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Abstract This article examines the utilization of a spatial averaging technique
to the nonlinear terms of the partial differential equations as an inviscid shock-
regularization of hyperbolic conservation laws. A central motivation is to promote the
idea of applying filtering techniques such as the observable divergence method, rather
than viscous regularization, as an alternative to the simulation of shocks and turbu-
lence in inviscid flows while, on the other hand, generalizing and unifying previous
mathematical and numerical analysis of the method applied to the one-dimensional
Burgers’ and Euler equations. This article primarily concerns the mathematical anal-
ysis of the technique and examines two fundamental issues. The first is on the global
existence and uniqueness of classical solutions for the regularization under the more
general setting of quasilinear, symmetric hyperbolic systems in higher dimensions.
The second issue examines one-dimensional scalar conservation laws and shows that
the inviscid regularization method captures the unique entropy or physically relevant
solution of the original, non-averaged problem as filtering vanishes.
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1 Introduction

The governing equations for inviscid fluid flow—the Euler equations—although well-
known, still pose great challenges in its computation. This difficulty is attributed to
the nonlinear convective term in the equations and obtaining a deeper understanding
of this model centers on generating novel methods for studying two important fea-
tures: shock formation along with its regularization and turbulence. More specifically,
the culprits are the nonlinear terms which are responsible for the continuous gener-
ation of energy transfered to ever smaller scales resulting in a very high resolution
problem. It is customary in many numerical simulations to introduce artificial viscos-
ity into the Euler equations to mitigate this energy cascade and resolve the smaller
scales thereby circumventing the computational difficulties. Alternatively, the regu-
larization technique studied in this article implements a Leray-type filtering or spatial
averaging of nonlinear terms in order to achieve the same goal, however, the focus
here centers on scalar conservation laws as a regularization of shocks. When applied
to scalar conservation laws, the regularization can be regarded as an averaging of
the characteristics and it is a direct extension of the technique proposed in [25] in
which averaging of the convective term is introduced in the Burgers’ equation via the
Helmholtz filter:

⎧
⎪⎨

⎪⎩

∂tu
α + uαuα

x = 0,

uα = gα ∗ uα,

gα(x) = 1
2α

e−|x|/α,

(1)

where ∗ denotes the convolution product. Informally speaking, the technique in this
article regularizes scalar conservation laws,

∂tu + f (u)x = 0,

into the form

∂tu + ∂f

∂u
ux = 0,

where the filtered quantity is the convolution product of that term with respect to some
averaging kernel as was done in (1). This approach is not without proper physical
development in the sense that we do not just apply filtering casually. Interestingly
enough, this implementation of filtering to the nonlinear term can be interpreted as
an extension of the observable divergence method introduced in [23, 28]. In fact, the
two regularization techniques are equivalent with respect the Helmholtz filter and for
quadratic polynomial fluxes, and the reader is referred to [23] for more details on
the observable divergence method including the physical derivation of the filtered
conservation laws from basic principles.

Let us briefly motivate why we strongly believe that this approach may possess
favorable attributes and advantages over viscous regularization; we demonstrate this
by considering the simplest case of a nonlinear transport equation that exhibit shocks:
the initial value problem to Burgers’ equation,

{
∂tu

ε + uεuε
x = εuε

xx,

uε(x,0) = u0(x).
(2)
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In the presence of viscosity (ε > 0), the equation is of the parabolic type and the
regularizing effects of viscous perturbations are well-known. This may be thought of
as a global regularization since the solution depends on the initial condition i.e. in-
formation propagates at ‘infinite’ speed. The filtered equation (1) is modified locally
in the sense that the characteristics are mollified so that the equation is still of the
hyperbolic type and information propagates along characteristics at finite speed. It is
reasonable to suggest that this mollification of the characteristics may preserve im-
portant features of the Burgers’ equation. Moreover, there is still much debate on the
limit of vanishing viscosity for the full Euler equations. Thus, this notion of applying
an averaging process instead as a potential alternative to alleviating the computational
issues in the simulation of inviscid flows has garnered some recent attention [3, 7, 16,
25–27, 29]. Although the previous remarks regarding the potential effectiveness of
this averaging framework seems reasonable, a rigorous mathematical analysis of the
technique is required and will be the main objective of this paper. More precisely, we
will address the following theoretical aspects for the regularization technique applied
to scalar conservation laws: determine the suitable conditions in order to

– establish the global existence and uniqueness of classical solutions,
– establish the convergence to weak solutions, and
– verify that the limiting weak solution is entropy admissible.

Let us remark on some past results for (1). In [3], the global well-posedness of regu-
lar solutions and the convergence to weak solutions as α vanishes was shown for (1)
including supporting numerical results suggesting that the entropy solution is cap-
tured. The authors in [26] examined the multi-dimensional version of this regularized
Burgers’ equation and developed similar results such as global existence and unique-
ness of classical solutions. They also studied the conserved quantities, traveling wave
solutions, spectral energy decay properties of this regularized model and numerically
compared its smoothing features with the case when viscosity is present. The conver-
gence as filtering vanishes to the entropy solution was partially resolved in [27] for C1

bell-shaped initial conditions. Here the approach for showing convergence to the en-
tropy solution uses the Lax admissibility condition rather than the Krǔzkov entropy
condition, therefore the methods used are vastly different than the ones presented
here. So it is interesting to note that one can approach this question of uniqueness of
physical solutions using different admissibility conditions. Another work examining
convergence to the unique solution of an initial-boundary value problem as viscosity
vanishes using non-Krǔzkov conditions can be found in [1].

