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Fig. 1. Velocity and vorticity field of a water droplet translating in a microchan- 

h

0

. Introduction 

Vorticity, defined as the curl of velocity ( ω ≡∇ × u ), has be-

ome a topic of significant interest over the past century. As a

easure of local fluid rotation, vorticity has proven to be useful

or characterizing a variety of natural phenomena. While vortic-

ty is not a primary variable such as velocity or pressure, it con-

ains a wealth of information that is invaluable to a variety of

elds including aerodynamics ( Brown and Michael, 1954; Graham,

983; Katz, 1981; Karman and Sears, 1938; Sedov et al., 1965;

u, 1981 ), turbulence ( Chorin, 1996; McWilliams, 1984; Grant,

958; Hussain, 1986 ), and mixing ( Sutera, 1965; Jacobi and Shah,

995; Mehdizadeh et al., 2011; Zhang and Mohseni, 2014 ). The im-

ortance of vorticity has been well recognized and we refer the

eader to the works of Truesdell (1954) , Lim and Nickels (1995) ,

affman (1992) , and Wu et al. (2006) for a general discussion of

he generation, dynamics, and decay of vorticity. Among these pub-

ications, the discussion of vorticity generation is often focused on

mooth solid interfaces. However, as the complexity of physical

roblems continues to grow, there is a clear need to develop a bet-

er understanding of vorticity and vorticity generation in complex

eometries and multiphase flows. 

In this manuscript, we are motivated by the work of

eVoria and Mohseni (2015) to examine the vorticity near cor-

er singularities along a fluid interface, or the moving contact

ine (MCL). In their investigation, the authors performed a de-

ailed study of translating droplets using micro-particle image ve-
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ocimetry (micro-PIV). They observed high concentrations of vor-

icity near the MCL in addition to a vorticity sign change near

he droplet interface, see Fig. 1 . In the lower left quadrant of the

roplet, flow near the trailing contact line is captured and shows

trong concentrations of negative vorticity as expected. However,

mall patches of positive vorticity appear along the trailing inter-

ace, leading one to question the source of this opposite signed

orticity. The authors attributed this vorticity to boundary layers

n the fluid-gas interface, but suspected that vorticity was being

enerated at the moving contact line. However, vorticity at the

CL was outside the scope of their investigation and thus they did

ot pursue this topic. 
el. Velocity is plotted relative to a reference frame moving with the droplet. Data 

as collected using particle image velocimetry. Significant vorticity is apparent 

ear both the leading and trailing triple contact points; indicating the possibility 

f a vorticity source at these locations. The droplet has a length to height ratio 

f 2 and a Reynolds number of approximately 6.5. Reproduced from DeVoria and 

ohseni (2015) . 
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In this paper, we build on the work of DeVoria & Mohseni by

performing a theoretical investigation and experimental validation

of vorticity at the moving contact line. Section 2 introduces an an-

alytic model for vorticity at the MCL and demonstrates that the

vorticity has a dipole distribution. This vorticity dipole indicates

that the MCL is a dipole source of vorticity that allows opposite

sign vorticity generation. Section 3 compares the vorticity dipole

solution with experimental data and continuum numerical simula-

tions. Conclusions of this investigation are given in Section 4 . 

2. Dipole model of vorticity at the MCL 

In a small region adjacent to the moving contact line, the in-

terface geometry can be approximated by a corner, as seen in

Fig. 2 (a). r and θ define a local polar coordinate system centered at

the moving contact line, φ denotes the apparent dynamic contact

angle, and the boundaries of the corner represent the fluid-solid

and fluid-gas interface. At the boundaries, the fluid has a velocity

u a and u b . If this region is small, such that the local Reynolds num-

ber is significantly smaller than 1 ( Re = ρUr/μ � 1 ), then the flow

is governed by the Stokes equation which is given by 

∇ p = μ∇ 

2 u , (1)

where p denotes the pressure, ρ the density, U the mean velocity,

μ the dynamic viscosity, and u the fluid velocity. The governing

equation for vorticity in a Stokes flow is given by 

∇ 

2 ω = 0 , (2)

and can be obtained by taking the curl of Eq. (1) . As a first order

approximation, we set u a and u b to be constants and find that the

solution for vorticity near a moving contact line is given by 

ω = 

α

r 
cos (θ − β) . (3)

Details of the solution method and exact analytical relations for

the coefficients α and β can be found in Appendix A . 

