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INTRODUCTION
Two distinct types of hydromedusan propulsion are well known
(Colin and Costello, 2002). Prolate species such as Sarsia tubulosa
primarily use a jetting type of propulsion with large jet velocities
immediately behind the velar aperture. Their swimming is
characterized by quick accelerations during the contraction phase
of swimming followed by periods of gliding with relatively small
accelerations. However, the once widely accepted jetting model fails
to explain the swimming patterns seen in prolate species such as
Aequorea victoria. These hydromedusae use a paddling or rowing
motion to swim and produce more diffuse vortices shed from the
bell margins during the contraction phase.

Prolate, jetting hydromedusae retract their tentacles during
swimming and feed by extending their tentacles while drifting
(Madin, 1988). Swimming is used to escape predators or to ambush
prey. Swimming and feeding are disparate activities since extending
the tentacles during swimming could greatly decrease swimming
performance. Conversely, oblate, paddling hydromedusae leave their
tentacles extended during swimming and the vortices produced
during swimming travel through the extended tentacles (Colin and
Costello, 2002; Colin et al., 2003; Costello, 1992; Costello and Colin,
1994; Ford and Costello, 1997). Prey in the fluid near the bell region
of paddling hydromedusae have even been observed to be carried
into contact with the tentacles by the vortices formed during
swimming (Costello and Colin, 1995). For these reasons, swimming
complements feeding in paddling hydromedusae by helping to draw
prey into the tentacles.

It has been shown that rowing propulsion is a necessary adaptation
for larger hydromedusae due to morphological constraints and
energy efficiency. For jetting propulsion, the force necessary for
propulsion increases faster with size than the available muscle force
to provide the jetting motion (Dabiri et al., 2007). Oblate
hydromedusae make up for this by employing paddling type
propulsion. Models show that the production of stopping vortices
during the relaxation phase of paddling type propulsion allows large
hydromedusae to swim effectively despite their morphological
constraints (Dabiri et al., 2007). Specifically, the stopping vortex
partially cancels the starting vortex, reducing the induced drag on
the oblate hydromedusa and increasing swimming efficiency. The
smaller, prolate species have lower drag due to their shape and
further decrease drag by retracting their tentacles while swimming
(Colin et al., 2003). These factors, combined with more rapid bell
contractions, make jetting hydromedusae much more proficient
swimmers than their oblate relatives (Daniel, 1983).

We are interested in hydromedusan propulsion as a basis for the
design of new propulsion technologies for underwater vehicles.
Recently, jet and vortex propulsion have become a focus in the areas
of underwater maneuvering and locomotion of bio-engineered
vehicles. A vortex thruster loosely mimicking hydromedusa
propulsion was proposed by Mohseni (Mohseni, 2004; Mohseni,
2006). The current generation of these thrusters and their
implementation on an underwater vehicle are discussed by Krieg
and Mohseni (Krieg and Mohseni, 2008) and are capable of
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SUMMARY
The flow structures produced by the hydromedusae Sarsia tubulosa and Aequorea victoria are examined using direct numerical
simulation and Lagrangian coherent structures (LCS). Body motion of each hydromedusa is digitized and input to a CFD program.
Sarsia tubulosa uses a jetting type of propulsion, emitting a single, strong, fast-moving vortex ring during each swimming cycle
while a secondary vortex of opposite rotation remains trapped within the subumbrellar region. The ejected vortex is highly
energetic and moves away from the hydromedusa very rapidly. Conversely, A. victoria, a paddling type hydromedusa, is found to
draw fluid from the upper bell surface and eject this fluid in pairs of counter-rotating, slow-moving vortices near the bell margins.
Unlike S. tubulosa, both vortices are ejected during the swimming cycle of A. victoria and linger in the tentacle region. In fact, we
find that A. victoria and S. tubulosa swim with Strouhal numbers of 1.1 and 0.1, respectively. This means that vortices produced
by A. victoria remain in the tentacle region roughly 10 times as long as those produced by S. tubulosa, which presents an
excellent feeding opportunity during swimming for A. victoria. Finally, we examine the pressure on the interior bell surface of both
hydromedusae and the velocity profile in the wake. We find that S. tubulosa produces very uniform pressure on the interior of the
bell as well as a very uniform jet velocity across the velar opening. This type of swimming can be well approximated by a slug
model, but A. victoria creates more complicated pressure and velocity profiles. We are also able to estimate the power output of
S. tubulosa and find good agreement with other hydromedusan power outputs. All results are based on numerical simulations of
the swimming jellyfish.
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producing very strong vortices (formation time of up to 15, see
Results for a discussion of formation numbers). Mohseni et al.
(Mohseni et al., 2001) and Dabiri and Gharib (Dabiri and Gharib,
2005) also reported numerical and experimental results for jets
formed from a nozzle with temporally varying exit velocity and
diameter, respectively.