We should mention, though, that such an idea is not entirely new. Leray proposed
using a filtered convective velocity to study the Navier-Stokes equations [18]. This
influenced the investigation of the Leray-α models of turbulence [7, 19], and the La-
grangian Averaged Navier-Stokes-α (LANS-α) implements similar filtering to suc-
cessfully model turbulent incompressible flows [6, 11, 13, 14, 21, 24, 31]. On the
other hand, we must stress that we are adopting filtering in a slightly different ap-
proach. From a computational standpoint, this method can be implemented in the
modeling of inviscid fluid flows. Since both turbulence and shock formation are non-
linear features, we believe that filtering may lead to a method that can model both
nonlinear features in one single comprehensive technique. In this manuscript, this
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filtering addresses the first issue—determining its potential as a shock regularization
technique. In the time of this writing, we are not aware of any other work in the liter-
ature which considers this approach in the general setting of hyperbolic conservation
laws.

As a regularization of shocks, it is quite natural to seek an understanding of the
‘smoothing’ effects that such an averaging procedure will have on these evolution
equations. For instance, recall that it is well-known that hyperbolic conservation laws
generally exhibit finite-time gradient blow-up of classical solutions even if the ini-
tial data is smooth. Consequently, this leads us to seek global-in-time solutions in a
broader class of discontinuous functions and to introduce so-called entropy condi-
tions to identify physically relevant solutions. In fact, such entropy conditions may
allow for the uniqueness and stability of these entropy solutions as illustrated by the
Krǔzkov estimates for scalar conservation laws [4, 8, 12]. Hence, in this manuscript,
we apply this technique of spatial averaging or filtering of the non-linear terms in
the partial differential equations (PDEs) with the purpose of establishing the analyt-
ical properties settling the debate on its validity as a shock-regularization technique.
More precisely, we will verify two very fundamental properties. First, the regular-
ized PDEs should possess the global existence and uniqueness of classical solutions.
Second, and perhaps the more difficult property to prove, is the convergence of the
regularized solutions to the physically relevant entropy solution of the original prob-
lem as filtering vanishes. We should mention as well that the global existence theory
developed here unifies and further generalizes the results obtained in [26, 29].

This manuscript is organized as follows. Section 2 introduces our regularization
technique along with the class of averaging kernels or filters that will be considered.
In Sect. 3, we extend our regularization technique to more general quasilinear, sym-
metric, hyperbolic systems

∂tu +
n∑

i

Ai(x, t, u)uxi
= h(x, t, u) in R

n × (0, T ). (3)

Here we provide a theorem addressing the sufficient conditions that guarantee the
global well-posedness of classical solutions for the Cauchy problem to (3) with spa-
tial averaging. We remark that in comparison with the previous references, our proof
moves away from the use of the method of characteristics, and in turn allows us to ob-
tain global well-posedness for a larger class of hyperbolic problems in higher dimen-
sions. Nonetheless, the establishment of the energy estimates illustrates the mecha-
nism in the filtering which prevents the blowup of solutions. In Sect. 4, we describe
the conditions required to show that the regularized solutions to non-homogeneous
conservation laws (with source terms) will converge to a weak solution of the original
system. Furthermore, in the absence of source terms, we will prove that this limit is
entropy admissible. We study the case with quadratic flux and the Helmholtz filter
as a motivating example. Here we exploit the special structure inherent in this case.
Consequently, it demonstrates why the past references achieved the aforementioned
results limited to this simple case. The final section provides some concluding re-
marks and suggestions for possible directions and generalizations to this averaging
method. This includes several proposed extensions such as the observable divergence
method which appear to be computationally favorable in the study of the 1d Euler
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Table 1 The properties of the
averaging kernels Properties Mathematical expression

Normalized ‖G‖
L1(Rn)

= 1

Non-negative G(x) > 0 for all x ∈ R
n

Symmetric |x1| = |x2| ⇒ |G(x1)| = |G(x2)|
Non-increasing |x1| ≤ |x2| ⇒ |G(x1)| ≥ |G(x2)|

equations. Other important considerations include initial-boundary value problems
for this inviscid regularization.

2 Filters and the method of spatial averaging

Let G be a given real-valued function in W 1,1(Rn) that is positive, symmetric, and
monotonically decreasing with unit length in L1(Rn). The function G will be referred
to as a filter or averaging kernel. In addition, we shall prescribe a fixed parameter,
α > 0, to the filter such that

Gα = 1

αn
G

(
x
α

)

.

This parameter α acts as a scaling of the filter and controls the level of averaging
and allows us to interpret the α → 0 limit to be when filtering vanishes. In fact, Gα

converges to the Dirac delta distribution as filtering vanishes. Table 1 summarizes the
properties for the filters that we shall consider.

Remark One example of a commonly applied filter is the Helmholtz filter, f = f̄ −
f̄xx , corresponding to the averaging kernel G = 1

2e−|x|. This filter was extended then
studied in [27] to filters satisfying the form

f =
(

1 +
N0∑

j=1

(−1)jCj

∂2j

∂x2j

)

f̄

for some finite natural number N0 and constants Cj .