Fig. 2 (b) shows an example of the vorticity distribution near

a moving contact line with an apparent contact angle of 60 °
and interface velocities given by u r (θ = 0) = 1 , u r (θ = φ) = −1

and u θ (θ = 0 , φ) = 0 . While the flow only occupies the domain

0 °≤ θ ≤ 60 °, we have plotted vorticity field for 0 °≤ θ ≤ 360 ° to il-

lustrate that the vorticity solution forms a dipole. Therefore, the

coefficients α and β represent the strength and orientation of the
Fig. 2. (a) Schematic of the moving contact line. A polar coordinate system ( r, θ ) is 

defined with its origin centered at the corner point. u a and u b are the fluid ve- 

locities along the fluid-solid and fluid-gas interfaces respectively. (b) Theoretical 

model for vorticity near a moving contact line as described in Section 2 . The in- 

terfaces are denoted by the solid black lines and form an apparent contact angle of 

φ = 60 ◦ . Fluid velocity at the interfaces is given by u r (θ = 0) = 1 , u r (θ = φ) = −1 , 

and u θ (θ = 0 , φ) = 0 . The arrow denotes the dipole moment vector with magnitude 

α and orientation β . 
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ipole. According to this model, any moving contact line flow with

onstant interface velocities will contain a simple vorticity dipole.

urthermore, this result predicts a non-zero radial vorticity gra-

ient as r → 0, indicating that vorticity is generated at the mov-

ng contact line. Because this vorticity generation can be positive

nd negative, a portion of the opposite signed vorticity observed

n DeVoria and Mohseni (2015) originates from the contact line.

he amount of positive and negative vorticity is determined by α
nd β , which are functions of the interface velocity and apparent

ontact angle only. As such, the vorticity dipole strength and orien-

ation are determined easily from macroscopically observed quan-

ities. In practice, one could use this knowledge to treat a surface

nd control contact angle such that vorticity generation is either

ncreased or decreased depending on the application. In dynamic

pplications, the contact angle could even be manipulated on de-

and using techniques such as electrowetting ( Mugele and Baret,

005; Baird et al., 2007 ). Despite this relatively simple model, the

ollowing sections will demonstrate that the vorticity dipole is con-

istent with experimental data and numerical simulations. 

. Comparison with numerical and experimental results 

In order to validate the vorticity dipole model, we will compare

he theoretical model with the micro-PIV data originally presented

y DeVoria and Mohseni (2015) in addition to a matching numeri-

al simulation. Specifically, we will examine the lower left receding

ontact line of the droplet shown in Fig. 1 . The parameters of this

xample are extracted from the experiment, which yields a droplet

spect ratio of two and Re D = ρUD/μ = 6 . 5 where D denotes the

iameter of the channel. Details regarding the experimental setup

an be found in DeVoria and Mohseni (2015) . The numerical simu-

ation is conducted using Gerris ( Popinet, 2003 ), where the multi-

hase flow was simulated using the volume of fluid (VOF) method

nd surface tension effects were captured using the continuum-

urface-force method ( Popinet, 2009 ). The numerical simulation

as run using a leading edge contact angle of 90 °, a trailing edge

ontact angle of 30 °, and a droplet Reynolds number matching the

xperiment. Grid size was set to D /256. 

