurements in a leader-
follower arrangement for a team of unmanned aerial vehicles (UAVs) equipped with
environmental sensors. A virtual leader is created by using a reduced density SPH
particle to guide the unmanned aerial vehicles along a desired path. Simulations
using the control scheme demonstrate excellent measurement ability, swarm coher-
ence, and leader following capability for large swarms. A K-means algorithm is used
to reduce the measurement error and provide accurate interpolation of the field mea-
surement data. Experimental results are presented which demonstrate the guidance
and collision avoidance properties of the control scheme using real UAVs. Readings
from the UAV’s temperature and humidity sensor suite are used with the K-means
algorithm to produce a smooth estimation of the respective distribution fields.

1 Introduction

Several methods of sensing the atmosphere exist and can be classified into two pri-
mary groups: remote sensing or in situ. Well-known systems in the remote sensing
group include RADAR, LIDAR, weather satellites, etc. [3, 5, 13, 29]. These sys-
tems are typically large (on the order of cubic meters), are generally focused on
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gathering data over very large areas (several kilometers) over a long period time,
and are expensive to construct and maintain. The in situ group also contains several
well-known systems such as dropsondes, weather balloons, barometers, etc. These
systems are typically much smaller than remote sensing systems, and are focused on
gathering high accuracy data at specific points in time and space. The data locations
can be stationary or time varying but the in situ sensors are categorized by the abil-
ity to only provide data at a single location at a given time. Generally speaking, in
situ sensors provide more accurate readings at a specific point than remote sensing
systems but remote sensing systems are much better suited to give a snapshot of
a desired measurement in a region of space. The atmospheric sensing community
desires a sensor with the accuracy of an in situ device and the ability to construct a
large area pseudo-snapshot of an environment. By definition, it is not possible for
a system of in situ sensors to give a true snapshot, but the ability to gather a large
amount of data in a time frame that is shorter than the time scale of the changing en-
vironment can be considered a pseudo-snapshot. This is where autonomous robotic
aerial systems can find a tremendously beneficial niche. Aircraft with on board sen-
sors are capable of providing high resolution readings at specific locations similar to
dropsondes while also adding horizontal and vertical mobility to allow for a wider
range pseudo-snapshot over a relatively short period of time.

A large amount of research has been conducted using mobile in situ devices such
as dropsondes and radiosondes but the primary drawback of these sensors is that
they are typically only able to measure data along a vertical line. Obviously a large
number of appropriately spaced sensors are required to obtain a full three dimen-
sional pseudo-snapshot of the environment thus increasing cost of deployment. Fur-
thermore, dropsondes are not able to revisit specific locations and the only way
to obtain information on how the environment changes as a function of time is to
deploy additional sensors at different times which also increases the cost of deploy-
ment. Unmanned aerial vehicles (UAVs) are able to gather information over large
areas and have the ability to revisit specific locations at later instances of time thus
allowing for information about the time evolution of an environment, making the use
of UAVs a viable option in atmospheric sensing. Possibly the most widely known
mobile in situ atmospheric sensing system is the Aerosonde UAV [10]. The general
concept of the Aerosonde UAV is to equip a small UAV with in situ atmospheric
sensors and fly the aircraft in an environment. This concept yields a notable advan-
tage over dropsondes in that the aircraft can maneuver in the horizontal and vertical
directions. A sample of the work that has been conducted using similar concepts of
the Aerosonde UAV with smaller, lower-cost UAVs can be found in: [6, 7, 31, 32].

The focus of this article is to present a system comprised of multiple small UAVs
equipped with a simple atmospheric sensor suite to gather a three dimensional pseudo-
snapshot of an environment. A K-means algorithm provides a smooth estimation of
the environment using the discrete points obtained by the mobile sensors while also
reducing the noise associated with the measurements. Additionally, the objective re-
quires a flexible and easily implementable cooperative control scheme to guide the
vehicles and ensure collision avoidance when the vehicles are in close proximity.
While many options exist, we have chosen to use a fluid based control implemented
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with the Smoothed Particle Hydrodynamics (SPH) fluid dynamics scheme due to
several desirable characteristics. This scheme treats each vehicle as an individual
fluid particle and the control forces are determined by the SPH approximation of the
Navier-Stokes equations of fluid motion. This technique ensures collision avoidance
and also creates a flexible controller that is computationally reasonable for implemen-
tation on resource constrained platforms. While UAVs are used in this demonstration,
the SPH control scheme can be applied to ground and underwater robots as well as
heterogeneous swarms of robots containing any combination of ground, aerial, and
underwater platforms [11].

