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The evolution of starting jet circulation, impulse and kinetic energy are derived in
terms of kinematics at the entrance boundary of a semi-infinite axisymmetric domain.
This analysis is not limited to the case of parallel jet flows; and the effect of non-zero
radial velocity is specifically identified. The pressure distribution along the entrance
boundary is also derived as it is required for kinetic energy modelling. This is done
without reliance on an approximated potential function (i.e. translating flat plate),
making it a powerful analytical tool for any axisymmetric jet flow. The pressure model
indicates that a non-zero radial velocity is required for any ‘over-pressure’ at the
nozzle exit. Jet flows are created from multiple nozzle configurations to validate this
model. The jet is illuminated in cross-section, and velocity and vorticity fields are
determined using digital particle image velocimetry (DPIV) techniques and circulation,
impulse and kinetic energy of the jet are calculated from the DPIV data. A non-
zero radial velocity at the entrance boundary has a drastic effect on the final jet.
Experimental data showed that a specific configuration resulting in a jet with a
converging radial velocity, with a magnitude close to 40 % of the axial velocity at
its maximum, attains a final circulation which is 90–100 % larger than a parallel
starting jet with identical volume flux and nozzle diameter, depending on the stroke
ratio. The converging jet also attains a final impulse which is 70–75 % larger than the
equivalent parallel jet and a final kinetic energy 105–135 % larger.
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1. Introduction
The study of short duration starting jets is almost synonymous with the study of

vortex ring formation dynamics. In this type of flow a jet of fluid is expelled into
a semi-infinite resting reservoir of similarly dense fluid, where the unstable shear
layer/tube begins to spiral and the jet rolls into a single vortex ring or a vortex
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ring with a trailing wake depending on the exact jetting parameters (Gharib, Rambod
& Shariff 1998). The formation and evolution of vortex rings have been studied
extensively by the fluid dynamics community; for a more in depth review of vortex
rings, see Shariff & Leonard (1992). However, the formation analysis has been limited
to a fairly restricted set of boundary flow conditions.

In practice, starting jets which enter a domain with nearly parallel axial streamlines
can be created by ejecting the jet through a nozzle which consists of a long cylindrical
tube. Here, as a point of clarification, we define ‘nozzle’ to be any solid structure
which separates the emerging jet flow from the surrounding fluid reservoir. Commonly,
flows ejected through a tube nozzle are driven by a moving piston internal to the
cylinder. Starting flows with converging streamlines can be created by ejecting the
jet through a converging conical nozzle. Converging conical nozzles are a family of
nozzles extending from a nearly cylindrical tube to nozzles with increasing slope until
the nozzle cone becomes a flat plate with a central circular orifice, which we will
call an orifice nozzle. In these flows the fluid behind the nozzle must converge to
pass through the central opening and these converging streamlines persist downstream
of the nozzle exit plane. Similarly, starting flows with diverging streamlines can be
created by diverging conical nozzles with the maximum divergence created by an
unbounded source just outside the domain. It should be noted here that during the
early stages of vortex formation the vortex ring is very close to the entrance boundary,
and will induce a radial velocity on the flow crossing the entrance plane. However,
throughout this paper we will refer to jet flows which are expelled through tube
nozzles as parallel jets, and jet flows expelled through converging or diverging nozzles
as non-parallel in reference to the nature of the source flow, despite the influence of
the vortex ring at early formation times.

Experimental studies on parallel starting jets have characterized jet velocity profiles
and vortex ring geometries (Didden 1979). Gharib et al. (1998) used digital particle
image velocimetry (DPIV) to get the full velocity field of parallel flows and used
that data to determine vortex ring circulation and vortex ring separation dynamics.
Using numerical simulations this analysis was extended to flows with a much larger
range of jet velocity profiles (Rosenfeld, Rambod & Gharib 1998) and shear layer
growth/acceleration (Mohseni, Ran & Colonius 2001). The circulation of the primary
vortex ring is usually modelled by a one-dimensional (1D) slug model (Glezer 1988;
Shariff & Leonard 1992; Gharib et al. 1998; Mohseni & Gharib 1998) (a more in
depth description is given in § 6) or through the self-similar roll-up of the vortex tube
extending from the nozzle (Pullin 1978; Saffman 1978; Pullin 1979; Pullin & Phillips
1981; Nitsche & Krasny 1994). The circulation and impulse of the jet were modelled
by the 1D slug model with an added contribution due to ‘over-pressure’ by Krueger
& Gharib (2003) and Krueger (2005). However, vortex rings formed from non-parallel
starting jets have been minimally studied even though non-parallel starting jets exist in
several vortex flows from squid and jellyfish propulsion, to cardiac flows, to synthetic
jet actuation. The importance of the axial gradient of radial velocity, ∂v/∂x, to the
generation of circulation was noted by Didden (1979), who also observed substantial
radial velocity during the initial phases of vortex ring formation. Krueger (2005)
derived an analytical model for the circulation generated in starting jets ejected from
both tube and orifice nozzles, where the effect of the radial velocity gradient on over-
pressure is emphasized. This model was validated by numerical simulations in Krueger
(2008) showing nearly double the circulation in jets generated through orifice nozzles
over tube nozzles with equivalent piston velocity programs, nozzle diameters, and
stroke ratios, which was well predicted by the analytical model for large stroke ratio



490 M. Krieg and K. Mohseni

1.0

–1.0

0.5

–0.5

0

y 
(c

m
)

x (cm)

(a)

(c)

(b)

R
ad

ia
l v

el
. (

cm
 s

–1
) 0

–1

–2

–3

–4

–5

Radial position (cm)
–3 –2 –1 0

20

0

40

–20

0.78
0.82
0.86
0.90

0 0.05 0.10 0.15 0.20

Radial position (cm)
0 0.05 0.10 0.15 0.20

FIGURE 1. (Colour online) A swimming jellyfish, Sarsia tubulosa, is shown along with
stable (blue) and unstable (red) LCSs around the body for a given instant during the jetting
phase (a). Local radial velocity at the velar opening is plotted for several instances in (b),
as well as the gradient of the radial velocity (c). (Data reproduced from Sahin, Mohseni &
Colins (2009) and Lipinski & Mohseni (2009b).)

jets. Rosenfeld, Katija & Dabiri (2009) investigated the effect the added radial velocity
had on the circulation of the forming jet, through numerical simulations utilizing a
range of converging conical nozzles. This paper provides additional empirical data to
support these findings and presents an analytical model for circulation, impulse, energy
and nozzle pressure which only requires knowledge of the velocity profiles at the
entrance boundary (nozzle exit plane). These velocity profiles are also parameterized
here for multiple nozzle configurations.

Non-parallel starting jets serve an important function in the locomotion of marine
animals such as jellyfish and squid. Jellyfish locomotion presents an interesting
optimization problem, because there are multiple competing objectives involved with
jetting. Lipinski & Mohseni (2009a,b) demonstrated that the jetting process is used for
feeding as well as locomotion using Lagrangian coherent structure (LCS) analysis
(for a summary of LCS analysis refer to Haller & Yuan (2000) and Shadden,
Lekien & Marsden (2005)). The Froude propulsive efficiency of multiple species
of jellyfish were examined by Sahin & Mohseni (2008, 2009) and Sahin et al. (2009)
and empirical DPIV measurements by Dabiri et al. (2010) show similar efficiency
characteristics for several different species. However, it is still not clear exactly which
swimming behaviours benefit propulsion versus feeding and respiration. Figure 1(a)
shows stable and unstable material transport barriers (LCS) around a swimming
jellyfish taken from simulations in Sahin et al. (2009) and Lipinski & Mohseni
(2009b); where the velar opening can clearly be seen to be a converging conical nozzle
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and figure 1(b) shows the converging radial velocity of the expelled jet. Therefore,
the analytical tools of this paper can be used to analyse the jellyfish jet, which in
turn will help to clarify the genetic optimization, since impulse and kinetic energy of
the jet are directly related to propulsion and efficiency, whereas creating a jet with
increased circulation may be tied to other functions such as feeding or respiration.
Squid locomotion has also been linked to vortex ring formation dynamics in the
propulsive jet (Anderson & Grosenbaugh 2005; Bartol et al. 2008, 2009), and again
simplified parallel flows do not exactly mimic the jetting seen in squid. The squid
funnel changes shape during pulsation and can exhibit characteristics of both tube
nozzles and converging conical nozzles. A converging radial velocity can be seen very
close to the exit of the funnel in figure 8 of Anderson & Grosenbaugh (2005), which
shows the velocity field of the jet produced from a swimming adult squid. Vortex ring
formation in the left ventricle has been tied to cardiac performance by Gharib et al.
(2006), and again heart valves at times behave like converging conical nozzles, which
should be taken into account when considering formation dynamics.