In Sect. 3, we will consider the Cauchy problem
{

∂tu + ∑n
i=1 Ai(x, t, u)uxi

= h(x, t, u) in UT = R
n × (0, T ),

u(x,0) = u0(x) for x ∈ R
n.

(4)

Here, the Ai ’s are symmetric N × N matrix-valued maps defined on R
n × [0, T ] ×

R
N , u and h are N vector-valued maps on R

n ×[0, T ] and R
n ×[0, T ]×R

N , respec-
tively. Let Hk and Wk,p denote the Sobolev spaces Hk(Rn,R

N) and Wk,p(Rn,R
N)

equipped with their usual norms ‖ ·‖k := ‖ ·‖Hk and ‖ ·‖k,p := ‖ ·‖Wk,p , respectively.
Given a filter G, our regularization technique modifies (4) into

{
∂tu

α + ∑n
i=1 Ai(x, t, uα)uα

xi
= h(x, t, uα) in UT ,

uα(x,0) = u0(x) for x ∈ R
n,

(5)
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where the bar represents the convolution product taken with respect to the filter G in
the x-variables. More precisely,

Ai = [
a

jl
i

] = [
Gα ∗ a

jl
i

(
x, t, uα

)]

=
[∫

Rn

Gα(x − y)a
jl
i

(
y, t, uα(y, t)

)
dy

]

.

In Sect. 4, we will study the corresponding scalar conservation law
{

∂tu + f (u)x = h(x, t, u) in R × (0, T ),

u(x,0) = u0(x) for x ∈ R,

which is regularized into its filtered quasilinear counterpart
{

∂tu
α + a(uα)uα

x = h(x, t, uα) in R × (0, T ),

uα(x,0) = u0(x) for x ∈ R,

where a = ∂f
∂u

. For the sake of brevity, we sometimes omit the α-superscript in the
averaged equations above, however, it should always be assumed that a corresponding
α is given.

3 Global existence for quasilinear, symmetric hyperbolic systems

This section provides the sufficient conditions which guarantee the existence and
uniqueness of classical solutions of the regularized problem (5). We incorporate the
usual methods for quasilinear, symmetric hyperbolic systems and illustrate through
the Sobolev energy estimates the regularizing effects of averaging the nonlinear terms
of the equations through a low pass filter such as the Helmholtz filter. Although the
main idea is standard, we provide a detailed overview of the proof for the sake of
completeness. Moreover, we briefly state some basic existence theory and Hk-energy
estimates for linear systems under (C-1) conditions; but the reader is referred to [5,
10, 15, 20, 22, 30] for further details.

3.1 Quasilinear symmetric hyperbolic systems

Define BR ⊂ Hk to be the closed ball with radius R. The following conditions will
be assumed and will be referred to as condition (C-2).

(a) k > 1 + n/2 and u0 ∈ Hk .
(b) For given u ∈ Hk, Ai(x, t, u(x, t)) and h(x, t, u(x, t)) are Hk-functions that

satisfy (C-1) i.e.

– Ai are symmetric.
– t 
→ Ai(t)

.= Ai(·, t) is of class C([0, T ],Hk(Rn,R
N2

)).
– t 
→ h(t)

.= h(·, t) is of class C([0, T ],Hk(Rn,R
N)).

(c) The maps u ∈ BR 
→ Ai(x, t, u) and u ∈ BR 
→ h(x, t, u) are bounded (maps
bounded sets to bounded sets in Hk) and are C1 maps with bounded derivatives.
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The main global existence result is given in the follow theorem.

Theorem 1 For each α > 0, the initial value problem (5) under (C-2) conditions has
a unique global-in-time classical solution.

3.2 Background on linear systems

Consider the linear system

vt +
n∑

i=1

Ai(x, t)vxi
= h(x, t) in UT , (6)

satisfying (C-1) with initial value v(x,0)
.= v(0) = v0(x).

Proposition 1 Suppose that

v ∈ C
([0, T ],Hk

) ∩ C1([0, T ],Hk−1)

satisfies the initial value problem to (6), then u satisfies the energy estimate

max
0≤t≤T

(∥
∥v(t)

∥
∥

k
+ ∥

∥vt (t)
∥
∥

k−1

) ≤ Cke
βkT

(
∥
∥v(0)

∥
∥

k
+

∫ T

0

∥
∥h(s)

∥
∥

k
ds

)

, (7)

where the constants Ck and βk depend on the Hk-norms of Ai .

Proposition 2 The initial value problem to the linear system (6) has a unique solution
of class C([0, T ],Hk) ∩ C1([0, T ],Hk−1).

3.3 Proof of Theorem 1

The proof is given in three main steps. In step 1, we set up an approximate iteration
of linear systems along with a corresponding transformation related to the global
solutions to these linear systems. In step 2 we show that this transformation is a strict
contraction on an appropriate function space for sufficiently small time. Further, the
unique fixed point of this contraction map agrees with the unique short-time classical
solution of the quasilinear IVP. Step 3 applies Sobolev energy estimates to extend
this unique classical solution further in time.