In the following sections we present an overview of the SPH control scheme,
discuss the error reduction technique, and present test results using multiple UAVs
demonstrating several highly desirable properties of the SPH control scheme. We
also present error reduced results obtained from data gathered by two UAVs flown
using the SPH control.

2 SPH Control Scheme

While there are many possible control schemes for use with small UAVs, fluid based
control is especially appealing since fluid flows have many properties that a group
of vehicles may wish to mimic [11, 15, 17, 18, 26]. Chiefly, fluids exhibit smooth
motions and do not penetrate obstacles. In terms of vehicle control, these properties
correspond to efficient motion and collision/obstacle avoidance. Additionally, UAVs
operate in a fluid environment meaning a fluid based control scheme may allow for
easier integration of strong background flows into the vehicle path planning process.

In particular, the smoothed particle hydrodynamics (SPH) discretization has
proven to be an effective method of applying the Navier-Stokes equations in a con-
trol setting [11]. This Lagrangian technique treats each vehicle as a fluid particle,
giving fluid-like motion for vehicle swarms with inherent collision and obstacle
avoidance. A more complete discussion of the method is available in a review arti-
cle by Monaghan [23] or the book by Liu and Liu [19]. Here we present only the
aspects of SPH that are used in our cooperative control scheme.

The SPH algorithm is computationally efficient since each vehicle is represented
by a single fluid particle. By choosing a compactly supported smoothing kernel for
the particles, it is also possible to limit vehicle interactions to a short range. This
results in vehicles interacting with only their nearest neighbors (typically no more
than six vehicles in 2D). The localized interactions also make long range commu-
nication unnecessary. These advantages result in a control algorithm that is simple
enough to run in real time using the limited processing capabilities of the robot [30].
Additionally, this is a distributed control scheme that requires no central controller
since only local vehicle interactions are used. All the benefits of a distributed control
or peer-to-peer control scheme are thereby included as well [12, 25].

The SPH scheme is dependent on choosing a Gaussian-like smoothing kernel
which is used to apply fluid properties. We use the cubic spline kernel shown in
Figure 1. This kernel is nonzero for ||r|| < 2h and defines the interaction range
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Fig. 1 (Left) The cubic spline smoothing kernel (with h= 1) as a function of distance, r, used
in this article. (Right) A schematic of the SPH control scheme and the the forces involved.

between particles. Particles interact through pressure and viscous forces that are
applied through the smoothing kernel, determining the particle motion. The SPH
acceleration is given by
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where Pi is the pressure at particle i, ρi is the density, Πi j is a viscous force between
particles i and j, and ri j is the relative position vector r j − ri. In this study, we
neglect the viscous force for simplicity. The density is computed by summing over
nearby particles

ρi = ∑
j

m jW (ri j,h) (2)

and the pressure is computed using an equation of state
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(
ρi

ρ0
− 1

)
(3)

where K is a positive coefficient.
Previously, SPH control schemes have used external forces for swarm guidance

while the SPH forces have mainly provide collision avoidance [11,27,30]. However,
we take the approach of using reduced density virtual particles for guidance. Just as
a reduced density region in a fluid creates pressure gradients that drive fluid to this
region, the reduced density particles attract vehicle particles to them.