An accurate model for determining the kinetic energy of a fluid jet as well as
the pressure along the jet entrance boundary is an invaluable tool for analysing any
jet propulsor, such as those examined by Mohseni (2006). Propulsive efficiency of a
vehicle driving mechanism is inversely proportional to the energy required to generate
motion. For propulsors in a fluid environment this is directly related to the kinetic
energy of the jet created while propelling the vehicle forward. The pressure at the
entrance boundary of a parallel starting jet was predicted by Krueger (2005) by
equating the starting jet flow to the flow around a translating flat plate and determining
pressure from the resulting potential function. The modelling of this paper allows jet
energy and nozzle pressure to be determined using only the velocity profiles at the jet
entrance/nozzle exit boundary. Although we focus mainly on finite jets in this paper,
the analysis can be extended to continuous jets as well.

The rate of circulation and momentum transferred to the external flow plays a key
role in defining synthetic jet formation criteria. Characteristic jet flow parameters such
as the Strouhal number are determined entirely from axial jet velocity; however, as
is shown in this paper, the radial velocity of the jet has a significant affect on the
rate of circulation, impulse and energy added to the external flow. Holman et al.
(2005) approximated the vorticity flux from axial jet velocity which was related to the
Strouhal number to give a criterion for synthetic jet formation. The entrance geometry
of the synthetic jet nozzle was observed to strongly affect this criterion and a heuristic
expression was used to modify the vorticity flux based on nozzle entrance curvature.
Similarly, the entrance length was characterized for zero-net mass-flux devices with
a variety of channel entrance conditions by Raju et al. (2005), showing that a sharp
edge at the channel entrance has a strong effect on vorticity flux and entrance length.
While not pursued here, we expect that if the characteristic vorticity flux and Strouhal
number are redefined to include contributions from radial velocity, the jet formation
constant and entrance length would converge upon a more universal value independent
of specific device geometry. In addition, predicting jet kinetic energy and nozzle
pressure could serve as a powerful tool for analysing and designing synthetic jet
actuators. One particular application would be improving energetic cost functions for
optimization of synthetic jet flow control for aerofoil drag reduction.

A more complete model for the circulation, impulse and energy of a jet formed
from incoming flow with non-zero radial velocity is given based on the flux of
kinematic quantities across the entrance plane. The pressure profile at the entrance
boundary which is required to evaluate energy is also derived in terms of the entrance
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FIGURE 2. (Colour online) Definition of problem coordinate system and control volume
boundaries.

kinematics. The velocity profiles at the inflow are then parameterized for a set of
nozzle configurations allowing the invariants of motion to be calculated from a
limited number of parameters. It should be noted that the hydrodynamic impulse is
modelled, because the net hydrodynamic impulse of the jet after pulsation is equal
to the integral of the net external force required to create the flow. This is not in
all cases equal to the total fluid momentum, as will be discussed in this paper. The
derivation of total jet circulation, impulse and kinetic energy is given in § 2, and
§ 6 provides a general form for the axial and radial velocity profiles observed in
several experimental nozzle flows. A description of the vortex generator is given in § 3,
and § 4 illustrates the experimental apparatus used to capture jet flow dynamics. The
velocity and vorticity field of the axisymmetric flow is determined through DPIV as
described in § 5. Section 7 describes the experimentally observed differences between
parallel and non-parallel starting jets as well as the accuracy of models presented in
§ 2 for predicting circulation, impulse and energy.

2. Modelling the jet
The circulation, hydrodynamic impulse and kinetic energy of a starting jet are

modelled with a control volume analysis which relates the rate of change of those
quantities to the kinematics at the volume boundary. The fluid in the control volume
is assumed to start at rest, so that integration of these rates over time gives the
total circulation, impulse and energy of the jet. This section will present the control
volume analysis in terms of unspecified velocity profiles at the entrance boundary.
These velocity profiles are specific to the method used to generate the flow and will be
parameterized for several actuation methods in § 6.

We consider a semi-infinite axisymmetric control volume, so that the position of
any point in this volume can be described by the cylindrical coordinates r, φ and x.
The control volume extends from the axis of symmetry to infinity, R∞, in the radial
direction and from the source of the starting flow, x0, to infinity, x∞, in the axial
direction as is depicted in figure 2. The velocity vector in the cylindrical coordinate
system is u = [v,w, u]T. The model presented in this section will presume that the
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control volume is truly infinite in the directions specified, when in actuality the
experimental fluid reservoir is bounded by the walls of the testing tank. However,
the distances to these boundaries are sufficiently large to consider the fluid reservoir
unbounded, R∞ is at least 50 times the nozzle radius and x∞ is at least 140 times the
nozzle radius.

The flow is assumed to be incompressible with a constant density, ρ. The flow
is also assumed to be symmetric about the x-axis with no swirl, so that w = 0 and
∂/∂φ = 0. Therefore, the continuity equation can be written

∂u

∂x
+ ∂v
∂r
+ v

r
= 0. (2.1)

The walls of the tank and the centre of mass of the fluid remain stationary meaning
that there is no net force acting on the control volume and forces are transmitted
between the fluid and the tank walls through pressure forces. There are no additional
non-conservative forces acting on the fluid. It is also assumed that the effect of viscous
dissipation is negligible and the governing dynamics of the flow field are modelled by
the momentum equation,

Du
Dt
=− 1

ρ
∇P. (2.2)

Here P is the gauge pressure or local pressure combined with the potentials of
conservative forces, including gravity. Using numerical simulations Mohseni et al.
(2001) showed that the normalized circulation and energy of starting jets created
with Reynolds number above 2000 (ranging up to 7300) attained consistent values,
indicating a sufficiently thin shear layer. Therefore, the inviscid approximation
should be valid for jets with Re > 2000. The simulations of Mohseni et al. (2001)
utilized non-conservative forcing rather than physical nozzle boundaries in the vortex
generation process; however, the viscous interaction with the nozzle boundaries results
in the velocity profiles which are the boundary conditions of this control volume
analysis, so the fluid viscosity is only considered negligible as the jet evolves
downstream. In fact, the fluid viscosity is required to predict axial velocity profiles
as described in § 6.1.2. Taking the curl of the momentum equation, one obtains the
vorticity transport equation,

∂ω

∂t
=∇ × (u× ω). (2.3)

In an axisymmetric domain with no swirl the vorticity only exists in the φ̂ direction
meaning that, ω = ∂v/∂x− ∂u/∂r.

2.1. Circulation
The total circulation of the jet is just the integral of the vorticity over the axisymmetric
plane, [r, x]. For inviscid fluids, circulation is an invariant, and the rate of change of
circulation is equal to the flux of vorticity into the control volume. Since the vorticity
is confined to the core of the primary vortex ring and trailing shear layer, the flux
of vorticity across the boundaries r = R∞ and x = x∞ drops to zero, and the rate of
change of the circulation is equal to the flux of vorticity across the nozzle exit plane
(Didden 1979),

dΓ
dt
=
∫ R∞

0
u

(
∂v

∂x
− ∂u

∂r

)
dr. (2.4)
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As was noted by Rosenfeld et al. (1998, 2009) the second term is independent of the
specific axial velocity profile so that given the centreline velocity, u0, the evolution of
circulation becomes

dΓ
dt
= 1

2
u2

0 +
∫ R∞

0
u
∂v

∂x
dr. (2.5)

For parallel starting jets the rate of change of circulation is mostly dependent on
the axial velocity at the centreline, but the additional term becomes significant for
non-parallel starting jets.

2.2. Hydrodynamic impulse and momentum
Now we perform a similar derivation for the rate of change of impulse in terms of
the same kinematic terms at the entrance boundary. The hydrodynamic impulse of the
control volume is defined as

Ih ≡ ρ2
∫

CV
x× ω dx. (2.6)

It was shown by Lamb (1945) (and in vector form by Saffman (1992)) that in an
unbounded fluid with confined vortical region, the rate of change of the hydrodynamic
impulse is equal to the total non-conservative body forces acting on the fluid. The
following analysis gives the rate of change of the hydrodynamic impulse in a
semi-infinite domain (more specifically the control volume of this section). As was
mentioned in the introduction, starting jets are often used for underwater propulsion
and instantaneous force exerted on the vortex generator is of critical importance.
Therefore, it should be noted that the instantaneous force on the vortex generator is
not exactly equal to the rate of impulse created in the jet (control volume shown in
figure 2), since the control volume is bounded. There are forces exerted on the vortex
generator associated with accelerating and decelerating the internal cavity fluid at the
onset and termination of pulsation, respectively. Although these instantaneous forces
are significant, they are in general cyclical and can be considered internal forces so
that the integral of the net propulsive force is equal to the jet impulse, after pulsation,
as calculated in this section.