In Fig. 3 (a) and (b), the theoretical velocity and vorticity field of

he 30 ° receding contact line is shown. At the interfaces, the veloc-

ty is set to u r (θ = 0) = −U and u r (θ = φ) = 0 . 4 U based on the in-

erface velocities experimentally measured by DeVoria & Mohseni,

here U is the mean velocity of the droplet. Given these bound-

ry conditions, the theoretical solution predicts a dipole strength

f α = 13 . 4 and a dipole orientation of β = 116 ◦. As expected, the

heoretical velocity field circulates in a clockwise direction and cor-

esponds to a vorticity field that is primarily negative. However,

ear the fluid-gas interface, there exists a small region of positive

orticity, as predicted by β , the vorticity dipole orientation. Thus

he theoretical model predicts a dipole source of vorticity that gen-

rates both positive and negative vorticity. In the discussion below,

e find that the experimental droplet, Fig. 3 (c and d), and the nu-

erical simulation, Fig. 3 (e and f), are in excellent agreement with

ur theoretical model. 

The experimental droplet exhibits vorticity that is primarily

egative in the bottom half and primarily positive in the up-

er half. Near the lower left receding contact line, magnified in

ig. 3 (d), there are high concentrations of negative vorticity and

 small region of positive vorticity near the fluid-gas interface, in

greement with our theoretical predictions. If we superimpose the

heoretical zero vorticity contour, denoted by the dash-dotted line,

e observe excellent agreement in β , the vorticity dipole orien-

ation. At present, we are unable to experimentally compare the

ipole strength, as data near the MCL is not available due to limi-

ations of the experimental setup. 
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Fig. 3. (a) Velocity field of a 30 ° viscous corner flow analytically determined using Eq. (1) . Boundary conditions are u θ (θ = 0) = u θ (θ = φ) = 0 , u r (θ = 0) = −U, and u r (θ = 

φ) = 0 . 4 U where U denotes the velocity of the droplet. (b) Vorticity contours analytically determined using Eq. (3) for 0 °≤ θ < 360 ° where solid lines ( ) denote the 

boundaries of the corner, the dashed line ( ) denote vorticity contours of constant magnitude, and the dash-dotted line ( ) denotes the vorticity contour of 

magnitude 0. (c) Experimentally measured vorticity field of a droplet translating in a microchannel. Reproduced from DeVoria and Mohseni (2015) . (d) Experimentally 

measured vorticity field near the trailing edge of the droplet pictured in Fig. 1 ( DeVoria and Mohseni, 2015 ). The dash-dotted line ( ) denotes the analytically computed 

zero vorticity contour while the dashed line ( ) denotes the experimentally measured zero vorticity contour. (e) Numerical simulation of the Navier–Stokes equation for a 

droplet translating in a microchannel with a trailing edge contact angle of 30 °, leading edge contact angle of 90 °, Re D = 6 . 5 , Ca = 0 . 003 , and a grid size of D /256. (f) Trailing 

edge of the numerically simulated droplet translating in a microchannel. The dash-dotted line ( ) denotes the analytically computed zero vorticity contour while the 

dashed lines ( ) denote the numerically predicted vorticity contours. 
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The numerically simulated droplet, shown in Fig. 3 (e), matches

he experimental droplet in both shape and vorticity distribution.