By defining a particle’s mass to be large enough that its density is always at least
as large as the reference density, ρ0, the particle is ensured a non-negative pressure,
but if the mass is chosen to be less than this threshold, negative pressures can result.
In the SPH control scheme, all particles representing vehicles will be given suffi-
cient mass to ensure positive pressure and a single attracting virtual particle will
be used which uses a reduced mass to create a negative pressure region. This nega-
tive pressure creates attracting forces and therefore acts as a goal region. In the low
mass limit the acceleration terms simplify, slightly reducing computational cost. A
schematic showing the interaction of vehicles, obstacles and attracting particles is
shown in Figure 1.
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In the control scheme, the SPH accelerations for a particle due to all nearby
(within 2h) particles are computed and passed to the vehicle controller, which at-
tempts to enforce the desired motion through a combination of roll, pitch, and thrust
commands.

3 UAV Data Sampling and K-means Approximation

Suppose we want to measure the temperature or humidity of a 3-dimensional region.
Our UAVs can quickly collect large amounts of data through the custom temperature
and humidity sensor suite. However, in experimental flights these sensors may not
be highly accurate due to the limitations of sensor response time which is related
to the rate of change of temperature and humidity over time and space and vehicle
flight speed. For this reason, we use a K-means based error reduction scheme to ef-
fectively reduce the noise. K-means algorithms can effectively cluster N data points
into K clusters. To this effect, the field function has only K unknown coefficients
corresponding to K basis functions. On the other hand, Kriging and Gaussian inter-
polation are spanned by N basis functions. Therefore, the K-means algorithm can
be considered as a dimension reduction technique that approximates the field func-
tion without significant loss of information. Additionally, the computational cost is
significantly lower for K-means than Kriging and Gaussian process regression if
K � N. One drawback of the K-means algorithm is that it may filter the high fre-
quency components of the original field. However, as long as the ensemble of the
data set is large enough and the field is smooth, the K-means algorithm is able to
capture the main modes of the field. This method also enables us to approximate
data at unsampled locations, and potentially (in future work) suggest a path for the
UAVs to follow and collect additional data to minimize the existing uncertainty.
This section will discuss the effects of noise on the data and introduce the statistical
method for noise mitigation and interpolation.

Let x be any point in the measurement domain and xi denote a spatial location
of a sensor measurement at time step i. Each sensor inevitably introduces some
location error, ξi, and some measurement error, εi. We devise a scheme based on the
K-means algorithm to extract information from limited measurements and reduce
measurement noise.

Suppose the original field f (x) is a smooth function of position, sampling points
xi near x can be used to approximate the field of x,

f (x) = yi + εi + J(x) ·ξi+ J(x) · (x− xi)+O(|x− xi|2)+O(|x− xi| · |ξi|)+O(|ξi|2)

where J(x) is the Jacobian matrix at point x. A better estimator f̂ (x) can be obtained
through a linear combination of some measurement results yi. Our goal is to find an
optimal weighting function, ϕn(x,xi) so that the error in f̂ is minimized.

If many points are measured and the measurement error is potentially large the
variance becomes the dominant error. To reduce the noise error, we will use a cluster
of points instead of a single point to estimate the unknown field. We use the well
know K-means algorithm [21] to cluster the data points into K groups. Each cluster
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is assigned a value near the mean of its members and interpolation may be per-
formed using a radial basis function network. Let C be the encoder, C(i) = j means
the ith points belongs to the jth cluster. To optimize the clustering process, we use
the following cost function [8]

J(C) =
K

∑
j=1

∑
C(i)= j

∥∥xi − u j
∥∥2
. (4)

where u j is the center of cluster j. To minimize the cost function J(C), we use an
iterative descent approach K-means algorithm [20, 22] to find the encoder. The K-
means algorithm proceeds with the following two steps iteratively until a convergent
encoder has been obtained:

Step 1. Minimize the cluster variance with respect to the cluster means {u j}K
j=1:

min
{u j}K

j=1

K

∑
j=1

∑
C(i)= j

∥∥xi − u j
∥∥2 for a given C. (5)

Step 2. Having computed the optimized cluster means in step 1, we next optimize
the encoder as:

C(i) = arg min
1≤ j≤k

∥∥xi − u j
∥∥2
. (6)

Then, we can build a radial basis function network [4, 24]

F(x) =
K

∑
j=1

wjϕ(x,u j), (7)

where ϕ(x,u j) is the Gaussian kernel function. wj can be seen as an approximation
of the temperature at the cluster center. Its value can be trained by a least mean
square algorithm.