Proof Step 1: Choose an arbitrary T > 0. We shall prove existence of solutions up
to this arbitrary time. First construct the linear problem:

vt + Ai

(
x, t, u(x, t)

)
vxi

= h(x, t, u) in UT , (8)

v(x,0) = u0(x), (9)

where the subscript i is short-hand for summation from 1 to n. The global existence
and uniqueness of solutions v ∈ C([0, T ],Hk) ∩ C([0, T ],Hk−1) to this IVP holds.
The first step to showing existence of a solution of the quasilinear system is to con-
sider the transformation T defined by v = T u where u is given and v is the solution
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of (8)–(9). Our goal is to prove this transformation is a strict contraction on a suitable
function space. We consider

u ∈ Xk,τ .= C
([0, τ ],Hk

(
R

n,R
N

))
.

Using the energy estimates, one has

max
0≤t≤τ

(∥
∥v(t)

∥
∥

k
+ ∥

∥vt (t)
∥
∥

k−1

) ≤ Cke
βkτ

(
∥
∥v(0)

∥
∥

k
+

∫ τ

0

∥
∥h(s)

∥
∥

k
ds

)

. (10)

Define

B
k,τ
R

.= {
u ∈ Xk,τ : ‖u‖Xk,τ ≤ R

}
.

It is clear from (10) that T maps B
k,τ
R to itself for sufficiently small τ and a suitable R.

We now show that T is a contraction on B
k,τ
R in the X0,τ -norm. Let vj = T uj for

j = 1,2 and set w = v1 − v2. Then w satisfies the linear system

wt + Ai(u1)wx = H(x, t) and w(0) = 0,

where H(x, t) = h(x, t, u1) − h(x, t, u2) + (Ai(x, t, u2) − Ai(x, t, u1))(v2)x . From
the Lipschitz continuity of A and h with respect to u and the Sobolev embedding,
‖H(t)‖0 ≤ C‖u1 − u2‖0 where the constant C depends on R and the Lipschitz con-
stants of Ai and h. Using the energy estimate (7), we obtain

max
0≤t≤τ

‖T u1 − T u2‖2
0 ≤ C0e

β0τ τ max
0≤t≤τ

‖u1 − u2‖2
0.

Hence T : Bk,τ
R 
→ B

k,τ
R is a strict contraction with respect to the X0,τ -norm for suf-

ficiently small τ .
Consider the iteration scheme: let u(j+1) = T u(j) with u(0) = u0. As a conse-

quence of the contraction mapping principle, u(j) converges to a unique u ∈ X0,τ

i.e.

lim
j→∞ max

0≤t≤τ

∥
∥u(j) − u

∥
∥

0 = 0. (11)

Step 2: We show in this step that this limiting function u belongs in C1(Rn ×
[0, τ ],R

N). Energy estimates and interpolation inequalities imply that, for any s with
0 ≤ s < k,

max
0≤t≤τ

∥
∥u(j) − u(l)

∥
∥

s
≤ C max

0≤t≤τ

∥
∥u(j) − u(l)

∥
∥1−s/k

0 max
0≤t≤τ

∥
∥u(j) − u(l)

∥
∥s/k

k

≤ C max
0≤t≤τ

∥
∥u(j) − u(l)

∥
∥1−s/k

0 . (12)

It follows from this and (11) that

lim
j→∞ max

0≤t≤τ

∥
∥u(j) − u

∥
∥

s
= 0,

for any 0 ≤ s < k. That is,

u(j) → u ∈ C
([0, τ ],H s

(
R

n,R
N

))
.

This along with the PDE itself yields u ∈ C1([0, τ ],H s−1(Rn,R
N)). Thus
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u ∈ C
([0, τ ],H s

(
R

n,R
N

)) ∩ C1([0, τ ],H s−1(
R

n,R
N

))
,

i.e. u = u(x, t) is a classical solution by the Sobolev embedding.

Step 3: In this step, we extend the local classical solution of the whole interval [0, T ]
through energy estimates. Once this a priori estimate is established, it will allow us to
repeat the above local existence argument on (τ,2τ), (2τ,3τ), (3τ,4τ), . . . until we
have covered [0, T ]. Let us establish the following energy estimate.

Energy estimate: Suppose that u ∈ C([0, τ ],H s(Rn,R
N)) ∩ C1([0, τ ],

H s−1(Rn,R
N)) satisfies the initial value problem (5), then u satisfies the energy

estimate.

max
0≤t≤T

(∥
∥v(t)

∥
∥

k
+ ∥

∥vt (t)
∥
∥

k−1

) ≤ Ck(T ). (13)

Take the L2 inner product between u and (5), integrate over space to get

1

2

d

dt

∫

Rn

|u|2 dx +
∫

Rn

u · Ai(x, t, u)uxi
dx =

∫

Rn

u · h(x, t, u) dx.

Using the symmetry of A and integration by parts, the second term on the left-hand
side becomes

∫

Rn

u · Ai(x, t, u)uxi
dx = −1

2

∫

Rn

∂xi
Ai(x, t, u)u · udx.

Then Young’s inequality and the Sobolev embedding imply

d

dt

∥
∥u(t)

∥
∥2

0 ≤ (‖G‖1,1
∥
∥Ai(x, t, u)

∥
∥

L∞
)∥
∥u(t)

∥
∥2

0 + 2
∥
∥h(t)

∥
∥2

0

≤ C
∥
∥u(t)

∥
∥2

0,

so Gronwall’s inequality yields
∥
∥u(t)

∥
∥2

0 ≤ eCT
∥
∥u(0)

∥
∥2

0.