In the present study, we present the Lagrangian coherent structures
(LCS) seen in the results of numerical simulations of hydromedusae
swimming as well as several examples of particle motion in the
resulting flow. The hydromedusae examined are Aequorea victoria
Murbach and Shearer 1902, a paddling or rowing type of
hydromedusa, and Sarsia tubulosa M. Sars 1835, a jetting type of
hydromedusa. We believe this to be the first numerical study of this
type. The actual motion of the hydromedusa, reproduced from
digitized videos of the swimming hydromedusae, is used to compute
the surrounding velocity field. A brief description of the numerical
method for computing the velocity field is included in Materials and
methods. The use of computational fluid dynamics (CFD) data instead
of an empirical velocity field from digital particle image velocimetry
(DPIV), or similar, results in higher resolution of the LCS as well
as greater accuracy in subsequent calculations. Additionally, there
are significant difficulties in obtaining high-quality results from DPIV
for swimming hydromedusae. DPIV results are only available for
the time during which the hydromedusa is properly oriented within
the field of view, perhaps only a few swimming cycles depending
on many factors. Additionally, the resolution obtained from DPIV
depends on the concentration of particles in a given region. In general,
the distribution of particles may be highly non-uniform. The particles
will be drawn toward certain flow structures, just as dye is drawn
into vortices in dye visualization experiments, but other areas of the
flow may be left with few particles. None of these difficulties are
present in our method. It is only necessary to capture a good
swimming cycle. The periodic swimming motion may then be
determined up to the resolution of the camera used and iterated for
as many swimming cycles as desired.

As expected, S. tubulosa produces strong vortices along the axis
of symmetry. These vortices move quickly away from the
hydromedusa, providing a high momentum transfer for rapid
swimming while negating opportunities for feeding while
swimming. In fact, if S. tubulosa were to extend its tentacles during
swimming, they would create additional drag and could negatively
impact swimming performance. Conversely, the structures formed
by the paddling hydromedusa, A. victoria, transport fluid from the
outer bell surface to linger in the tentacle region, enhancing feeding
opportunities since the flow passes through the region where the
tentacles drift.

We also note the presence of previously unobserved flow
structures in the subumbrellar region of S. tubulosa. As previously
mentioned, A. victoria produces a starting and stopping vortex during
each swimming cycle. Since these vortices are ejected together
during the contraction phase, they interact and influence each other.
We find that S. tubulosa also produces a stopping vortex during the
relaxation phase. However, only the starting vortex is ejected during
contraction while the stopping vortex mostly dissipates within the
subumbrellar cavity. Finally, we examine the pressure on the
subumbrellar wall of both hydromedusae as well as the velocity
profiles in the wake and across the velar opening. Sarsia tubulosa
produces a nearly uniform jet through the velar opening and an
equally uniform pressure along the subumbrellar wall. We expect
that this type of swimming could be very well approximated by a
slug model or a piston-cylinder arrangement. Conversely, A. victoria
produces a much more complicated wake and pressure profile.

MATERIALS AND METHODS
Hydromedusa motion

The motion of each hydromedusa was determined from videos of
physical specimens of the swimming hydromedusae. These videos
were provided by Dr Sean Colin (Roger Williams University) and
are further discussed in Sahin et al. (Sahin et al., 2009). The
hydromedusae were placed in filtered seawater within a glass vessel
of sufficient size to allow each hydromedusa to swim freely. The
outline of the bell was illuminated using a planar laser directed
through the central axis. Fluorescein dye was injected near the bell
to enhance the illumination.

After recording, each frame of the video was analyzed, and the
body motion of the hydromedusa was determined. The geometry
of the hydromedusa was approximated using NURBS curves (Piegl,
1991), and Fourier-series interpolation in time was used to create
a numerical model of the periodic contraction of the swimming
hydromedusae. In contrast to the relatively short time frames
allowed by using DPIV, this model allows us to analyze many
periods of swimming via numerical solution for the flow around
the hydromedusa.