Taking the total derivative of the hydrodynamic impulse and using the vorticity
transport equation (2.3) as the rate of change of vorticity provides rate of change of
hydrodynamic impulse of an axisymmetric inviscid jet with no swirl,

dIh

dt
= ρ

2


∫∫
−x

(
∂(−uω)

∂x
− ∂(vω)

∂r

)
2πr dr dx

0∫∫
r

(
∂(−uω)

∂x
− ∂(vω)

∂r

)
2πr dr dx

 . (2.7)

The hydrodynamic impulse in the radial direction is of little concern (and indeed can
be shown to be equal to zero), so we will focus on impulse in the axial direction. The
volume integral can be simplified to a sum of surface integrals by taking a series of
partial integrations and utilizing the incompressibility condition.

dIh

dt
= ρπ

∫ R∞

0

[−r2uω + rv2 − ru2
]x∞

x0
dr − ρπ

∫ x∞

x0

[
r2vω + 2rvu

]R∞
0

dx. (2.8)
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The integral terms at the far-field boundary can be eliminated using an order of
magnitude stream function analysis. The vorticity is confined to the core of the
primary vortex ring and the trailing shear flow, so along the surfaces at infinity
the bounded vorticity appears as a point vortex at the origin and the stream function
can be treated like that in an unbounded spherical domain since the vorticity is
an equally infinite distance from the boundaries in the radial and axial directions,
respectively. The first integrand term in both integrals of (2.8) involve the vorticity
which is known to be zero at the far-field boundaries. Using the Stokes stream
function Cantwell (1986) and Saffman (1992) showed that in an unbounded spherical
domain the velocities, u and v, scale with r̃−2 (r̃ is the radial distance in the spherical
domain r̃ = √r2 + x2). From this relation, the remaining integrand terms of (2.8) at
far-field boundaries scale with r̃−3 meaning that the integrand drops to zero faster than
the integration area grows at infinity. Therefore, the surface integrals taken along the
boundaries x = x∞ and r = R∞ can be neglected and the surface integral of (2.8) need
only be calculated along the boundary x= x0.

dIh

dt
= ρπ

∫ R∞

0

[
2u2r + u

dv
dx

r2 − v2r

]
x=x0

dr. (2.9)

The first term is the familiar flux of axial momentum across the entrance boundary.
Several studies (Glezer 1988; Shariff & Leonard 1992; Gharib et al. 1998; Mohseni
& Gharib 1998) approximate the jet circulation assuming that the jet leaves the vortex
generator with a uniform axial velocity and no radial velocity (meaning that the jet is
considered a uniform slug of fluid). Using the slug model approximation, the rate of
change of hydrodynamic impulse can be simplified to dIh = πu2

pR2 dt. The integral of
this term is used by Mohseni et al. (2001) and Krieg & Mohseni (2008) to predict
the total impulse of the jet. For simplicity, throughout the remainder of the paper the
hydrodynamic impulse in the axial direction will just be referred to as the impulse of
the jet, I.

The total momentum of the control volume, H = ∫ u dx, is not in general equal to
the hydrodynamic impulse. Classical analysis by Cantwell (1986) has shown that in
a spherical control volume, extended to infinity, with vorticity localized to a confined
central region the relationship is H = 2I/3. To illustrate this point we integrate the
momentum equation (2.2) over the entire control volume to get the rate of change of
the total momentum, H , and making a partial integration gives only surface integral
terms,

ρ

∫
∂u
∂t

dx= dH
dt
=−ρ

∫
u ·∇u dx−

∫
∇P dx

=−ρ
∫

u (u ·n) dS− ρ
∫

u (∇ ·u) dx−
∫

Pn dS

=−ρ
∫

u (u ·n) dS−
∫

Pn dS. (2.10)

Here n is the unit normal which points out of the surface by convention. Under the
same boundary conditions as were used to simplify (2.8), the rate of change of the
total momentum in the axial direction is

dHx

dt
= 2ρπ

∫ R∞

0
u2r dr − 2π

∫ R∞

0
[P (x∞, r)− P (x0, r)] r dr. (2.11)
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The first integral is the flux of axial momentum, which is identical to the first
term in (2.9). Krueger & Gharib (2003) define an added force measured during
experimentation which they term the pressure impulse,

IP(t)=
∫ t

0

∫
A

[P(r, τ )− P∞] dS dτ, (2.12)

where A is the nozzle area and P∞ is the stagnation pressure; P∞ = limx→+∞ P(x, 0).
This term can readily be equated to the pressure term of (2.11), since the pressure can
be assumed to be uniform at the boundary x= x∞.

One useful feature of the hydrodynamic impulse derivation (2.9) is that the nozzle
pressure does not need to be taken into account.

2.3. Kinetic energy

The rate of change of kinetic energy of the system, E = ∫ ρu2 dV/2, is derived for an
incompressible, inviscid control volume in multiple classic texts (Lamb 1945; Landau
& Lifshitz 1959). This rate is presented here in vector form,

dE

dt
=−

∫ (ρ
2
u2 + P

)
u ·n dS, (2.13)

where ρu2/2 + P is referred to as the ‘total head’ in certain thermodynamic control
volume analysis. The surface integral can again be eliminated at the far-field boundary,
using the same order of magnitude analysis as was used to eliminate the surface
integrals in the impulse equation. By this analysis the integrand terms of (2.13),
excluding the pressure term, scale with r̃−5, at the far-field boundaries (x = x∞ and
r = R∞). Since the pressure at these boundaries is assumed to be stagnation pressure
P∞, a finite constant, the pressure integrand term scales with r̃−1. Therefore, the
integrand terms vanish faster than the surface of integration expands to infinity, and
the surface integral of (2.13) only needs to be evaluated at the entrance boundary, and
defining this surface integral in the axisymmetric coordinate system results in

dE

dt
= π

∫ R∞

0

[(
ρu2 + ρv2 + 2P

)
ur
]

x=x0
dr. (2.14)

Therefore, the kinetic energy of the jet is dependent on both the radial velocity, v,
and the pressure at the nozzle exit plane, P, both of which are trivial in truly parallel
jet flows.

In order to calculate (2.14) for an arbitrary jet flow entering the control volume, the
pressure along the entrance boundary must be determined in terms of the jet velocity
profiles. This analysis is presented next.

2.4. Pressure at the nozzle plane
Since the starting jet is assumed to be axisymmetric, several simplifying assumptions
can be made which aid greatly in determination of the pressure at the entrance plane.
The irrotationality of the centreline was utilized by Krueger (2005) who derived a
model for nozzle pressure using a potential flow analysis and equating the material
surface of the leading vortex ring to a translating flat plate. The pressure model
presented here is determined in terms of the velocity potential along the axis of
symmetry and a relationship involving the rate of change of jet circulation. One
useful feature of this derivation is that it does not require any approximations about
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FIGURE 3. (Colour online) The emanating jet flow is depicted along with the line integral
used to calculate jet circulation, which is the closed loop. The velocity potential at the
entrance boundary and far-field boundary are marked by Φ0 and Φ∞, respectively.

the velocity field within the control volume and only requires the knowledge of the
velocity profiles at the entrance boundary.