To establish the estimate for higher-order derivatives, for |α| ≤ k apply Dα to (5),
product with Dαu and integrate over space.

d

dt

∫

Rn

∣
∣Dαu

∣
∣2

dx

=
∫

Rn

u · h(x, t, u) dx −
∫

Rn

Dαu · Dα
(
Ai(x, t, u)uxi

)
dx

=
∫

Rn

Dαu · Dαhdx

−
∫

Rn

Dαu · A(x, t, u)
(
Dαu

)

xi
dx + · · · +

∫

Rn

Dαu · DαA(x, t, u)uxi
dx

︸ ︷︷ ︸
.=I

.

(14)
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The first term in I is handled as in the L2 case using symmetry and integration by
parts,

−
∫

Rn

Dαu · Ai(x, t, u)
(
Dαu

)

xi
dx = 1

2

∫

Rn

∂xi
A(x, t, u)Dαu · Dαudx

≤ 1

2
‖G‖1,1

∥
∥Ai(x, t, u)

∥
∥

L∞

∫

Rn

∣
∣Dαu

∣
∣2

dx.

The last term in I is handled by the Sobolev embedding,
∫

Rn

Dαu · DαAi(x, t, u)uxi
dx ≤ ‖uxi

‖L∞
∥
∥Dαu

∥
∥

0

∥
∥DαAi(x, t, u)

∥
∥

0

≤ C‖u‖2
k.

The intermediate terms in I are handled similarly. These estimates for (14) yield

d

dt

∥
∥u(t)

∥
∥2

k
≤ C

∥
∥u(t)

∥
∥2

k
,

so by Gronwall’s inequality,
∥
∥u(t)

∥
∥

k
≤ Ck(T ).

Similarly, we can use (5) directly with the last estimate to compute
∥
∥∂tu(t)

∥
∥

k−1 ≤ ∥
∥h(x, t, u)

∥
∥

k−1 + ∥
∥Ai(x, t, u)uxi

∥
∥

k−1

≤ C
∥
∥u(t)

∥
∥

k−1 + ∥
∥Ai(x, t, u)

∥
∥

k−1

∥
∥u(t)

∥
∥

k

≤ Ck(T ).

This completes the proof of the theorem. �

4 Convergence to the admissible weak solution

Consider the following non-homogeneous scalar conservation law,

∂tu + f (u)x = h(x, t, u) in UT = R × (0, T ), (15)

u(x,0) = u0(x) for x ∈ R, (16)

where u,f,h are real-valued functions on UT . Let a
.= ∂f

∂u
and place the same condi-

tions on the resulting averaged equation,

∂tu
α + a

(
uα

)
uα

x = h
(
x, t, uα

)
in UT , (17)

uα(x,0) = u0(x) for x ∈ R, (18)

as was given in Theorem 1. In addition to these previous assumptions, we place fur-
ther conditions as follows.

Further assumptions: Let h(x, t,0) ∈ C([0;T ];L1(R)), the initial data u0 is of
class Hk ∩ W 1,1(R) (so it has bounded total variation), and let the flux f and the
filter G satisfy the following property:
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For each α  1 and for the corresponding regularized solutions, vα , of (17)–(18),

∂xa
(
vα

) ≥ ∂xa
(
vα

)
. (19)

Remark We can gain more insight on the meaning of condition (19) if we momen-
tarily assume strict convexity of the flux i.e. there is a δ > 0 such that f ′′(v) ≥ δ for
all v ∈ R. Then it is easy to see that this condition will imply that

f ′′(vα)

δ
vα
x (x, t) ≥ vα

x (x, t).

From the previous section, there is no gradient blowup for each α > 0, so one can
interpret this as the low-pass filter influencing control as it acts on the gradient by
bounding it above in terms of its unfiltered version. This suggests that the chosen
averaging kernel will play a role in establishing condition (19) in addition to the
flux and the initial data. This observation is revisited for the Helmholtz filter shortly
below.

Our aim for this section is to verify that the global classical solutions for the
Cauchy problem to (17)–(18) does in fact converge to a weak solution for the Cauchy
problem to (15)–(16) as α → 0+. By a weak solution we mean a solution of the
Cauchy problem in the following sense.

Definition 1 A function u : R×[0, T ] 
→ R
N is a weak solution of the Cauchy prob-

lem (15)–(16) if u is continuous as a function from [0, T ] into L1
loc, the initial condi-

tion (16) holds and the restriction of u to the open strip UT is a distributional solution
i.e.

∫ T

0

∫ ∞

−∞
uφt + f (u)φx + h(x, t, u)φ dx dt +

∫ ∞

−∞
u0(x)φ(x,0) dx = 0, (20)

for every C∞ function φ with compact support contained in the set R × (−∞, T ).

The notion for proving the convergence result is summarized in two key steps. In
step 1, the needed uniform, BV , and L1 estimates are established on the sequence
of averaged solutions {uα}α>0 that guarantee compactness in C([0, T ),L1

loc(R)). In
step 2 the limit function in the α → 0+ limit is shown to satisfy the definition of a
weak solution for the Cauchy problem. For the homogeneous case, this weak solution
is, in fact, entropy admissible.

Theorem 2 The sequence of averaged solutions uα : R × [0, T ] 
→ R, indexed by
α > 0, of (17)–(18) has a subsequence {uβ}β>0 that converges strongly to some func-
tion u in C([0, T ],L1

loc(R)) as β → 0+. Moreover, this limit u is a weak solution of
(15)–(16), and we will refer to this as the α-limit weak solution hereafter.