Numerical procedure
For completeness, a brief overview of the numerical procedure
used in the computation of the velocity field induced by the
swimming hydromedusae is included here. For complete details
of the numerical procedure we have developed for this problem,
including code validation, see Sahin and Mohseni (Sahin and
Mohseni, 2008a; Sahin and Mohseni, 2008b). The flow field was
computed based on the periodic swimming model derived from
the videos of swimming hydromedusae. The surrounding velocity
field was computed using a new arbitrary Lagrangian–Eulerian
(ALE) (Hirt et al., 1974) method developed for this purpose. In
this method, the mesh follows the moving boundary between the
fluid and the hydromedusa body, and the cylindrically symmetric
governing equations are solved on a moving, unstructured
quadrilateral mesh. The pressure is solved on a staggered grid,
eliminating the need for pressure boundary conditions since
pressure is defined only at interior points. The mesh motion is
determined by solving the linear elasticity equation at each time
to avoid remeshing (Dwight, 2006; Johnson and Tezduyar, 1994),
and the linear systems produced by the discretization are solved
using the GMRES method (Saad and Schultz, 1986) combined
with several preconditioners.

Lagrangian coherent structures
Lagrangian coherent structures provide a method of analyzing a
flow field from a dynamical systems perspective. LCS were
introduced by Haller and Yuan (Haller and Yuan, 2000) and further
defined by Shadden et al. (Shadden et al., 2005). LCS represent
lines of negligible fluid flux in a flow and therefore govern
transport and mixing in the flow. Due to the general framework
provided by LCS, they have been applied to a wide range of
different areas including transport of pollutants in the ocean
(Lekien et al., 2005), two-dimensional turbulence (Haller and
Yuan, 2000; Manikandan et al., 2007), vortex shedding behind an
airfoil (Cardwell and Mohseni, 2008; Lipinski et al., 2008) and
transport in empirical vortex rings as well as hydromedusa
swimming (Shadden et al., 2006). LCS have proven to be an
effective tool for identifying exact vortex boundaries and can even
be used to divide a flow into lobes that govern transport, as is
done in classical lobe dynamics analysis (Rom-Kedar and Wiggins,
1990). We follow the procedure for computing LCS outlined by
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Shadden et al. (Shadden et al., 2005) and we provide here a brief
overview for those unfamiliar with this concept.

It is simplest to think of LCS as a post-processing technique
to reveal coherent structures in a given flow. In our case, the flow
is determined by numerical simulations of the swimming
hydromedusae. LCS are based on the finite time Lyapunov
exponent (FTLE), which is analogous to the standard Lyapunov
exponent of classical dynamical systems theory. The FTLE is
defined as:

where t0 is the time being considered, T is the ‘integration time’,
which will be further explained later, x is the position vector, and
λmax(�) is the maximum eigenvalue of the finite time deformation
tensor, �. In practice, the domain of interest is seeded with passive
tracer particles, which are then advected from time t0 to time t0+T
using the known velocity field. The resulting particle positions are
then used to compute � and then the FTLE field. The flow
considered here is a two-dimensional, axisymmetric flow, and �
was calculated appropriately to take this into account. In swirl-free
axisymmetric coordinates, (r, θ, x), � becomes:

where ri, rf, xi and xf are the initial and final radial and axial
coordinates of a particle in the flow, respectively.

The resulting FTLE field depends on the integration time, T, in
that larger values of T reveal more structures than smaller values
of T. Therefore, T may be chosen to reveal the desired level of detail
without worrying about influencing the major structures that are
revealed. Additionally, T may be positive or negative, representing
forward and backward particle advection, respectively. Therefore,
there are two types of FTLE fields: forward time and backward
time.

Once the FTLE field has been calculated, LCS are defined as
ridges in the FTLE field, following Shadden et al. (Shadden et
al., 2005). In practice, LCS are usually visualized by looking at
contour plots of the FTLE field. Conceptually, ridges in the
forward FTLE field, called forward LCS, represent lines where
particles diverge most quickly, and backward LCS represent lines
where particles converge. For this region, dye visualization
experiments reveal structures very similar to backward LCS.
Additionally, for LCS which are sufficiently strong, the flux
across the LCS is negligible, a property that makes LCS extremely
useful for analyzing transport in flows. Finally, forward LCS are
analogous to the stable manifolds of a dynamical system and act
as repelling material lines while backward LCS are analogous to
the unstable manifolds of a dynamical system and act as attracting
material lines. The interaction of these LCS largely govern
transport in a flow, and their intersections can be used to exactly
define a vortex without the use of arbitrary thresholds of vorticity
(Shadden et al., 2006).
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RESULTS
Sarsia tubulosa

Sarsia tubulosa employs a jetting type of propulsion. The swimming
cycle consists of three phases: (1) a rapid contraction, (2) relaxation
and (3) a coasting phase. Each cycle results in the expulsion of a
strong vortex along the axis of symmetry, which rapidly propels
the jellyfish forward as seen in the LCS shown in Fig.1 (also see
Movie1 in supplementary material).