The axis of symmetry is a streamline, given the axisymmetric condition that radial
velocity is equal to zero at the centreline. The axis of symmetry is also devoid of
vorticity if the axial velocity profile is assumed to be continuous and smooth across
the axis. Therefore, the pressure along this axis can be described by the unsteady form
of Bernoulli’s equation,

∂Φ

∂t
+ 1

2
u2 + P

ρ
= f (t), (2.15)

where Φ is the velocity potential and f (t) is an arbitrary function which only depends
on time. Since the axis of symmetry is irrotational, the velocity potential can be
determined from the axial velocity by definition of the potential function, ∇Φ ≡ u. In
cylindrical coordinates the axial velocity becomes u = ∂Φ/∂x. This flow is illustrated
in figure 3. At the far boundary in the axial direction, x= x∞, the fluid is at stagnation
pressure P∞. Integrating the axial velocity along the centreline we have a relationship
between velocity potential at the far boundary, Φ∞, and the potential at the entrance
plane, Φ0,

Φ0 =Φ∞ −
∫ x∞

x0

u dx. (2.16)

The velocity along the centreline is not easily determined; however, the line integral of
this velocity is contained in the total jet circulation. The circulation is, by definition,
the closed-loop line integral of velocity around the axisymmetric plane, which can be
separated into sections. Since the line integrals along the far-field boundaries drop to
zero, by a similar order of magnitude analysis as that presented in the previous section,
the circulation is

Γ =
∮

u · dl=
∫ 0

R∞
v dr +

∫ x∞

x0

u dx. (2.17)
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Combining (2.16) and (2.17) gives the potential at the entrance plane as

Φ0 =Φ∞ −
[
Γ +

∫ R∞

0
v dr

]
. (2.18)

Applying Bernoulli’s equation at the entrance and far-field boundaries and equating
f (t) which has no spacial dependence results in

∂Φ0

∂t
+ 1

2
u2

0 +
P0

ρ
= ∂Φ∞

∂t
+ P∞

ρ
, (2.19)

where P0 is the pressure on the centreline at entrance plane. Inserting the derivative of
(2.18), and noting that the boundary r = R∞ remains stationary relates the centreline
pressure to circulation and entrance kinematics,

P0 = P∞ + ρ dΓ
dt
+ ρ

∫ R∞

0

∂v

∂t
dr − ρ

2
u2

0. (2.20)

Although different methods were used in the derivation, it should be noted that this
same equation was derived by Krueger & Gharib (2005, equation (8)). The rate of
change of circulation is equal to the flux of vorticity across the nozzle exit plane.
Inserting (2.5) into (2.20) allows the pressure on the centreline to be calculated,

P0 = P∞ + ρ
∫ R∞

0

(
u
∂v

∂x
+ ∂v
∂t

)
dr. (2.21)

The pressure along the rest of the entrance plane can be determined by integrating
the momentum equation in the radial direction,

P(r)= P0 − ρ
∫ r

0

(
u
∂v

∂x
+ ∂v
∂t

)
d$ − ρ

2
v (r)2, (2.22)

where $ is a dummy variable for the radius of integration. Finally combining (2.21)
and (2.22) gives the pressure distribution along the entrance plane in terms of surface
integrals of jet velocity profiles,

P(r)= P∞ − ρ2 v (r)
2+ρ

∫ R∞

r

(
u
∂v

∂x
+ ∂v
∂t

)
d$. (2.23)

Now the pressure and kinetic energy of any axisymmetric jet flow can be
determined as long as the jet kinematics are known at the entrance boundary. Section 6
describes the velocity profiles of jets which are expelled through nozzles to create both
parallel starting jet flows and flows with a converging radial velocity. These profiles
are then applied to the equations for circulation, impulse, pressure and energy that
were just derived, and compared with actual circulation, impulse and energy of jet
flows measured experimentally, but first we will discuss the experimental apparatus
used to generate these flows in more detail.

3. Vortex/flow generator
The vortex generator used to create the jet flows in this investigation consists of a

sealed-off canister submerged in a fluid reservoir. The vortex generator has an internal
cavity with a moving plunger to move fluid in or out of the cavity, see figure 4. The
plunger is a semi-flexible accordion style bellows which expands axially but maintains
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FIGURE 4. (Colour online) Conceptual diagram of the layout of different nozzles used
to generate jet flows for this experiment. The nozzle exit plane marked in this figure is
considered the entrance plane for the control volume analysis of § 2.

a constant diameter. The expansion is driven by a mechanical system with an ability to
create any desired deflection program.

3.1. Nozzle configurations

The cavity is attached to both tube and orifice nozzles in order to create both parallel
and converging jets. The different nozzle arrangements are illustrated in figure 4.
Even though this investigation only tests a limited number of starting flows, the
theory presented to model jet circulation, impulse and energy should still be valid
for a number of other nozzle configurations, such as diverging jets expelled from a
diverging conical nozzle.

3.1.1. Orifice configuration
In this configuration the nozzle is simply a flat plate with a central circular orifice.

Since the flat plate is located directly on the entrance boundary, the only flow entering
the control volume is the fluid passing through the nozzle and all of the fluid which
becomes entrained in the primary vortex ring is acquired within the control volume.
The orifice nozzle is made out of a sheet of stainless steel, with a thickness less than
1 mm. The orifice nozzle in figure 4 is not drawn to scale and it should be noted that
the orifice nozzle thickness is much less than the nozzle diameter (less than 5 % of the
diameter), so that the edge can be considered sharp.
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3.1.2. Tube configuration
The nozzle for this configuration is a long tube connected to the end of the cavity.

The tube is sufficiently long, >6D, to ensure a parallel flow in the tube prior to
ejection. The outside of the tube is tapered at the exit with an angle, γ , as shown in
figure 4. The tube nozzles used in this investigation have a taper angle of γ ≈ 11◦.
With very low γ , there is significant fluid entrainment which takes place at the nozzle
exit plane (which is the entrance boundary of the control volume). This means that the
volume flux across the entrance boundary will be larger than the volume flux exiting
the tube nozzle. The exact extent of this fluid entrainment taking place at the entrance
boundary is presented in § 7.1.

Studies which use piston–cylinder-type vortex generators have observed that leading
vortex ring formation is closely linked to the jet stroke ratio, which is defined as
the ratio of piston stroke length, L, to cylinder diameter, D. The stroke length, L, is
slightly ambiguous for flow generators which use a diaphragm or plunger to actuate
the flow, since the length of the hypothetical slug of fluid is not necessarily equal to
the stroke length of the driving mechanism. Therefore, we define the piston velocity in
general to be the average jet axial velocity, up ≡Ω/πR2, where R is the nozzle radius
and Ω is the volume flux. The stroke length is then the integral of the piston velocity.
The formation time is defined by Gharib et al. (1998) as t? = ∫ t

0 up dτ/D, which is
essentially a measure of the time since inception of the flow normalized by the piston
velocity and nozzle diameter, and flows with the same stroke ratio will be terminated
at the same formation time. Using the vortex generator described here we created both
parallel and non-parallel starting jets using nozzles with radii of 1.3 cm (0.5 in) and
0.9 cm (0.36 in) for both nozzle configurations. Since the vortex generator produces all
jets with the same volume (33.6 ml), decreasing nozzle diameter is roughly equivalent
to increasing the stroke length of a piston–cylinder-style vortex generator. For a nozzle
radius of 1.3 cm our generator produces a jet with a stroke ratio L/D = 2.4, and a
nozzle radius of 0.9 cm produces a jet with a stroke ratio of L/D= 6.9.

As the jet formation time increases, the primary vortex ring grows until it becomes
saturated and can no longer accept circulation in its current arrangement, and ‘pinches
off’ from the trailing shear flow. Gharib et al. (1998) defined the formation number
as the formation time corresponding to the final circulation of the primary vortex
ring; and additionally showed that parallel starting jets with a variety of piston
velocity programs, up(t), have a nearly universal formation number (3.6–4.2). Using
the smaller radius nozzle, the jet stroke ratio is well above the universal formation
number. Therefore, the primary vortex ring will separate from the shear flow long
before the jet flow is ended.