Proof Step 1: In order show the convergence of the solution sequence to a weak
solution, an L1-compactness result is invoked. In order to do so, we first establish the
following estimates:
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(i) |uα(x, t)| ≤ M1 for all x, t ,
(ii) T .V .(uα(·, t)) ≤ M2 for all t ,

(iii)
∫

R
|uα(x, t + s) − uα(x, t)|dx ≤ M3s for all s, t ≥ 0,

where the constants Mi for i = 1,2,3 are independent of α. These estimates will
imply that there exists a subsequence (indexed by α still) and a function u such that
limα→0 uα = u in C([0, T ],L1

loc(R)) [4].
To show estimate (i), the uniform boundedness of uα , recall that uα satisfies the

system in the mild [22] or broad [4] sense i.e.

uα(ξ, τ ) = u0
(
x(0; ξ, τ )

) +
∫ τ

0
h
(
x(t; ξ, τ ), t, uα

(
x(t; ξ, τ ), t

))
dt,

where t 
→ x(t; ξ, τ ) is the unique integral solution of the IVP

ẋ = a
(
uα(x, t)

)
,

x(τ ) = ξ.

So we have the following,

∣
∣uα(ξ, τ )

∣
∣ ≤ ‖u0‖L∞ +

∫ τ

0

∣
∣h

(
x(t; ξ, τ ), t, uα

(
x(t; ξ, τ ), t

))∣
∣dt

≤ ‖u0‖L∞ + C0 + |h|Lip sup
(ξ,τ )

∫ τ

0

∣
∣uα

(
x(t; ξ, τ ), t

)∣
∣dt,

where |h(x, t,0)|L∞ ≤ C0. By Gronwall’s inequality

sup
(ξ,τ )

∣
∣uα(ξ, τ )

∣
∣ ≤ (‖u0‖L∞ + C0

)
e|h|LipT =: M1.

To show estimate (ii), the uniform boundedness of the total variation of the solutions
independent of α, differentiate (17) with respect to the spatial variable x to obtain

∂tu
α
x + (

a
(
uα

)
uα

x

)

x
= ∂x

(
h(x, t, u)

)
. (21)

Multiply (21) by the sign function sgn(uα
x ) then integrate over R with respect to x,

d

dt

∫

R

∣
∣uα

x

∣
∣dx +

∫

R

(
a
(
uα

)
uα

x

)

x
sgn

(
uα

x

)
dx =

∫

R

∂x

(
h
(
x, t, uα

))
sgn

(
uα

x

)
dx.

(22)

Observe that the second integral term on the left-hand side of (22) is zero by the
continuity of both a(uα) and uα

x . The right-hand can be bounded above as follows,
∫

R

sgn
(
uα

x

)
∂xh

(
x, t, uα

)
dx ≤

∫

R

∣
∣
∣
∣
∂h

∂x

∣
∣
∣
∣dx +

∫

R

∣
∣
∣
∣
∂h

∂u

∣
∣
∣
∣

∣
∣uα

x

∣
∣dx

≤ C1 + C2

∫

R

∣
∣uα

x

∣
∣dx.

Thus d
dt

‖uα
x (·, t)‖L1 ≤ C1 + C2‖uα

x (·, t)‖L1 which implies

T .V .
(
uα(·, t)) = ∥

∥uα
x (·, t)∥∥

L1 ≤ (∥
∥u′

0

∥
∥

L1 + C1T
)
eC2T = CT T .V .(u0) =: M2.
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To obtain estimate (iii), observe that ∂tu
α = −a(uα)ux + h(x, t, uα). Integrating this

from the interval [t, t + s] then integrating over the real line with respect to the x

variable yields
∫

R

∣
∣uα(x, t + s) − uα(x, t)

∣
∣dx

≤
∫

R

∫ t+s

t

∣
∣h

(
x, s, uα(x, r)

) − a
(
uα(x, r)

)
uα

x (x, r)
∣
∣dr dx

≤ (C1 + C2M2)s

for some constants C1,C2 independent of α.

Step 2: We claim that this limit function u is a weak solution.

Claim The unique solutions to (17)–(18) will satisfy
∫ T

0

∫

R

∣
∣uα − k

∣
∣φt + p

(
uα, k

)
φx + sgn

(
uα − k

)
h
(
x, t, uα

)
φ dx dt

+
∫

R

∣
∣u0(x) − k

∣
∣φ(x,0) dx

=
∫ T

0

∫

R

∣
∣uα − k

∣
∣
(
a
(
uα

) − a
(
uα

))
φx dx dt

+
∫ T

0

∫

R

∣
∣uα − k

∣
∣
(
a
(
uα

) − a
(
uα

))

x
φ dx dt (23)

for every k ∈ R and every non-negative test function φ ∈ C∞
c (R × (−∞, T )). Here

p(u, k) = sgn(u − k)(f (u) − f (k)).

To see this, notice that the solutions to (17)–(18) will satisfy

∂t

(
uα − k

) − (
f

(
uα

) − f (k)
)

x
+ h

(
x, t, uα

) = (
a
(
uα

) − a
(
uα

))(
uα − k

)

x
.

Multiply this equation by sgnν(u
α − k)φ, where

sgnν(x) =
⎧
⎨

⎩

−1, if x < −ν,

x/ν, if |x| ≤ ν,

1, if x > ν,

then integrate over UT = R × (0, T ). Let wα := uα − k then integration by parts will
lead to the following identity.