In the following section, the functionality of this algorithm is verified by a simu-
lation of several aircraft flying through an artificial temperature field. The algorithm
is also applied to experimental data of two aircraft equipped with humidity and tem-
perature sensors.

4 Simulation and Experimentation

In the following we describe the experimental platform and use it to demonstrate
certain properties of the SPH control scheme. We also verify the K-means error
reduction technique using data obtained through simulation and apply the reduction
technique to data from an experiment of two vehicles controlled by the SPH scheme.
In order to accurately match the simulation to the physical world, the limited flight
capabilities of the UAVs are imposed in the simulation through particle velocity and
acceleration constrains. Also the inaccuracies of the real world sensor readings are
modeled by adding noise to the sensor readings in simulation.
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4.1 UAV Hardware and Sensor Suite

A UAV equipped with a simple sensor suite and limited onboard computation capa-
bilities is used for this study (shown in Figure 2). The aircraft has a wingspan of 0.8
m and weighs less than 0.5 kg. The airframe is a single piece of Styrofoam and can
be purchased under the name F-27 Styker; additionally the ailerons, flaps, nose cone,
propellers, etc. are all mass produced thus making the aircraft inexpensive compared
to a custom design. This aircraft has been successfully used in several experiments in
our research group and has proven itself robust to experimental mishaps, relatively
simple and inexpensive to maintain. Additionally, the small size and simplicity of
the aircraft allow for rapid deployment by a single pilot in areas that are not ideal for
traditional UAVs. Most importantly, the Delta-Wing UAV is equipped with a custom
autopilot to allow for implementation of custom control strategies. The CUPIC is a
complete autopilot system developed at the University of Colorado at Boulder [28],
and used in a large number of experiments in our (and other) research group(s).
Several studies [2, 14] have shown that it is possible to achieve fully autonomous
operation of a small UAV by means of this simple autopilot equipped with a limited
number of sensors. The work of Floreano et. al [9, 16] has demonstrated the use
of a similar fixed wing aircraft in swarm applications by using a different autopilot
system. Additionally, Sensefly [1] is a Swiss company that provides a UAV that can
be used to gather high resolution imaging using a similar hardware platform.

Fig. 2 Resource constrained delta-wing UAVs used in experiments. The 0.8 m wingspan
UAV is equipped with a GPS sensor, a roll rate sensor, a communication radio, and autopilot
to control the craft during autonomous operation.

Shaw and Mohseni [30] showed that the CUPIC autopilot is also capable of
demonstrating fully autonomous, distributed cooperative control of a team of UAVs.
The CUPIC, in its most basic design, consists of an on-board processor, a single
axis rate gyro to sense roll rates, an absolute pressure sensor for altitude sensing,
and a GPS receiver for positioning. The autopilot controls the vertical location of
the aircraft through pitch and thrust commands. The pitch and thrust commands
are determined from the error between the desired altitude and the current altitude
as well as the magnitude of the SPH acceleration from Equation 1. The horizontal
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location of the aircraft is controlled by varying the roll angle. The desired roll an-
gle is determined by the error between the direction of the SPH acceleration vector
(from Equation 1) and the aircraft’s current heading vector. Virtual saturation lim-
its are employed in order to avoid commands which would result in aircraft stall
or an excessive roll angle. The program has built-in routines to account for short
term blackouts in the GPS signals and the noise and drifts in the sensors. The au-
topilot has been proven to be fully capable of stable autonomous flight on a wide
variety of MAVs including Delta-wing aircrafts [2], warping-wing aircrafts, and
gust-insensitive aircrafts [14].