3.2. Velocity program
Since this investigation is primarily interested in the effect of converging or diverging
radial velocity at the entrance boundary, we would like to avoid any variability in
jet dynamics due to an accelerating or decelerating piston velocity program. As an
approximation to impulsive velocity programs, which are very difficult to create in
practice, this investigation has a brief phase of piston velocity acceleration, followed
by nearly constant piston velocity for the remainder of pulsation. The experimental
trials utilized in this investigation are summarized in table 1, along with characteristic
velocity parameters which will be discussed in § 6. In this table the piston velocity, up,
is averaged over the entire pulsation. The Reynolds number of each jet is also listed,
which is calculated as the quotient of total jet circulation and kinematic viscosity,
Re = Γ/ν, and the DPIV data is used to calculate total circulation after the jet flow
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Case up (cm s−1) Nozzle
type

Nozzle radius
(cm)

L

D
b k?1 k?2 Re

1 6.7 Tube 1.3 2.4 9.2 0.08 0.33 3046
2 7.5 Tube 0.91 6.9 4.1 0.06 0.07 7879
3 6.8 Orifice 1.3 2.4 10.9 −0.39 1.0 6044
4 7.4 Orifice 0.93 6.8 10.4 −0.45 1.05 10 491
5 12.8 Tube 1.3 2.5 10.5 0.09 0.28 4863
6 10.8 Tube 0.91 6.9 4.4 0.06 0.06 10 178
7 12.5 Orifice 1.3 2.4 11.1 −0.41 1.01 8454
8 8.7 Orifice 1.3 2.4 11.3 −0.44 1.0 5976
9 10.4 Orifice 0.93 6.8 10.8 −0.44 0.98 11 241
10 5.4 Orifice 0.93 6.8 8.2 −0.42 0.97 7205

TABLE 1. Summary of driving conditions for all experimental trials, k?1, k?2 and b are all
parameters corresponding to the resulting jet velocity profiles as will be described in § 6.
All values which vary with time are taken as the average over the entire pulsation, with the
exception of b which is averaged after initial transients have subsided.
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FIGURE 5. (Colour online) Piston velocity programs for several trials, summarized as cases
1–4 in table 1: (a) case 1; (b) case 2; (c) case 3; (d) case 4.

has been terminated. The actual piston velocity programs of cases 1–4 are presented
in figure 5. The velocity programs are shown for these cases in particular because
quantities of these cases will be plotted individually in later figures. Cases 5–10 are
not plotted individually, and are mainly used in the velocity profile parameterization,
but their velocity programs and bulk flow properties are very similar to cases 1–4.
Although the piston velocity is held mainly constant for the duration of pulsation for
these cases, there is some small oscillation in piston velocity throughout the entire
pulsation associated with vibrations in the mechanical system.
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FIGURE 6. (Colour online) Arrangement of the testing tank and flow visualization set-up.

During testing the piston velocity is determined from motor encoder data, assuming
that a deflection of the plunger is linearly proportional to the volume displacement.
Since the plunger is partially constructed with a flexible rubber which might have
load-dependent deformation characteristics, DPIV data was taken of the flow internal
to one of the tube nozzles, to validate the volume displacement relationship. This
validation is given in appendix A.

4. Experimental set-up
The experimental set-up for this research consists of three primary components

whose layout is depicted in figure 6; these are the tank which houses the fluid
reservoir, a high-speed camera filming the jet flow, and a data acquisition assembly
which sends driving signals to the vortex generator, sends trigger signals to the camera
and records motor encoder data. The vortex generator mechanism is sealed within a
transparent canister which is submerged fully within the fluid reservoir in the testing
tank. A vertical rod runs from the canister to a frame mounting structure keeping the
canister stationary.

4.1. Fluid reservoir
The water tank, which encompasses the fluid reservoir (control volume of § 2), was
designed and fabricated by our group specifically for this investigation, and can be
seen in figure 6. It is 2.4 m tall, 1 m by 1.3 m in cross-section and houses 2.65 kl
of water. The tank is made out of acrylic to allow for visual access from all angles
(including the bottom of the tank) and is supported by an outer steel skeleton. At the
top of the tank is a mounting structure which is securely attached to the outer frame.
This mounting structure holds the vortex generator in a central position, to avoid wall
vortex ring interactions.
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4.2. PIV

The flow visualization set-up is composed of a high-speed camera and illumination
apparatus. As depicted in figure 6, a two-dimensional (2D) cross-section of the flow is
illuminated with a laser sheet. The flow is seeded with reflective polyamide particles
50 µm in diameter, with a density of 1.03 g cm−3 (manufactured by Dantec Dynamics).
The laser sheet is generated by a 1 W solid state 532 nm laser (Aixiz GAM 1000B)
expanded through a cylindrical lens within the tank. This results in a laser sheet
thickness of ≈1 mm at the nozzle exit plane. The illuminated cross-section of the flow
is recorded using a high-speed digital camera, operating at 150–250 fps depending
on the piston velocity (and sufficiently short exposure to eliminate streaking). The
camera used is a monochrome Phantom v210. This camera has a resolution of 1 MP
(1280 × 800 pixels) and a light sensitivity of 6000 ISO, making it suitable for DPIV
with the solid-state laser.

5. DPIV data analysis
The high-speed video of the jet flow is analysed using a commercial software,

with DPIV algorithms similar to those described in Willert & Gharib (1991) and
Raffel, Willert & Kompenhans (1998), to determine a velocity field u = [v, u]T in the
illuminated cross-section of the jet flow. Frames (1280 × 800 pixel resolution), were
divided into 32 × 32 pixel interrogation windows (with 50 % overlap). Depending
on exact nozzle diameter and optical zoom, the total DPIV velocity field domain
ranged from 3.83 × 6.12 diameters to 5.22 × 8.35 diameters, with the long dimension
aligned with the axis of symmetry, resulting in relative resolutions in the range 10–12
grid-points per diameter. Strict care was taken to ensure that the laser sheet bisected
the flow through the jet axis of symmetry, so that the filmed jet flow corresponds to
the axisymmetric flow, as modelled in § 2.

Again, the flow is assumed to be axisymmetric with no swirl. Therefore, the total
circulation, hydrodynamic impulse and kinetic energy of the control volume can be
calculated from the vorticity and velocity fields (Saffman 1992; Lim & Nickels 1995),

Γ =
∫ x∞

x0

∫ R∞

0
ω dr dx, (5.1a)

I = ρπ
∫ x∞

x0

∫ R∞

0
ωr2 dr dx. (5.1b)

E = ρπ
∫ x∞

x0

∫ R∞

0

(
u2 + v2

)
r dr dx. (5.1c)

The axisymmetric formulation implies that the velocity/vorticity field is known for a
single half-plane extending from the axis of symmetry. The DPIV analysis determines
the velocity field for the entire plane which gives two axisymmetric sections π rad
out of phase. A sample image of the velocity and vorticity fields determined by this
process are shown in figure 7. The axis of symmetry, which separates the two half-
planes, is determined in the image as the mid-line between the peak in positive and
negative vorticity and is shown as the dashed line in figure 7. In order to determine the
axis of symmetry with sub-PIV-window accuracy, the peak locations are interpolated
from a small vorticity field surrounding the peak measured value. In general, quantities
of interest will be calculated for both half-planes given by DPIV analysis and averaged
to give a more accurate value.
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FIGURE 7. (Colour online) Sample image of the velocity field (a) and vorticity field (b)
determined from the DPIV analysis. The axis of symmetry is shown by the dashed red line
running horizontal through the centre and the vertical dashed line marks the nozzle exit plane.
This sample flow field was generated by a jet ejected from an orifice nozzle with a nozzle
radius of 1.3 cm and a piston velocity of ≈7 cm s−1 (case 3): (a) velocity field; (b) vorticity
field, negative vorticity indicated by dashed isocontours.

These algorithms allow validation of the modelling presented in § 2, since the
invariants of motion of experimentally generated jet flows can be determined from
DPIV data.

6. Velocity profiles at the exit of a family of nozzles
The evolution of circulation, hydrodynamic impulse and kinetic energy of the

control volume have been defined in terms of surface integrals of the jet kinematics
along the entrance plane in (2.5), (2.9) and (2.14), respectively. The pressure profile
along the entrance plane which is needed to calculate the kinetic energy is described
by (2.23). The equations are valid for determining the bulk quantities of any inviscid
axisymmetric starting jet flow, provided the exact kinematics are known at the source
of the flow. The velocity profiles of various starting jets are heavily dependent on
the nozzle used to generate the flow. As was mentioned, a starting jet expelled
through a long cylindrical nozzle will create a nearly parallel starting jet, whereas
converging conical nozzles and orifice nozzles create a starting jet with a converging
radial velocity at the entrance boundary. Here we describe jet velocity profiles for
starting jets created from both tube and orifice nozzles as observed in previous
experiments and measured in this one. We also present multiple approximations to
these profiles. Using the approximated jet velocity profiles we calculate the rate of
circulation, impulse and energy added to the control volume in terms of characteristic
parameters.