The jetting nature of S. tubulosa’s propulsion, forming a single
vortex ring with each swimming pulse, is clearly reflected in the
LCS seen in Fig.1. During the contraction phase, a vortex which
draws fluid in the positive x-direction along the axis of symmetry
is ejected from the hydromedusa. This will be referred to as the
starting vortex. One of the most striking details of this figure is the
presence of very complex flow structures within the subumbrellar

–5 –4 –3 –2 1 0 1

Time = 2.76 sD

–1

0

–0.5

0.5

1

–4 –3 –2 –1 0 1 2

Time = 2.51 sC

–1

0

–0.5

0.5

1

x

y

3–3 –2 –1 0 1 2

Time = 2.26 sB

–1

0

–0.5

0.5

1

3–3 –2 –1 0 1 2

Time = 2.01 sA

–1

0

–0.5

0.5

1

Fig. 1. Lagrangian coherent structures (LCS) for one swimming cycle of
Sarsia tubulosa. The forward LCS are shown in blue and the backward
LCS are red. The video version is available in the supplementary material
as Movie 1.
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region of the jetting hydromedusa. This region is very difficult to
view experimentally with DPIV or other techniques. However, our
numerical technique shows that during the relaxation phase of
swimming (Fig.1C), a stopping vortex of opposite sense to the
ejected vortex forms within the subumbrellar cavity. In this
hydromedusa, the presence of the velum traps the stopping vortex
within the subumbrellar cavity. Since the stopping vortex is not
ejected, it cannot interact with the ejected starting vortex. This is
the first time this stopping vortex has been observed in jetting
hydromedusae, likely due to the difficulty in imaging the
subumbrellar cavity of jetting hydromedusae during experiments.
In fact, it has been recently stated that no stopping vortex is formed
in a jetting swimmer (Weston et al., 2009), but we suspect this vortex
is present, even if difficult to detect, in all jetting as well as paddling
hydromedusae.

Our simulations for S. tubulosa used a hydromedusa with a
maximum bell radius of 0.63cm, a minimum bell radius of 0.57cm
and a swimming cycle length of 1s with 100 time steps per cycle.
In addition, the subumbrellar volume had a maximum value of
approximately 0.45cm3 and a minimum value of 0.26cm3.

Sarsia tubulosa is very efficient at producing a strong vortex.
We can quantify this ability by examining the formation time of
the vortices produced. Gharib et al. (Gharib et al., 1998) defined
the dimensionless formation time as:

for a jet of velocity Ue through a nozzle of constant diameter De

over a time t where the bar denotes a running mean. However, for
a non-constant exit diameter it is necessary to consider an integral
form of this equation. Calculations for a slug of fluid ejected from
an orifice with time varying diameter and velocity were presented
by Mohseni (Mohseni, 2000). Using a similar approach, Dabiri and
Gharib (Dabiri and Gharib, 2005) derived:

In the case of constant density flow, such as a hydromedusa
swimming in water, conservation of mass allows us to express this
as:

where Vc is the volume of the cavity; in our case, the subumbrellar
volume.
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A larger formation time indicates the formation of a more effective
vortex, where an impulsively started piston-cylinder arrangement
produces a formation time of about 4, after which additional fluid
expulsion results in a trailing jet behind the vortex (Gharib et al.,
1998). Sarsia tubulosa produces a vortex with a formation time
T*�7. This large formation number was expected, as discussed by
Dabiri et al. (Dabiri et al., 2006), and is made possible largely by
the decrease in diameter of the velar opening during the contraction
phase of swimming (see Fig.2). A trailing jet represents a decreased
efficiency of momentum and energy transfer (Krueger and Gharib,
2003). The vortex ring produced by S. tubulosa has no such trailing
jet, meaning the vortices are formed with maximal efficiency.

The axial velocity in the wake is plotted in Fig.3. This plot
represents one swimming cycle and clearly shows that the velocity
disturbances are concentrated near the axis of symmetry. In fact,
beyond about one-half a diameter away from the axis of symmetry,
the disturbances quickly decay to negligible levels. As a vortex is
produced, a large axial velocity appears at the velar opening of the
hydromedusa, which then decays as the vortex moves away from
the hydromedusa. Also, the velocity in the wake is almost entirely
positive due to the jetting nature of the swimming. The strong jet
can also be seen in the plot of axial velocity across the velar opening
as well as the pressure on the subumbrellar wall (Fig.4 and Fig.5).
Notice, in particular, that the velocity across the velar opening forms
a very uniform jet, with only a small shear layer near the velum.
This is in contrast to the profile that we will see for A. victoria.
Additionally, we can divide the swimming cycle for S. tubulosa
into three parts: a strong contraction, a relaxation phase and then a
brief coasting phase before the next contraction. These three phases
can be clearly seen as a decrease, then increase, in the subumbrellar
volume followed by a time of nearly constant volume as seen in
Fig.2.