t the lower left receding contact line, we once again observe high

oncentrations of negative vorticity, with a small region of posi-

ive vorticity. With the resolution of the numerical simulation, it

s clear that the positive vorticity extends to the MCL and is cre-

ted by the vorticity dipole source. Once again, we can superim-

ose the theoretical zero vorticity contour, and show that the the-

retical, experimental, and numerical dipole orientation are all in

greement with each other. From the numerical vorticity field, we

an also extract the dipole strength, which yields αnum 

= 13 . 9 , and

s in agreement with the theoretically predicted dipole strength of

= 13 . 4 . From these comparisons, we conclude that the vorticity

ipole is an accurate model of vorticity near the MCL . 
. Conclusion 

In this manuscript vorticity near a moving contact line was in-

estigated theoretically. By assuming a relatively simple corner ge-

metry and constant interface velocities, we found that vorticity

ear the MCL is modeled by a vorticity dipole. The strength and

rientation of this dipole was identified analytically and found to

e a function of the apparent contact angle and interface velocity

nly. Given this dipole distribution, the theoretical model indicates

hat both positive and negative vorticity can be generated at the

oving contact line. When compared with experimental micro-PIV

ata and numerical simulations, the vorticity dipole shows excel-

ent agreement despite the simplicity of the model. A detailed ex-

mination of the MCL shows that the theoretical dipole model is
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even capable of capturing the small regions of opposite signed vor-

ticity observed on the droplet interface. In the future, this model of

vorticity could be used to manipulate mixing in multiphase flows

via contact angle modification. 
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Appendix A. Theoretical solution of vorticity near a MCL 

The Stokes flow in a semi-infinite corner is governed by the

Stokes equation given by 

∇ p = μ∇ 

2 u . 

By taking the curl of the Stokes equation and applying the relation

ω = −∇ 

2 ψ, we obtain 

∇ 

4 ψ = 0 , ∇ 

2 ω = 0 , 

where ψ denotes the stream function. Using the method of sepa-

ration of variables one finds that the general stream function solu-

tion is given by 

ψ = P n r 
n f n (θ ) + Q 0 ln rg 0 (θ ) + Q 1 r ln rg 1 (θ ) + Q 2 r 

2 ln rg 2 (θ ) , 

where P and Q are dimensional constants. This solution is con-

sistent with the those found in Michell (1899) and Filonenko-

Borodich (1958) . The stream function solution for the flow near

a moving contact line is determined by applying the boundary

conditions u θ (θ = 0) = u θ (θ = φ) = 0 , u r (θ = 0) = U a , and u r (θ =
φ) = u b (r) . To simplify the analysis, we expand u b ( r ) using a Taylor

series, that is 

u b (r) = 

∞ ∑ 

k =0 

u 

(k ) 
b 

(r = 0) r k 

k ! 
= U b + u 

′ 
b (r = 0) r + . . . 

Solving the biharmonic stream function equation yields a stream

function and vorticity field given by 

ψ = U a r f 1 ,a + U b r f 1 ,b + 

∞ ∑ 

n =2 

u 

(n −1) 
b 

r n f n,b 

4(n − 1)! 
, 

ω = 

U a 

r 
[ f 1 ,a + f ′′ 1 ,a ] + 

U b 

r 
[ f 1 ,b + f ′′ 1 ,b ] 

+ 

∞ ∑ 

n =2 

u 

(n −1) r n −2 

4(n − 1)! 
[ n (n − 1) f n,b + n f n,b + f ′′ n,b ] , 

where f n is given by 

f 1 = A 1 cos (θ ) + B 1 sin (θ ) + C 1 θ cos (θ ) + D 1 θ sin (θ ) , 

f 2 = A 2 + B 2 θ + C 2 cos (2 θ ) + D 2 sin (2 θ ) , 

f n = A n cos ((n − 2) θ ) + B n cos (nθ ) + C n sin ((n − 2) θ ) 

+ D n sin (nθ ) . 

A, B, C , and D are coefficients determined by the boundary con-

ditions. As before, we assume that r is small so that the local

Reynolds number is small, and find that the vorticity field is domi-

nated by the term that scales with r −1 , otherwise known as the

vorticity dipole. Because the vorticity dipole is solely generated

by U a and U b , we can simplify the problem by taking a first or-

der approximation and estimating the interface velocities as con-

stants. The stream function and vorticity distribution correspond-

ing to constant interface velocities are given by 

ψ = U a r f 1 ,a (θ ) + U b r f 1 ,b (θ ) , 

ω = 

U a 
[ f 1 ,a (θ ) + f ′′ 1 ,a (θ )] + 

U b [ f 1 ,b (θ ) + f ′′ 1 ,b (θ )] 

r r 
= 

α

r 
cos (θ − β) , 

here α and β are given by 

α = 2 

[(
sin (φ) 4 + (φ − cos (φ) sin (φ)) 2 

( sin (φ) 2 − φ2 ) 2 

)
U 2 a 

+ 

(
2 φ sin (φ) 3 + 2(φ − cos (φ) sin (φ))( sin (φ) − φ cos (φ)) 