6.1. Axial velocity profile, u
The axial jet velocity for flows expelled from tube nozzles has been studied
extensively. The jet velocity is a dynamic function of both radial position and time,
even for programs with constant volume flux. At the onset of the flow the axial jet
velocity is nearly uniform with a small peak near the edge due to the influence of the
primary vortex ring. This peak is very similar to Richardson’s annular effect observed
in oscillating pipe flow (Richardson & Tyler 1929) and is seen for jets expelled
through both tube nozzles (Didden 1979) and orifice/conical nozzles (Rosenfeld et al.
2009). As the piston continues to push out fluid, the boundary layer on the cylinder
wall becomes more developed and the jet velocity profile becomes parabolic in tube
nozzle flows. Since there is minimal boundary layer development on the orifice nozzle
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(a) tube nozzle (case 2 in table 1) and (b) orifice nozzle (case 4 in table 1). The data was fitted
to a curve of the form (6.3) described in § 6.1.2.

prior to ejection, the development of a parabolic velocity profile is less pronounced
or completely absent if the ratio of the nozzle to cavity diameter is low enough
(Rosenfeld et al. 2009). For reference the axial velocity profile at the nozzle exit plane
(as determined from DPIV analysis) is shown for starting jets ejected from both tube
and orifice nozzles in figure 8.

6.1.1. 1D slug model
The simplest approximation of the jet flow at the nozzle plane is the 1D slug model,

which makes the assumption that the jet is ejected with a uniform axial velocity
and no radial velocity, u(r) = up, for 0 6 r < R. Under these assumptions (2.5), (2.9),
(2.23) and (2.14) simplify to the more familiar form,

dΓ1D

dt
= 1

2
up (t)

2,
dI1D

dt
= ρπup (t)

2 R2, P1D = P∞,
dE1D

dt
= ρπ

2
up (t)

3 R2. (6.1)

This approximation is used frequently for simple calculations, but is only accurate
for a very limited range of jet flows. Therefore, we will define a more general axial
velocity profile which can be adjusted to fit jet flows found at the outlet of various
nozzles at any given time.

6.1.2. A set of axial velocity profiles parameterized by Bessel functions
An approximate potential flow solution is derived by Krueger (2005) for the velocity

field of jets expelled through tube and orifice nozzles. Both solutions were derived
assuming given boundary conditions at the nozzle exit plane. The orifice nozzle
solution assumes that the axial velocity is constant over the nozzle area. We would
like to avoid this solution since it assumes uniform axial velocity and this investigation
characterizes the effect of boundary velocity profiles which deviate from the 1D slug
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model. The tube nozzle solution assumes that the velocity potential at the nozzle exit
plane is equal to that of a flat plate translating with velocity u0 at early times, the
potential of a steady jet at later times and a mixture of the two at intermediate times,
and the weight of each condition is adjusted through a tuning parameter σ . This
solution will also be avoided since it violates the no-slip boundary condition at the
nozzle edge. Instead, we would like to define a generic set of velocity profiles which
are motivated by pipe flow solutions, but allow for a large range of variability.

The velocity profile of flows within a long cylindrical tube has been solved
for several different flow configurations. The classical example is the solution for
Hagen–Poiseuille flow (fully developed pipe flow). The transient velocity profile in an
infinitely long pipe where a uniform, steady pressure gradient is applied at time t = 0,
was first solved by Szymanski (1932) which is essentially the steady Poiseuille flow
with transient terms added which vanish at large times. A solution for oscillating flow
within a long cylindrical tube was derived by Sexl (1930), which is summarized by
White (2006) as

u

umax
= K

iω
eiωt

[
1− J0

(
r
√

iω/ν
)

J0

(
R
√

iω/ν
)] , (6.2)

where ω is the frequency of oscillation, K is the amplitude of the pressure gradient
oscillation, ν is the kinematic viscosity of the fluid, umax is a velocity scaling term
defined, umax = −(∂P/∂x)(R2/4µ), and J0 is the zeroth order Bessel function of the
first kind. The periodic oscillation is driven by the exponential term, which is only
a function of time and the Bessel function terms, dependent on the radial location,
provide the velocity profile. As the oscillation frequency increases, the phase lag
between the pressure gradient oscillation and velocity oscillation increases, and the
velocity profile develops a peak towards the edge of the tube which is known as
Richardson’s annular effect. The striking similarity between this velocity profile within
periodic pipe flows and the velocity profile of starting jets expelled through orifice
nozzles (as well as tube nozzle flows at early formation times), suggests that the axial
velocity of a starting jet can be approximated by a general form profile involving
Bessel functions with complex arguments. Consider the normalized velocity profile
with velocity and radius scaling defined u? = u/up and r? = r/R, respectively,

u?(r? 6 1)= a

[
1− J0 (r?b(1− i))

2J0 (b(1− i))
− J0 (r?b(1+ i))

2J0 (b(1+ i))

]
, u?(r? > 1)= 0, (6.3)

where a and b are parameters controlling the shape of the profile. It should be noted
that the Bessel function of a complex argument is also complex, so the general profile
(6.3) includes a Bessel function term added to its complex conjugate to eliminate the
imaginary component. Equation (6.3) is the solution to oscillating pipe flow if the
argument parameter is set to b = √ω/4ν and the amplitude parameter oscillates with
ω.

We denote the volume flux across the entrance plane Ωeff . For actuation methods
which have geometries limiting the flow across this plane such as orifice nozzles, the
volume flux is just the volume flux supplied by the vortex generator. However, for
tube nozzles with small γ , Ωeff is the sum of the supplied flux and the rate at which
fluid is entrained at the nozzle exit plane. Maintaining consistency we define effective
piston velocity, ueff = Ωeff /πR2

eff , and Reff is the radial extent of the jet flow crossing
the entrance plane (including entrained fluid). Setting the total volume flux of (6.3)
to Ωeff , and using ueff and Reff as the characteristic length and velocity scales restricts
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FIGURE 9. (Colour online) Axial velocity profiles at the nozzle plane of the form (6.3),
under the constraint (6.4), are shown for several values of b ranging from the limiting
value b = 3.56 (corresponding to fully developed flow) to b = 1000. In general, the profile
approaches the hypothetical top hat profile as b→∞.

the choice of a, and the profile is only parameterized by the term b,

a=
(

1− 1
b

[
J1 (b(1− i))

(1− i)J0 (b(1− i))
+ J1 (b(1+ i))
(1+ i)J0 (b(1+ i))

])−1

. (6.4)

As was noted by White (2006), if the magnitude of the complex argument is very
low the velocity profile is a paraboloid approaching the profile of a fully developed
pipe flow; whereas, a large argument results in the peak towards r? = 1 indicative
of Richardson’s annular effect. Several velocity profiles of the form (6.3) under
the constraint (6.4) are shown in figure 9. The argument parameter has a limiting
minimum value of b ≈ 3.56, corresponding to Poiseuille flow. Values of b below this
limiting value have an additional inflection point and resemble Gaussian profiles more
than parabolic profiles, and as b increases the peak axial velocity decreases and moves
towards the nozzle edge, approaching the slug model approximation as b→∞, which
can be observed in figure 9. Therefore, this general axial velocity profile should serve
as a decent approximation of many starting jet flows.

As will be shown later, the velocity profile of a jet ejected through an orifice
nozzle very quickly reaches a steady distribution that it maintains for the remainder
of pulsation. This is because the thinner boundary layer becomes fully developed
very quickly and growth of the boundary layer only affects the velocity profile
for very short stroke ratio jets. Although this profile will be specific to the exact
cavity geometry, a single constant parameter b should be sufficient to characterize the
entrance plane kinematics for a given vortex generator and orifice nozzle. Conversely,
the velocity profile of jets ejected through tube nozzles varies substantially for a much
larger range of stroke ratios due to the more significant boundary layer development.
This boundary layer development is dependent on pipe radius, fluid viscosity, and
time making an experimental characterization of b undesirable. However, a decent
approximation of b for the tube nozzle flow can be calculated by equating the flow to
the starting flow in an infinitely long pipe under impulsive initial conditions which is
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derived in appendix B and summarized here for convenience:

u? = (1− r?2
)+ ∞∑

n=1

(λn − 8)J0 (λnr?)

λ3
nJ1 (λn)

e−((λ
2
n−4α)ν/R2)t. (6.5)

In this equation λn are the roots of J0 and α is the magnitude of a transient increase
in pressure gradient required to maintain nearly impulsive flow. In order to ensure
that the volume flux reaches 95 % of its steady-state value within 0.2 s (which is
typical of velocity programs in this experiment, see figure 5) α must be set to 40
for low-stroke-ratio, large-diameter, cases and 20 for high-stroke-ratio, small-diameter,
cases. The parameter b is then predicted by fitting the solution to the form (6.3), and
will be shown along with the parameter fit to the actual velocity profile later in § 7.2.