∫ ∫

UT

sgnν

(
wα

)(
wα

)
φt + sgnν

(
wα

)(
f

(
uα

) − f (k)
)
φx dx dt

+
∫ ∫

UT

sgn′
ν

(
wα

) · φ[
wα · wα

t + wα
x

(
f

(
uα

) − f (k)
)]

dx dt

+
∫ ∫

UT

sgnν

(
wα

)
h
(
x, t, uα

)
φ dx dt
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+
∫

R

sgnν

(
u0(x) − k

)(
u0(x) − k

)
φ(x,0) dx

=
∫ ∫

UT

sgnν

(
wα

)(
a
(
uα

) − a
(
uα

))
wαφx dx dt

+
∫ ∫

UT

sgn′
ν

(
wα

)
wα

x

(
a
(
uα

) − a
(
uα

))
wαφ dx dt

+
∫ ∫

UT

sgnν

(
wα

)(
a
(
uα

) − a
(
uα

))

x
wαφ dx dt.

By taking the limit as ν → 0 and noting that the limits of the second integrals on
both the left-hand and right-hand sides of this identity will converge to zero, we
obtain (23). If k = − supα>0 ‖uα‖L∞ then the absolute values and signs drop accord-
ingly, and (19) and (23) imply that as α → 0+,

∫ T

0

∫ ∞

−∞
uφt + f (u)φx + h(x, t, u)φ dx dt +

∫ ∞

−∞
u0(x)φ(x,0) dx ≥ 0.

If k = supα>0 ‖uα‖L∞ , then the sign changes (≤ 0). Thus,
∫ T

0

∫ ∞

−∞
uφt + f (u)φx + h(x, t, u)φ dx dt +

∫ ∞

−∞
u0(x)φ(x,0) dx = 0.

This completes the proof of the theorem. �

Now consider (15)–(16) in the absence of source terms:

∂tu + f (u)x = 0 in UT , (24)

u(x,0) = u0(x) for x ∈ R. (25)

The following corollary will show that the solutions to the corresponding regularized
problem

∂tu
α + a

(
uα

)
uα

x = 0 in UT , (26)

uα(x,0) = u0(x) for x ∈ R, (27)

will converge to the entropy admissible solution of (24)–(25).

Corollary 1 (Homogeneous) The α-limit weak solution of (26)–(27) is the unique
entropy admissible solution of (24)–(25).

Proof Let v = v(x, t) be the unique Krǔzkov entropy admissible solution to
(24)–(25). That is, v = v(x, t) is a weak solution that satisfies the following en-
tropy inequality: for every constant k ∈ R and every non-negative test function φ

with compact support in R × (0, T ),
∫ T

0

∫

R

|v − k|φt + p(v, k)φx dx dt ≥ 0, (28)

where p(v, k) := sgn(v − k)(f (v) − f (k)).
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Similar to the previous calculations, we can show that the unique solutions to (26)
will satisfy

∫ T

0

∫

R

∣
∣uα − k

∣
∣φt + p

(
uα, k

)
φx dx dt

=
∫ T

0

∫

R

∣
∣uα − k

∣
∣
(
a
(
uα

) − a
(
uα

))
φx dx dt

+
∫ T

0

∫

R

∣
∣uα − k

∣
∣
(
a
(
uα

) − a
(
uα

))

x
φ dx dt (29)

for every k ∈ R and every non-negative test function φ. Now by compactness
and (19), taking the α-limit to (29) will show that the α-limit weak solution u is
Krǔzkov entropy admissible. Specifically, the first integral on the right-hand side
of (29) will limit to zero by compactness and the second integral on that same side is
non-negative. By the L1-stability of entropy solutions,

∫

R

∣
∣u(x, t) − v(x, t)

∣
∣dx ≤

∫

R

∣
∣u(x,0) − v(x,0)

∣
∣dx = 0.

That is, the sequence of regularized solutions {uα} must converge to u—the unique
entropy admissible solution to the IVP. �

4.1 Remarks on the Helmholtz filter and quadratic fluxes

In order to build a better understanding of the conditions considered in Theorem 2
and its corollary, we provide a motivating example which satisfy such conditions.
As we shall see, the flux, filter, and initial data can play key roles in obtaining the
conditions guaranteeing the convergence to the entropy admissible solution.

Let G be the Helmholtz filter and f = f (u) be a second-order real polynomial
with respect to u, f (u) = c0 + c1u + c2u

2. This section will show that we can ex-
ploit the structure of the filter and the convex flux to prove convergence to the weak
solution. For instance, we obtain the following

∫ T

0

∫

R

uαφt + f
(
uα

)
φx dx dt +

∫

R

u0(x)φ(x,0) dx

= −
∫ T

0

∫

R

(
a
(
uα

) − a
(
uα

))
uα

xφ dx dt

= −
∫ T

0

∫

R

2c2
(
uα − uα

)
uα

xφ dx dt

=
∫ T

0

∫

R

2c2
(
α2uα

xx

)(
uα

x − α2uα
xxx

)
φ dx dt

= α2c2

∫ T

0

∫

R

∂x

(
uα2

x − α2uα2
xx

)
φ dx dt

= c2

∫ T

0

∫

R

(
α2uα

xx

)2
φx dx dt − α2c2

∫ T

0

∫

R

(
uα

x

)2
φx dx dt

:= E1 + E2.