By noting that S. tubulosa is a jetting swimmer, propelling itself
via a jet created by pressurizing the subumbrellar cavity, we can
calculate the power output similarly to a biological (such as a heart)
or mechanical pump, as has been done for squids (O’Dor, 1988).
The power output is simply given by Pout=pQ, where p is the
subumbrellar pressure and Q is the jet flow rate. Since the pressure
and jet velocity are very uniform in space (see Figs4 and 5), we
can use the mean value at each time step without losing much
accuracy. Q, p and Pout are plotted in Fig.6.

The mean power output is found to be about 16 gcm2 s–3. To
account for body size, power is divided by mass to the 5/3 power
(see Daniel, 1983), where this S. tubulosa has a mass of ~0.65g
as calculated from the volume of the body and the assumption
of neutral buoyancy (1gcm–3). This results in a mean power
output of ~0.33 W kg–5/3, which is within the reported range
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Fig. 2. The subumbrellar volume and velar opening diameter during two swimming cycles for Sarsia tubulosa.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



2440

(0.2–0.75Wkg–5/3) of the experimentally measured power outputs
for the hydromedusae Gonionemus vertens and Stomotoca atra
(Daniel, 1985).

Since there is only negligible flux across LCS, they largely govern
transport in a given flow (Shadden et al., 2005). In fact, the
intersections of forward and backward LCS divide the flow into lobes
that have distinct mixing characteristics. It is interesting to ask where
the particles in a vortex come from. Figs7–9 show the motion of

D. Lipinski and K. Mohseni

passive tracers for the swimming S. tubulosa (also see Movie2 in
supplementary material). In this jetting hydromedusa, the LCS are
complicated and evolve very quickly during the contraction phase
so that the groups of tracers that end up in a vortex are not clearly
separated upstream of the hydromedusa (Fig.7A). As the
hydromedusa swims, the green group of tracers is pulled into the
subumbrellar cavity while the blue and red groups collect outside
the bell (see Fig.8B). Then, just before the contraction phase, the
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blue group is pulled into the subumbrellar cavity while the red group
remains outside (Fig.9A). The red and blue groups of tracers merge
and are ejected with the vortex ring, at which point the dark red
group of tracers begins to be wrapped into the vortex ring as well
(Fig.9B,C). The ejected drifters travel away from the hydromedusa
very quickly as they are carried with the traveling vortex ring.

The best way to quantify this is to define the Strouhal number
as St=fL/v, where f is frequency, L is the mean hydromedusa radius
and v is the rate of vortex separation from the hydromedusa. Sarsia
tubulosa has a Strouhal number of about 0.10, meaning that the
vortices separate from the hydromedusa by about 10 radii per
swimming cycle. As we will discuss in more detail later, this presents
little opportunity for feeding during swimming.
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Aequorea victoria
The paddling propulsion of A. victoria is very different from the
jetting propulsion of S. tubulosa. This paddling or rowing propulsion
produces two vortices during each swimming cycle, which are
ejected together during the contraction phase. This results in more
energy-efficient swimming but cannot provide the fast accelerations

D. Lipinski and K. Mohseni

and rapid swimming seen in jetting hydromedusa. The LCS
produced by A. victoria are markedly different as well. The forward
and backward LCS can be seen in Fig.10 (also see Movie3 in
supplementary material).

The A. victoria hydromedusa used in our simulations has a
maximum bell radius of 2.3cm and a minimum bell radius of 1.9cm
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during contraction and is therefore much larger than S. tubulosa.
The swimming cycle took 1.17s, and 100 time steps per cycle were
used for the CFD runs. Since A. victoria does not use a jetting motion
to swim, the concept of a vortex formation time does not make much
sense. However, if we naively define a vortex formation time by
considering the volume in the subumbrellar region, this results in
a formation number of T*�0.07. A very small formation time is
characteristic of a thin vortex ring located away from the axis of
symmetry, which is precisely what we see in A. victoria. Clearly,
A. victoria has not optimized its swimming to produce the most
powerful vortices since even nozzles of constant diameter are
capable of producing vortices with T*�4 (Gharib et al., 1998).