Since the normalized piston velocity, u?, is purely a function of b, and is scaled by
the piston velocity, evaluating (2.5), (2.9) and (2.14) with an entrance velocity profile
defined by (6.3) under the constraint (6.4) will predict circulation, impulse and energy
proportional to the 1D slug model,

dΓAP

dt
= 1

2
u2

eff f (b) , (6.6a)

dIAP

dt
= ρπu2

eff R
2
eff g (b) , (6.6b)

dEAP

dt
= ρπ

2
u3

eff R
2
eff h (b) , (6.6c)

where

f (b)=
[

b
2C − J0(b(1+ i))− J0(b(1− i))

2bC − (1+ i)A− (1− i)B

]2

, (6.6d)

g (b)= 2b2
3C2 + 1

2
A2 + 1

2
B2 + 3(1− i)

2bi
CA− 3(1+ i)

2bi
CB

[2bC − (1+ i)A− (1− i)B]2 , (6.6e)

and

A= J1(b(1− i))J0(b(1+ i)), (6.6f )
B= J1(b(1+ i))J0(b(1− i)), (6.6g)
C = J0(b(1− i))J0(b(1+ i)). (6.6h)

The subscript AP refers to the quantities calculated from the axial velocity
parameterization. Here h(b) is not presented in terms of elementary functions, but
is shown with respect to the parameter b in figure 10. As can be seen in this figure
h(b) can be approximated fairly well by g(b), which should not be surprising given
their similar dependence to piston velocity and nozzle radius.

So far the jet velocity characterization at the nozzle plane has only described the
axial velocity profile. Next we define a parameterization for the radial velocity profile
in a non-parallel starting jets.

6.2. Radial velocity profile (v)
At the onset of pulsation the emerging shear tube rapidly rolls into a vortex ring.
As a result of the primary vortex ring’s close proximity to the nozzle exit plane,
the emerging flow from both nozzles experiences an induced velocity in the radial
direction. As the vortex ring travels downstream, tube nozzle flows quickly become
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It should be noted that the figures have different velocity scales.

parallel; while the flow emerging from the orifice nozzle maintains a consistent radial
velocity throughout pulsation.

6.2.1. 2D jet model
The simplest radial velocity profile (noting v(r = 0) = 0) is a linear proportionality,

v(r) = k1r for 0 6 r < R. In fact, the radial velocity profile at the exit of an orifice
nozzle is seen to be approximately linear. Experimental DPIV data of the radial
velocity profile at the exit of both tube and orifice nozzles is averaged over the
entire pulsation and shown in figure 11. The gradient of the radial velocity in the
axial direction, ∂v/∂x, is also averaged over the pulsation and depicted in figure 11.
Like the radial velocity, the gradient is assumed to be linear over the same domain,
∂v/∂x = k2r, which is a fair approximation. A linear fit to both the radial velocity
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and the velocity gradient profiles are also shown in figure 11. The slope of the radial
velocity, k1, has the units of s−1, and the slope of the velocity gradient, k2, has units
cm−1 s−1, and both slopes are dependent on the exact nozzle configuration and jetting
velocity. Using the piston velocity, up, and nozzle radius, R, as characteristic velocity
and length scales (same scaling as the axial velocity profile) the dimensionless slope of
the radial velocity and velocity gradient are k?1 = k1R/up and k?2 = k2R2/up. Assuming
that the jet has a linear radial velocity profile and a uniform axial velocity the
contributions to circulation, impulse, nozzle pressure and energy from the additional
terms in (2.5), (2.9), (2.23) and (2.14) are calculated and denoted by the subscript
LR. Interestingly these contributions have a similar dependence to piston velocity and
nozzle radius as the 1D slug model when represented in dimensionless form:

dΓLR

dt
= 1

2
u2

pk?2 = k?2
dΓ1D

dt
, (6.7a)

dILR

dt
= ρπ

4
u2

pR2
(
k?2 − k?21

)= k?2 − k?21

4
dI1D

dt
, (6.7b)

PLR(r
?)= ρ

2
u2

p

[
k?2 − r?2

(
k?2 + k?21

)]+ ρR2

2
∂k1

∂t

(
1− r?2

)
, (6.7c)

dELR

dt
= ρπ

4
u3

pR2

(
k?2 +

R2

up

∂k1

∂t

)
= 1

2

(
k?2 +

R2

up

∂k1

∂t

)
dE1D

dt
. (6.7d)

The contributions to bulk flow quantities due to the additional radial velocity terms
are calculated assuming a uniform axial velocity profile for simplicity; however, these
contributions will be added to the axial velocity parameter model to give the total
circulation, impulse and energy. Although the most accurate method would be to use
the generic axial profile (6.3) when calculating (6.7), the small increase in accuracy
does not justify the increased complexity of the radial contribution terms and equation
(6.7) will be used to describe the contributions from non-zero radial velocity terms for
all cases. Therefore, the total circulation, impulse and energy of the jet is calculated
as the sum of these two contributions, ignoring the term ∂k1/∂t (which is only non-
negligible in truly impulsive flows),

dΓ2D

dt
= dΓAP

dt
+ dΓLR

dt
= dΓ1D

dt

(
f (b)+ k?2

)
, (6.8a)

dI2D

dt
= dIAP

dt
+ dILR

dt
= dI1D

dt

(
g(b)+ k?2 − k?21

4

)
, (6.8b)

dE2D

dt
= dEAP

dt
+ dELR

dt
= dE1D

dt

(
h(b)+ k?2

2

)
. (6.8c)

7. Results
The resulting jets for all experimental cases (summarized in table 1) were filmed in

cross-section and the video analysed as described in § 5. For every DPIV velocity field
the velocity profile of the jet was examined at the nozzle exit plane. The axial velocity
profile at this location was fitted to a curve of the form (6.3), using a recursive
least-squares algorithm. The radial velocity profile was fit to a line and the slopes k1

and k2 recorded over time. The normalized radial slope, k?1, normalized radial gradient
slope, k?2, and axial velocity parameter, b are all presented for the entire pulse duration
later in this section and average values are listed in table 1. The parameter b is
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FIGURE 12. (Colour online) Total volume flux in the axial direction as a function of distance
from the nozzle plane. Any volume flux above the jet volume (total fluid volume ejected out
of the vortex generator) corresponds to entrained fluid. The tube nozzle data is gathered from
cases 2 and 6, and the orifice nozzle data from cases 4, 9 and 10, respectively. For all cases the
stroke ratio is approximately L/D≈ 7, and the error bars indicate standard deviation between
cases.

averaged after the initial formation period, because at that time b is very large (close
to top hat velocity profile) and tends to misrepresent the data.

7.1. Volume flux and entrained fluid
The volume flux, corresponding to jet flow, through any plane orthogonal to the
axis of symmetry, at some axial location, x -V, can be determined from the velocity
field, d –V/dt = ∫ R∞

0 u(r, x -V)2πr dr. The total jet volume to pass through this plane is
simply, –V = ∫ t+

0

∫ R∞
0 u(r, x -V)2πr dr dt, where t+ is some time well after the jet flow

is terminated, te. We calculated the total jet volume to pass through every plane in a
region just downstream of the nozzle exit plane which is presented as a function of
axial distance from the nozzle in figure 12. In this figure the curve for the tube nozzle
is averaged from cases 2 and 6 (as summarized in table 1), and the curve for the
orifice nozzle is averaged from cases 4, 9 and 10.

Also shown in figure 12 is the ejected jet volume or volume of fluid expelled
from the vortex generator. It can be seen that the jets expelled from the tube nozzle
entrained ≈8 ml of fluid right at the nozzle plane. This instantaneous entrainment
of fluid can be explained by the fact that the driving flow is expelled out of a
long thin cylindrical tube; which allows fluid upstream of the nozzle plane to be
drawn into the low pressure roll up (see figure 4). After this initial entrainment the
shear tube travels downstream under its own induction velocity without entraining any
additional fluid, where it eventually rolls into the primary vortex ring or is left in
the trailing wake. This entrainment corresponds to 25 % of the jet volume expelled
from the vortex generator, which is similar to entrainment fractions observed by
Dabiri & Gharib (2004) and Olcay & Krueger (2008). Dabiri and Gharib measured
entrainment fractions around 30–40 % for jets expelled with no counterflow, and Olcay
and Krueger observed entrainment fractions from 20 to 45 % depending on the stroke
ratio and jet velocity program, showing a large increase in entrainment fraction at
very low stroke ratios (L/D 6 1). The entrained volume analysis presented here is not
meant to augment or verify these results, but rather show that the entrainment takes
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and converging jets at (a) low stroke ratios, L/D = 2.4 and (b) high stroke ratios, L/D ≈ 7.
The values of b predicted for parallel jets are found solving (6.5) and fitting to the general
form (6.3).

place at or around the nozzle exit plane, for tube nozzle flows, which will greatly
affect the volume flux at the entrance plane, Ωeff .