Author's personal copy



J. Villavert, K. Mohseni

E1 must limit to zero as α → 0+ from the estimate

c2

∫ T

0

∫

R

∣
∣α2uα

xx

∣
∣2

φx dx dt ≤ c2

∫ T

0

∫

R

∣
∣uα − uα

∣
∣2|φx |dx dt

≤ c2
∥
∥uα − uα

∥
∥

L∞
︸ ︷︷ ︸

≤2‖u0‖L∞

‖φx‖L∞
∫

supp(φ)

∣
∣uα − uα

∣
∣dx dt

≤ 2c2M1‖φx‖L∞
∫

supp(φ)

∣
∣uα − uα

∣
∣dx dt −→ 0 as α −→ 0+.

It remains to be shown that the term E2 limits to zero as α → 0+. This follows from
the following estimate

|E2| ≤ α2c2

∫ T

0

∫

R

∣
∣
(
uα

x

)2
φx

∣
∣dx dt

≤ α2c2
∥
∥uα

x

∥
∥

L∞
︸ ︷︷ ︸

≤α−1‖u0‖L∞

‖φx‖L∞
∫ T

0

∫

R

∣
∣uα

x

∣
∣dx dt

≤ αc2M1‖φx‖L∞
∫ T

0

∫

R

∣
∣uα

x

∣
∣dx dt

≤ αc2M1M2‖φx‖L∞T −→ 0 as α −→ 0+.

Moreover, to apply Corollary 1, we impose the condition that for α  1, uα
x ≥ uα

x or
−α2uα

xxx = −α2gx ∗uα
xx ≥ 0 by definition of the Helmholtz filter. One can certainly

choose initial conditions and exploit the properties of the filter so that such a condi-
tion holds—similar to what was done in [27]. Interestingly, these estimates illustrate
why many successful results for this regularization were seen for the Burgers’ and
homentropic Euler equations under the Helmholtz filter.

5 Concluding remarks

The results provided here validates our method as a successful shock-regularization
of scalar conservation laws including the basic inviscid Burgers’ equation (1) pro-
posed in [25]. Moreover, the global existence result in Sect. 3 includes the higher-
dimensional Burgers’ equation studied in [26]:

{
∂tu + (u · ∇)u = 0, (x, t) ∈ R

N × (0, T ),

u(x,0) = u0(x), x ∈ R
N,

(30)

since this is equivalent to (5) with

Ai(x, t, u)
.= diag(ui, ui, . . . , ui).

This global existence result also includes the regularized 1d homentropic Euler equa-
tions introduced in [29]. Here the authors examined

{
ρt + (ρv)x = 0, (x, t) ∈ R × (0,∞),

(ρv)t + (ρuu + P)x = 0, (x, t) ∈ R × (0,∞),
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supplemented with initial data

(ρ, v)(x,0) = (ρ0, v0)(x),

where P = ργ

γ
with γ > 1. Recall that the eigenvalues for this 2 × 2 system are

λ1 = v − c, λ2 = v + c,

where c = ρθ , with θ = γ−1
2 , is the sound speed. The corresponding Riemann-

invariants,

w1 = w1(ρ, v) = v + ρθ

θ
, w2 = w2(ρ, v) = v − ρθ

θ
,

provide a coordinate transformation that diagonalizes the system:
{

∂tw1 + λ2(w1,w2)∂xw1 = 0,

∂tw2 + λ1(w1,w2)∂xw2 = 0.

The authors regularized this diagonalized system exactly as in our procedure by re-
placing the coefficients λi with the averaged quantity λi . This averaging of the diag-
onalized system, unfortunately, does not capture the entropy solution to the homen-
tropic Euler equations as was achieved for scalar equations. We include this example
because it illustrates the difficulty in successfully extending our technique to other
systems even those which are not initially symmetric although symmetrizable. Re-
cently, however, there have been several proposed extensions to our filtering method.
For instance, the authors in [23, 28] introduced the observable divergence method as a
natural extension of the filtering in the inviscid Burgers’ equation to both the homen-
tropic Euler and full Euler equations in higher dimensions. They numerically studied
these regularized models and it did appear to add regularity to solutions while captur-
ing the entropy solution for the shock-tube and the Shu-Osher problems. In addition,
we placed further assumptions on the filtered conservation laws in order to show that
the limiting solution was entropy admissible. As demonstrated earlier, these assump-
tions resulted from the estimates we have obtained. Therefore, another aspect for
future examination will concern developing sharper estimates, if possible, that will
allow us to weaken these assumptions. Further, one can consider spatial averaging ap-
plied to initial boundary value problems to conservation laws. Initial-boundary value
problems for conservation laws have been studied in [1, 2, 9, 17]. Due to the boundary
effects, entropy inequalities can be formulated using either vanishing viscosity or the
Riemann problem just as what is done for the purely initial value problem. A natural
question is if our inviscid regularization can be applied in this setting in the sense that
this method recovers the boundary entropy inequalities.

Nonetheless, it is our hope that, perhaps, analogous results for these generalized
techniques can be developed as was done here for scalar conservation laws and, at
the very least, encourage the study, development, and consideration of using similar
filtering techniques in the simulation of the models for inviscid flows.

Acknowledgements The authors would like to acknowledge the partial support of the Air Force Office
of Scientific Research and the National Science Foundation.
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