The CUPIC autopilot system also includes a complementary ground station
which is comprised of a laptop running a MATLAB routine. The autopilot transmits
telemetry data to the ground station and the ground station transmits commands and
the location of the artificial attracting particle for the SPH control algorithm. The
MATLAB routine includes a user interface that provides pilots and observers real
time information of the aircraft’s GPS position, physical state, sensor suite raw data,
and autopilot commands. The graphical interface also includes the ability to alter the
artificial particle’s location, speed, and path. A detailed communication characteri-
zation of the communication scheme used in the autopilot systems is given in [30].

The autopilot was designed with the ability to interface up to 7 additional analog
sensors through on board analog to digital converters. For this experiment a cus-
tom board was manufactured to house a HIH-5031 humidity sensor and a LM35
temperature sensor. The HIH-5031 humidity sensor and LM35 temperature sensor
were chosen primarily due to size, simplicity and sensing range. The sensors raw
output voltage is read by the autopilot at 10Hz and transmitted to the ground station
along with the aircraft’s most recent GPS position. The raw output voltage is then
converted to percent relative humidity and temperature using equations found in the
sensors respective datasheets.

4.2 Verification of SPH Control Scheme

In applications involving autonomous agents the two most important control as-
pects are agent guidance and collision avoidance. In this article, agent guidance is
accomplished using a reduced density virtual particle which acts to attract agents to
a specific region of space. Collision avoidance is accomplished by setting the SPH
parameters of the agents such that they are repelled from each when they reach a
certain distance. If the vehicle separation is greater than this distance the agents are
only attracted to the reduced density particle.

The guidance property is demonstrated by placing a stationary attractor particle
at a location in the domain and engaging the autopilot with the UAV at some other
point in the domain. Figure 3 shows the GPS position of the UAV demonstrating the
guidance property. The marker color indicates the magnitude of the SPH force as
calculated by the algorithm. The plane approaches the attracting particle (indicated
by a red ×), passes almost directly over the virtual particle and then begins to double
back as the direction of the SPH force vector points opposite to the plane’s heading.
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Fig. 3 Experimental demonstration of SPH control properties using small, resource con-
strained UAVs. (Left) Experimental results of a single vehicle (colored ◦) approaching an
attractor particle (red ×) from the south and then beginning a loiter pattern around the attrac-
tor particle. Color of the ◦ represents the magnitude of SPH force calculated by the vehicle.
Results taken from a small portion of large flight experiment. (Right) Experimental results of
a single vehicle (colored ◦) avoiding another aircraft (black �) while loitering an attracting
particle (red ×). The blue dashed line indicates the previous loiter circle achieved by plane
1 prior to interaction with plane 2. Color of the ◦ represents the magnitude of SPH force
calculated by the vehicle.

The plane then enters into a loiter circle which is a result of a balance between the
SPH force magnitude and physical limitations (i.e. turning radius) of the aircraft.
For this and all following experiments, aircraft were given an h value of 30 and the
attractor particle was given an h value of 200; the average of the two h values were
used to determine the SPH force per Equation 1.

The collision avoidance property is demonstrated with two flying aircraft. Figure
3 plots the information received from a single vehicle (plane 1): ◦ represent the vehi-
cle’s GPS position colored by the calculated SPH force magnitude, the red × repre-
sents the location of the attractor particle, � represent the GPS position of the other
vehicle (plane 2) as known by plane 1. The dashed line represents the loiter circle
achieved by plane 1 prior to interaction with plane 2. Plane 1 loitered in a clock-
wise direction while plane 2 loitered in a counter clockwise direction. As the two
planes approach each other, both planes make corrections to their respective courses
avoiding potential collision as evident in the course correction of plane 1. The SPH
force magnitude range is greater for collision avoidance than attraction due to the
fact that the interaction between planes results in a higher repulsive force than the
attraction force experienced between a plane and the attracting particle. Simulations
have been previously conducted showing the smooth collision avoidance property
of the SPH control technique [27] and these experimental results correspond well to
the simulations. Although collision avoidance may not be guaranteed in real-world
situations where packet loss and location error play a role, incorporating a safety
factor into the inter-vehicle spacing provides high confidence that collisions will be
avoided.
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Fig. 4 Two ways to achieve loiter circles using SPH control scheme and UAVs. (Left) GPS
coordinates of a single vehicle (blue •) in a series of loiter circles around a stationary attractor
particle (red ×). The loiter circles are a result of a balance between the SPH force and the
physical limitations of the aircraft. (Right) Experimental results of a single vehicle (blue •)
following a moving attracting particle (red ×) demonstrating a different method of achieving
a loiter.