The axial velocity in the wake is plotted in Fig.11. Near the axis
of symmetry, the flow moves toward the jellyfish, but near the bell
margins the axial flow velocity oscillates with the swimming strokes.
Beyond the bell margins, the flow disturbances quickly decay,
leaving the flow far from the axis of symmetry largely undisturbed
as well. The axial velocity across the velar opening and the pressure
on the subumbrellar surface of the hydromedusa are also presented
in Fig.12 and Fig.13. Note that, again, the large changes in velocity
across the velar opening as well as pressure on the hydromedusa
occur near the bell margins. Additionally, the swimming cycle for
A. victoria is equally split into a contraction phase and a relaxation
phase as it uses a rowing motion to propel itself forward.

These results are all significantly different from those seen for
S. tubulosa, which produced velocity disturbances only near the
axis of symmetry and displayed a very uniform pressure profile
and velocity across the velar opening. Additionally, there is no
coasting phase for A. victoria. Each swimming cycle is a
continuous transition from contraction to relaxation and back to
contraction. Due to these fundamental differences in locomotion,
it is not possible to calculate the power output of A. victoria in
the same way we have done for S. tubulosa. Although this is still
possible, it requires a more complicated analysis of the
surrounding flow.

The resulting forward and backward LCS are shown in Fig.10.
The backward LCS show attracting material manifolds and reveal
vortical structures that look very similar to the results of previous
dye visualization experiments (Dabiri et al., 2007; Costello et al.,
2008). As discussed by Dabiri et al., the paddling type of

hydromedusa creates two vortices of opposite rotation during each
swimming cycle (Dabiri et al., 2007). During the relaxation phase
(Fig.10D), a stopping vortex forms in the subumbrellar region with
a rotation that draws fluid towards the hydromedusa along the axis.
Then, during the contraction phase (Fig.10B), a starting vortex of
opposite sense is formed very near the first, and these two vortices
are ejected from the hydromedusa together. Once the vortices have
been ejected, the weaker stopping vortex acts to cancel out some
of the vorticity from the starting vortex. This improves the swimming
efficiency of the hydromedusa (Dabiri et al., 2007). This swimming
motion is repeated periodically, generating a series of vortices and
propelling the hydromedusa forward. Unlike S. tubulosa, where only
the starting vortex has been previously noted, both of these have
been observed before and are known to play a key role in the
swimming of A. victoria.

Fig.14 and Fig.15 show the motion of passive tracers placed in
the flow that end up in the ejected vortices (also see Movie4 in
supplementary material). Note that, in Fig. 10B, during the
contraction phase, the forward LCS have formed a loop along the
outer surface of the bell, which is labeled A in the figure, as well
as a loop in the subumbrellar region (labeled B). Tracers that end
up in lobe A begin upstream of the hydromedusa in one coherent
group and are swept around the tip of the bell in one cycle (see
Fig.14F to Fig.15B). On the other hand, the tracers in lobe B are
more dispersed until they group together in Fig.14E. As a contraction
takes place, lobe A is swept into the subumbrellar region, along
with the tracers contained therein, and combines with lobe B,
merging the two groups of tracers. From here, the tracers are
immediately ejected with the next vortex pair.

Since particles (such as food) are collected at the core of the
vortex, the ejected vortices and the particles contained therein remain

−10.5 −10 −9.5 −9 −8.5 −8 −7.5 −7

0

0.5

1.0

1.5

x/(mean diameter)

A
xi

al
 v

el
oc

ity
 (

20
–1

 c
m

 s
–1

)

 

t=0T 0.1T 0.2T 0.3T 0.4T 0.5T 0.6T 

Fig. 11. The axial velocity along lines of constant radius in the wake of
Aequorea victoria. The radius has been scaled by the mean diameter and
the velocity has been scaled by a factor of 20–1 to fit within the figure.
Many times are plotted from t=0T to t=0.8T, where T is one swimming
cycle (1.17 s). For reference, the hydromedusa geometry at maximum and
minimum diameter are also plotted.

−3 −2 −1 0 1 2 3 4
0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

Contraction phase

 

t=0.5T
0.6T
0.7T
0.8T
0.9T

−4 −3 −2 −1 0 1 2
R

ad
ia

l p
os

iti
on

 in
 th

e 
ve

la
r 

op
en

in
g

Relaxation phase

A

B

 
Axial velocity relative to the jellyfish (v–vjellyfish) (cm s–1)

Fig. 12. The axial velocity of the flow relative to the hydromedusa across
the velar opening of Aequorea victoria. Times are presented for one
complete paddling cycle.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



2444

at about the same radius as the bell margin and the hydromedusa’s
tentacles as the hydromedusa moves upstream. In fact, A. victoria
swims with St�1.1, meaning that the particles in a vortex separate
downstream from the hydromedusa at a rate of only 1.1 radius per
swimming cycle, in contrast to the 10 radius separation seen for S.
tubulosa. This provides an excellent opportunity for the
hydromedusa to feed and offers a plausible explanation for why A.
victoria swims with its tentacles extended.