( sin (φ) 2 − φ2 ) 2 

)
U a U b 

+ 

(
( sin (φ) − φ cos (φ)) 2 + φ2 sin (φ) 2 

( sin (φ) 2 − φ2 ) 2 

)
U 2 b 

]1 / 2 

, 

= − tan −1 

(
(−2 sin (φ) 2 ) U a + (−2 φ sin (φ)) U b 

( sin (2 φ) − 2 φ) U a + (2 φ cos (φ) − 2 sin (φ)) U b 

)
+ π. 

hile this investigation only considers the vorticity corresponding

o n = 1 , other Stokes flows corresponding to various values of n

ave been investigated in Moffatt (1964) , Huh and Scriven (1971) ,

elderblom et al. (2012) and Richardson (1968) . 

eferences 

aird, E., Young, P., Mohseni, K., 2007. Electrostatic force calculation for an
EWOD-actuated droplet. Microfluid. Nanofluidics 3 (6), 635–644. doi: 10.1007/

s10404- 006- 0147- y . 

rown, C.E. , Michael, W.H. , 1954. Effect of leading-edge separation on the lift of a
delta wing. J. Aeronaut. Sci. 21 (10), 690–694 . 

horin, A.J. , 1996. Vorticity and Turbulence. Springer-Verlag, New York City, NY, USA .
eVoria, A.C., Mohseni, K., 2015. Droplets in an axisymmetric microtube: effects of

aspect ratio and fluid interfaces. Phys. Fluids 27 (1), 012002(1–18). doi: 10.1063/
1.4904753 . 

ilonenko-Borodich, M. , 1958. Theory of Elasticity. University Press of the Pacific,
Moscow . 

elderblom, H. , Bloemen, O. , Snoeijer, J. , 2012. Stokes flow near the contact line of

an evaporating drop. J. Fluid Mech. 709, 69–84 . 
raham, J.M.R. , 1983. The lift on an aerofoil in starting flow. J. Fluid Mech. 133,

413–425 . 
rant, H. , 1958. The large eddies of turbulent motion. J. Fluid Mech. 4 (02), 149–190 .

uh, C., Scriven, L.E., 1971. Hydrodynamic model of steady movement of a
solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85–101. doi: 10.1016/

0021-9797(71)90188-3 . 

ussain, A. , 1986. Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 . 
acobi, A. , Shah, R. , 1995. Heat transfer surface enhancement through the use of

longitudinal vortices: a review of recent progress. Exp. Therm. Fluid Sci. 11 (3),
295–309 . 

arman, T.V. , Sears, W.R. , 1938. Airfoil theory for non-uniform motion. J. Aeronaut.
Sci. 5 (10), 379–390 . 

atz, J., 1981. A discrete vortex method for the non-steady separated flow over an

airfoil. J. Fluid Mech. 102, 315–328. doi: 10.1017/S0 0221120810 02668 . 
im, T.T. , Nickels, T.B. , 1995. Vortex rings. In: Green, S.I. (Ed.), Fluid Vortices.

Springer-Verlag, New York City, NY, USA, pp. 95–153 . 
cWilliams, J.C., 1984. The emergence of isolated coherent vortices in turbulent

flow. J. Fluid Mech. 146, 21–43. doi: 10.1017/S0 0221120840 01750 . 
ehdizadeh, A., Sherif, S.A., Lear, W.E., 2011. Numerical simulation of thermofluid

characteristics of two-phase slug flow in microchannels. Int. J. Heat Mass Transf.