Due to the fact that fixed wing aircraft must maintain a forward velocity to stay
aloft, a loiter circle is a common technique employed in experiments involving fixed
wing aircraft. One way of achieving a loiter circle using SPH control is with a sta-
tionary attractor particle and imposed acceleration and velocity constraints on the
moving particle. The moving particle will move directly towards the attracting par-
ticle until it passes the particle. Due to specified constraints, the moving particle
will then bank one way and eventually find and maintain an equilibrium balancing
the SPH force and the imposed constraints resulting in a loiter. This property was
experimentally verified and the results can be seen in Figure 4 which shows the GPS
location for a single aircraft (blue •) loitering around a stationary attractor (red ×).

While a stationary particle allows for a loiter circle, the radius of the circle is a
function of several parameters and thus the radius of the loiter is not easy to predict.
It is difficult to maintain a uniform loiter since any disturbance to the vehicle’s path
could result in the plane taking a more direct approach over the attractor particle as
evident in Figure 3. A more robust way to achieve a loiter circle is with a moving
attractor particle. If the velocity and acceleration of the attracting particle are within
the physical limitations of the aircraft, the vehicle will follow closely behind the
attractor. This technique is shown in Figure 4 with the GPS location of the aircraft
shown as blue • and the attractor location as a red ×. A moving particle allows for
a loiter circle of varying radius as well as more complex paths.

4.3 Sensing Using Multiple Vehicles

Next we simulate a more complicated situation involving multiple vehicles taking
measurements over a large domain to determine the temperature field. The results



High Resolution Atmospheric Sensing Using UAVs 41

are shown in Figure 5. In this simulation, a group of 10 vehicles begins in the lower
left corner of the domain and travels back and forth across the domain, finishing
in the upper right. Each vehicle records a temperature every 0.2 seconds and sends
data back to the base station. The temperature is generated by the function

T (x,y) =75+ 3[sin(x/50)+ cos(y/42)cos(x/100) (8)

+ 3tan−1((x+ 20)/10)+ cos(
√

x2 + y2/40)].

To create a closer approximation of reality and consider the limited accuracy of
onboard temperature sensors, white Gaussian noise with a standard deviation of
0.78 is added to the temperature data. Every 5th point of the temperature data is
plotted in Figure 5 as a colored circle. The vehicle paths are shown as black curves
and the end vehicle positions are shown as black dots. The SPH controller maintains
an even vehicle spacing throughout the trajectories. By using this well spaced group
of multiple vehicles flying at 15 m/s, a large amount of data is collected over this
250,000 sq. m domain in only 160 seconds.

This procedure produces a large amount of data (8000 data points in 160 s) that
can be used to reduce the noise in the resulting interpolations. By using the afore-
mentioned K-means algorithm we are able to interpolate the data over the interior of
the domain and reduce the error. The K-means clusters for this example are shown
in Figure 5. The error in the final temperature approximation can be computed as

E∞ = ||T −Testimate||∞ or ERMS =

√
∑n

i (T (xi)−Testimate(xi))
2

n

where n is the number of spatial grids, T is the true temperature (given by Equation
8) and Testimate is the temperature estimated by the K-means algorithm. We find that
E∞ = 2.32 and ERMS = 0.23 after applying K-means and interpolating. This is an
improvement over the raw noisy data that had E∞ = 2.97 and ERMS = 0.79. The
largest errors occur at the edge of the domain where interpolations are less likely to
be valid due to the limited data in these regions.