DISCUSSION
We have seen that S. tubulosa and A. victoria fall into two
different categories based on their method of swimming and that
feeding and swimming are coupled activities. For hydromedusae,
effective feeding is completely dependent on bringing prey into
contact with the tentacles or oral arms, where it may be captured.
These two groups have addressed this problem in very different
ways.

The jetting hydromedusa, S. tubulosa, retracts its tentacles while
swimming and feeds primarily by ambushing its prey. Swimming
is used primarily to escape predators or relocate to a new feeding
location. To this end, jetting hydromedusae have optimized their
swimming to move quickly, despite the extra energy costs.

Sarsia tubulosa takes advantage of its jetting motion to produce
large accelerations to escape predators and reposition itself for
feeding. Aequorea victoria, however, experiences much lower
accelerations and uses swimming as an extension of its feeding
mechanism. In fact, the velocity profile in the wake of A. victoria
(Fig.11) shows significant negative velocities in the wake near the

D. Lipinski and K. Mohseni

axis of symmetry. This indicates a large added mass force that
inhibits acceleration of the hydromedusa.

Aequeria victoria feeds by swimming with its tentacles extended.
In fact, oblate hydromedusae spend almost all their time swimming
with tentacles extended (Colin et al., 2003). This is effective because
each swimming stroke acts to transport fluid that may contain food
into the region of the tentacles in a way that enables prey capture
(see Fig.15C).

The relatively high Strouhal number seen for A. Victoria (St�1.1)
indicates that the produced vortices separate at a rate of about 1.1
hydromedusa radii per swimming cycle (see Fig.10). During this
time, the particles entrained in the vortices are transported through
the tentacles, presenting an excellent opportunity for prey capture.
Furthermore, as the starting and stopping vortices interact, the
vortices are stretched (see Fig.15D) and partially cancel each other
due to viscous effects and vorticity diffusion, decreasing the rotation
rate. This creates a relatively slowly rotating and translating vortex,
further enhancing the chance for prey capture.

Sarsia tubulosa swims with a much lower Strouhal number
(St�0.10) than A. victoria. This means that the produced vortices
move about 10 radii away from the jetting hydromedusa during each
swimming cycle. This rapid transport of fluid away from the
hydromedusa’s body offers little opportunity for prey capture
during swimming since any prey in the surrounding flow is quickly
transported out of range of the tentacles.
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Aequorea victoria primarily feed on small, soft-bodied
zooplankton (Costello and Colin, 2002), which, to a good
approximation, may be expected to largely drift along with the
surrounding flow. Haller and Sapsis have recently examined
transport of inertial particles in a general flow (Haller and Sapsis,
2008) and Peng and Dabiri have recently completed a study of
the transport of inertial particles in the flow around an oblate
hydromedusa, Aurelia aurita, using particle LCS (Peng and

Dabiri, 2008) and they find regions of transport that are very similar
to those seen for passive tracers. Furthermore, inertial and finite
size effects decrease with prey size. If the fluid inside lobes A and
B seen in Fig. 10B contains potential prey, at least a large portion
of the prey will be drawn through A. victoria’s tentacles during
swimming. In particular, lobe A is responsible for most of the
transport from the upstream region into the subumbrellar region
and past the tentacles. Peng and Dabiri found that 64–91%
(depending on the parameters used) of the volume of capture
regions for passive tracers (analogous to lobe A) was still a capture
region for inertial particles (Peng and Dabiri, 2008).

The wake structures produced by these two hydromedusae also
help to explain some additional features of the anatomy of oblate
and prolate hydromedusae. Oblate hydromedusae commonly have
well-developed and prominent oral arms extending from the center
of the bell while these structures are absent in prolate species
(Costello et al., 2008). In fact, the presence of well-developed oral
arms or tentacles extended in the flow in a jetting species could
add drag and decrease swimming performance. Conversely,
paddling hydromedusae take advantage of feeding structures, such
as tentacles and oral arms, drifting freely in the flow by feeding
while swimming.