54 (15–16), 3457–3465. doi: 10.1016/j.ijheatmasstransfer.2011.03.040 . 
ichell, J. , 1899. On the direct determination of stress in an elastic solid, with ap-

plication to the theory of plates. Proc. London Math. Soc. 1 (1), 100–124 . 
Moffatt, H.K. , 1964. Viscous and resistive eddies near a sharp corner. J. Fluid Mech.

18 (01), 1–18 . 
ugele, F., Baret, J.C., 2005. Electrowetting: from basics to applications. J. Phys. 17

(28), 705–774. doi: 10.1088/0953-8984/17/28/R01 . 

opinet, S., 2003. Gerris: a tree-based adaptive solver for the incompressible eu-
ler equations in complex geometries. J. Comput. Phys. 190 (2), 572–600. doi: 10.

1016/S0 021-9991(03)0 0298-5 . 
opinet, S., 2009. An accurate adaptive solver for surface-tension-driven interfacial

flows. J. Comput. Phys. 228 (16), 5838–5866. doi: 10.1016/j.jcp.2009.04.042 . 
ichardson, S. , 1968. Two-dimensional bubbles in slow viscous flows. J. Fluid Mech.

33 (03), 475–493 . 

affman, P.G. , 1992. Vortex Dynamics. Cambridge University Press, Cambridge, UK . 
edov, L.I., Chu, C.K., Cohen, H., Seckler, B., Gillis, J., 1965. Two-dimensional prob-

lems in hydrodynamics and aerodynamics. Phys. Today 18 (12), 62–63. doi: 10.
1063/1.3047038 . 

utera, S. , 1965. Vorticity amplification in stagnation-point flow and its effect on
heat transfer. J. Fluid Mech. 21 (03), 513–534 . 

ruesdell, C. , 1954. The Kinematics of Vorticity. Indiana University Press, Blooming-
ton, IA, USA . 

u, J.C. , 1981. Theory for aerodynamic force and moment in viscous flows. AIAA J.

19 (4), 432–441 . 
u, J.-Z. , Ma, H.-Y. , Zhou, M.-D. , 2006. Vorticity and Vortex Dynamics. Springer . 

hang, P., Mohseni, K., 2014. A unified model for digitized heat transfer
in a microchannel. Int. J. Heat Mass Transf. 78, 393–407. doi: 10.1016/j.

ijheatmasstransfer.2014.06.018 . 

https://doi.org/10.13039/100000006
https://doi.org/10.1007/s10404-006-0147-y
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0002
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0002
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0002
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0003
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0003
https://doi.org/10.1063/1.4904753
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0005
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0005
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0006
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0006
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0006
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0006
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0007
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0007
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0008
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0008
https://doi.org/10.1016/0021-9797(71)90188-3
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0010
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0010
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0011
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0011
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0011
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0012
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0012
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0012
https://doi.org/10.1017/S0022112081002668
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0014
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0014
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0014
https://doi.org/10.1017/S0022112084001750
https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.040
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0017
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0017
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0018
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0018
https://doi.org/10.1088/0953-8984/17/28/R01
https://doi.org/10.1016/S0021-9991(03)00298-5
https://doi.org/10.1016/j.jcp.2009.04.042
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0022
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0022
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0023
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0023
https://doi.org/10.1063/1.3047038
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0025
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0025
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0026
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0026
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0027
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0027
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0028
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0028
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0028
http://refhub.elsevier.com/S0301-9322(17)30702-4/sbref0028
https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.018

	Dipole model of vorticity at the moving contact line
	1 Introduction
	2 Dipole model of vorticity at the MCL
	3 Comparison with numerical and experimental results
	4 Conclusion
	 Acknowledgements
	Appendix A Theoretical solution of vorticity near a MCL
	 References