In the real world experiments, we measured humidity and temperature using the
aforementioned sensor suite placed on the two aircraft used in demonstrating the
SPH control scheme. An AcuRite digital humidity and temperature monitor was
used to determine the temperature and percent relative humidity at the ground station
location as 36 ◦C and 57% respectively. All the data was collected by two UAVs
flying in a series of overlapping loiter circles centered at the location of a stationary
attractor particle as seen in Figure 6. The path of UAV 1 is shown as a dashed black
line, the path of UAV 2 is shown as a red dash-dot line, and the attractor particle is
shown as a blue ◦. The loiter circles are a result of a balance between the minimum
velocity enforced by the autopilot to keep the plane aloft and the attraction to the
artificial particle. After each plane completed at least 3 loiter circles the location of
the attractor particle was moved approximately 70 meters to the northeast resulting
in the behavior shown in Figure 6. The motion of the aircraft in the horizontal plane
was determined by the SPH control law while the vertical location of the aircraft
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Fig. 5 Simulation of data gathering using UAVs equipped with a temperature sensor. (Left)
Simulation of 10 vehicles (black ◦’s) that were guided through a 500 × 500 domain by a
single attracting particle. The black curves show the full vehicle paths and the colored ◦’s
denote individual temperature measurements (in ◦C). (Right) The K-means clusters for the
10 vehicle simulation. Cluster points are shown in blue, data points are shown in black and
the data-cluster connections are shown in red.

Fig. 6 Flight data of two UAVs demonstrating the SPH control scheme to gather the humidity
distribution of an environment. (Left) UAV 1 path in black dashed line, and UAV 2 path in
red dash-dot line. An attractor particle (blue ◦) was placed at (0,0) and then moved to the
northeast to approximately (50,50). (Right) Humidity field results from two aircraft. The
aircraft were flown approximately 40 meters apart (in altitude). The field results show higher
relative humidity at a lower altitude and also a region of higher humidity at approximately
x = 50 m, y = 0 m.

was maintained by an altitude controller. Regardless of the altitude difference, the
aircraft maintain a safe horizontal separation thus avoiding collision if the UAVs
altitude’s were the same. The aircraft were flown at an altitude separation of 40 m
in order to obtain three dimensional data about the temperature and humidity fields.

The noise of the sensor readings was rather high (approximately 10%), in order
to approximate the entire field and minimize error we implemented the K-means
method to reduce the noise. The results from the K-means approximations for the
two aircraft are then used to find humidity and temperature as a smooth function of



High Resolution Atmospheric Sensing Using UAVs 43

space. Figure 6 shows the resulting humidity fields obtained from the two aircraft at
their respective average altitude.

The test environment was a dry retention pond surrounded by woods. The re-
sults show a higher relative humidity centered at approximately (x = 50 m, y = 0 m)
which is at the edge of the wooded region. While more tests are required to make
conclusive remarks, the higher relative humidity over a region of trees is likely in-
dicative of increased evaporation over this region compared to the dry retention
pond.

5 Conclusions

An SPH based controller has been successfully implemented that includes a re-
duced density virtual attracting particle for vehicle guidance of autonomous UAVs
with limited processing capabilities. The temperature and humidity data collection
capabilities of multiple UAVs were demonstrated. Additionally, these UAVs experi-
mentally verified several desirable properties of the SPH control scheme. Although
the examples presented here are two-dimensional, all the techniques used are valid
in three dimensions, but have been artificially restricted to constant altitude for sim-
plicity and an added level of safety.

Additional simulations have been implemented to demonstrate the multi-vehicle
capabilities of the SPH controller as pertinent to the data collection opportuni-
ties made possible by swarms of sensor equipped UAVs that can quickly collect
data over a large two or three dimensional region. This is in contrast to the com-
monly used data collection methods available today (i.e. remote sensing, dropson-
des, weather balloons, etc.). Furthermore, uncertainties in the sensor readings are
mitigated using a K-means algorithm that is well suited to process and interpolate
the data over a desired region to minimize errors. The data processing algorithm
was implemented on a set of humidity and temperature data gathered by a pair of
aircraft equipped with sensors flying in several loiter patterns as governed by the
SPH control.
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