By using a numerical model as the basis of our study, we can
easily gain additional information that would be difficult or
impossible to get from experiments. For example, for S. tubulosa,
the velocity across the velar opening is nearly uniform in space,
exhibiting only a small shear layer near the velum (Fig. 4). This
indicates that the fluid expelled by the hydromedusa can be well
approximated as a slug of uniform velocity, perhaps with a
correction for the boundary layer effects. Also, A. victoria swims
by continuously paddling with equal times dedicated to contraction
and relaxation while S. tubulosa follows a rapid contraction and
relaxation with a brief period of coasting before the next
contraction. For S. tubulosa, the pressure seen on the interior of
the bell is also extremely uniform. This is very useful for building
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engineered systems to imitate the propulsion of a jetting type of
hydromedusa. For example, knowing the pressure on the bell
interior, combined with the velar opening diameter, would allow
for the design of a piston-cylinder arrangement to mimic this
behavior using current technologies. Experimental studies have
little hope of obtaining these types of information due to the
difficulty of directly measuring pressure on the surface of a living
organism as well as the challenges of obtaining a high-resolution
velocity profile.

It is important to note that these advantages do not come at the
expense of relevance to biological experiments. For example, using
a very simple calculation, we find that S. tubulosa produces a
power output of about 0.33 W kg–5/3, which matches very well with
experimental results presented by Daniel (Daniel, 1985).
Additionally, even small details of the hydromedusan swimming
are well captured by our method. As briefly mentioned by Daniel
(Daniel, 1985), the hydromedusa is an elastic, viscously damped
system. During contraction, muscles decrease the subumbrellar
volume, but there are no muscles to re-expand the bell. Elastic
strain energy stored during the contraction expands the bell during
the relaxation phase to its resting state. Due to this elastic
expansion, during the coasting phase of swimming for S. tubulosa,
we are able to observe oscillations in both the oral cavity volume
and the velar opening diameter (see Fig. 2). We attribute these
oscillations to elastic effects.

Another new and interesting feature discovered in this study is
the complex structure of the fluid in the subumbrellar region of S.
tubulosa (see Fig.1). The subumbrellar region even contains a
stopping vortex that forms during the relaxation phase of swimming.
However, unlike in paddling hydromedusae, this stopping vortex
remains inside the subumbrellar cavity and therefore cannot
influence the development of the ejected vortex.

Fig. 16 shows the development and dissipation of the stopping
vortex for S. tubulosa. In this figure, we display only the backward
LCS so that activity in the subumbrellar cavity is clear. As starting
vortex A is ejected during contraction, the previous stopping
vortex, B, sits deep within the subumbrellar cavity (Fig. 16A).
During relaxation, a new stopping vortex, C is formed and begins
to push B along the walls of the cavity (Fig. 16B) until C resides
deep within the cavity and B has been pushed near the velar
opening (Fig. 16C). At this point, B is no longer recognizable as
a well-defined vortex. In fact, as B is pushed along the wall, C
interacts with the wall to create secondary vorticity of an opposite
sense to vortex C. This secondary vorticity overwhelms vortex B
so that region D in Fig. 16D actually has vorticity of opposite sense
to the stopping vortex. Finally, a new contraction begins and the
fluid in region D (Fig. 16D) is ejected as part of a new starting
vortex.

Aequorea victoria ejects both vortices together during the
contraction phase while S. tubulosa ejects only the starting vortex
while the stopping vortex remains within the bell. The different
morphologies of the two hydromedusae produce this distinction.
In A. victoria, each vortex is formed by the shear layer being shed
off the tip of the bell. However, the velum of S. tubulosa alters
the way the vortex is formed so that the stopping vortex moves
deep within the velar cavity, instead of remaining near the velar
opening, so it is not ejected during contraction. This stopping
vortex in S. tubulosa has not been observed in DPIV or dye
visualization experiments, most likely due to its confinement
within the bell and the difficulty of imaging this area in
experiments. Its effect on energy requirements and swimming
efficiency remains to be seen.

LIST OF ABBREVIATIONS
� finite time deformation tensor
λmax maximum eigenvalue of �
ALE arbitrary Lagrangian–Eulerian
CFD computational fluid dynamics
De diameter of nozzle
DPIV digital particle image velocimetry
FTLE finite time Lyapunov exponent
LCS Lagrangian coherent structure(s)
p pressure
Pout power output
Q flow rate = –(dV/dt)
rf final radius
ri initial radius
St Strouhal number
T integration time
T* dimensionless formation time
Ue velocity of jet
V volume
Vc volume of cavity (subumbrellar volume)
x position vector
xf final axial position
xi initial axial position
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