The fact that the orifice nozzle forms a physical barrier at the entrance plane means
that there is no flow normal to the plane outside of the nozzle radius. Therefore, all
entrained fluid must come from the radial direction and the total jet volume to pass
through the nozzle exit plane is much closer to that of the ejected jet volume. Set-up
limitations prevent the velocity profile from being determined exactly at the nozzle exit
plane, and is instead measured a very short distance, ≈2 mm, downstream. This is
why there is a small amount of initial entrained fluid being measured. However, this
measured initial entrainment is very small and the vortex generator flow rate can be
used as the volume flux at the nozzle exit plane, Ωeff , without compromising accuracy.
Within a short axial distance (less than a diameter) the converging jet has entrained the
same volume of fluid as the parallel jet and continues to entrain fluid while contracting
until reaching the vena contracta plane, at which point the converging jet has entrained
15 ml of fluid, close to 50 % of the ejected jet volume.

7.2. Jet flow parameters at the nozzle
7.2.1. Axial velocity parameter b

The axial velocity parameterization using Bessel functions (§ 6.1.2) defines the axial
velocity profile at the nozzle exit plane, in terms of the parameters ueff , Reff , and b.
The volume flux was determined at the nozzle plane (as well the rest of the control
volume) as was described in § 7.1, which was used to define the effective volume flux,
Ωeff = d–V/dt|x=x0; the other two coefficients were determined by fitting the DPIV data
at the nozzle exit to the form of (6.3) in a least-squares sense. It should be noted that
the residuals in the least-squares algorithm were weighted with the nozzle radius to
reflect the larger quantity of fluid corresponding to the velocity value at large radii.

Figure 13(a) shows the value of b fitted to the jet velocity profile for both
converging and parallel jets with L/D = 2.4 corresponding to cases 1, 3, 5, 7 and
8. Also shown in this figure is the value of b predicted by equating the flow to
impulsively started flow in a long tube (6.5) as a function of time. It can be seen that
the velocity profile of the converging jet acquires a fairly constant value for b very
quickly, whereas the jet expelled through the tube nozzle has a slowly decreasing b
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FIGURE 14. (Colour online) The dimensionless slope of (a) the radial velocity profile, k?1,
and (b) the gradient of the radial velocity profile, k?2, for jets with a stroke ratio of L/D = 2.4,
expelled through both tube and orifice nozzles. Parallel jets are averaged from cases 1 and 5
and non-parallel jets are averaged from cases 3, 7 and 8.

due to development of the boundary layer. The predicted value of b is seen to be
a decent approximation of the tube nozzle velocity profile, except at the very end
when the development of a stopping vortex influences the profile before the flow has
been terminated, as is discussed further in the next section. Figure 13(b) shows the
fitted and predicted values of b for the large stroke ratio converging and parallel jets,
corresponding to cases 2, 4, 6, 9 and 10. Similar to the low-stroke-ratio jets the orifice
nozzle cases reach a value for b which remains relatively constant and the parallel jets
have a decreasing value of b which is well predicted by the long tube starting flow
approximation after the onset of flow where the predicted value is too low, which is
likely due to the fact that the impulsive pipe flow conditions are not as valid at the
very early stages. Here the final value of b drops a bit lower corresponding to a more
developed boundary layer at the final time.

7.2.2. Radial velocity profile
The radial velocity at the nozzle exit plane was fit to a linear form within the nozzle

region using a least-squares algorithm to determine k1 at every time. The gradient of
the radial velocity in the axial direction was determined at the nozzle exit plane using
a second-order forward differencing scheme which was also fit to a linear form within
the nozzle region to determine k2. The dimensionless slope of the radial velocity, k?1,
is shown versus time in figure 14(a), for both parallel and converging jets with a
low stroke ratio, L/D = 2.4. At the initiation of motion the jet flow expands outwards
and both jets show a positive slope (diverging radial velocity) corresponding to the
initial roll-up of the free shear layer. As the vortex ring moves downstream, the
radial velocity of the parallel jet drops to zero until the flow is terminated and the
development of a stopping vortex induces a negative radial velocity profile. The slope
of the radial velocity profile for the converging jet quickly reaches a negative value
(converging radial velocity) which it maintains throughout the rest of the pulsation.
Figure 14(b) shows the dimensionless slope of the radial velocity gradient, k?2. Again
the parallel jet radial velocity is due to the roll-up of the leading vortex ring and
stopping vortex ring with nearly zero slope in between. The slope of the converging
jet radial velocity gradient is larger and persists throughout pulsation as would be
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FIGURE 15. (Colour online) The dimensionless slope of (a) radial velocity profile, k?1, and
(b) gradient of the radial velocity profile, k?2, for jets with a stroke ratio of L/D ≈ 7, expelled
through both tube and orifice nozzles. Parallel jets are averaged from cases 2 and 6 and
non-parallel jets are averaged from cases 4, 9 and 10.

expected, but here the primary vortex ring has a more significant presence increasing
the slope of ∂v/∂x in the initial formation period.

The dimensionless slopes k?1 and k?2 are shown in figure 15 for the jets with a large
stroke ratio. The converging jet, averaged from cases 4, 9 and 10, shows the same
behaviour as the low-stroke-ratio trials, but the influence of the primary vortex ring is
much less noticeable and can be considered negligible. It should be noted here that
k1 and k2 actually vary significantly between different trials not just because of the
different piston velocities, but also because the ratio of nozzle diameter to inner cavity
diameter varies between trials (larger stroke ratio corresponding to smaller diameter).
Fortunately, the normalization employed to scale these slopes results in a convergence
of k?1 and k?2, not just for trials with different piston velocities, but also for the different
nozzle diameters.

The slope of the radial velocity and velocity gradient of the parallel jet at large
stroke ratio, cases 2 and 6, also display similar behaviour as the low-stroke-ratio
trials, but as would be expected, the jet spends a longer period of time with no
induced radial velocity. In addition, the radial velocity gradient of the parallel jets
has a negative value for a very short period of time, due to the rapid acceleration
of fluid during vortex ring formation. This negative gradient was not observed for
the low-stroke-ratio case because the piston velocity acceleration occurred before any
significant vortex ring formation.

Here it is interesting to note that nearly the entire jet will end up in the primary
vortex ring for the parallel jet expelled through the larger nozzle (low-stroke-ratio)
trials, cases 1 and 5. Despite the lack of separation between the vortex ring and the
trailing shear flow, figure 14 shows that there is a clear point where the primary vortex
no longer induces any appreciable radial velocity at the nozzle exit plane, which is at a
formation time of t? ≈ 1.2 and is before the vortex ring separates from the shear flow.

7.3. Evaluation of jet models
Now all of the parameters characterizing jet kinematics at the entrance boundary have
been determined for the experimental flows. These parameters will be used to predict
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FIGURE 16. (Colour online) Evolution of circulation for (a) a parallel jet, case 1, and (b) a
converging jet, case 3, with a stroke ratio of L/D= 2.4 and a jet velocity of ≈7 cm s−1.

jet circulation, impulse and energy according to the modelling of §§ 2 and 6, which
will be compared to actual circulation, impulse and energy of the jet to validate this
modelling.

The circulation, impulse and energy of the control volume were determined from
the DPIV vorticity data as described in § 5 and the evolution recorded over time. The
slopes of the radial velocity profile and the velocity gradient profile (k?1 and k?2), as
well as the parameters (b and Reff ) determined by curve fitting in § 7.2, were used
to predict the circulation, impulse and energy according to (6.1), (6.6) and (6.8). The
accuracy of all three models is discussed here for each quantity.

7.3.1. Circulation
Figure 16 shows the evolution of circulation for both parallel and converging

starting jets with a stroke ratio of L/D = 2.4 and piston velocity of up ≈ 7 cm s−1

(cases 1 and 3). It can be seen from this figure that the total circulation of the jet is
well predicted by the 2D model (6.8) for both nozzle configurations.

The circulation of the parallel jet (case 1) is fairly closely approximated by all
three models, with the 1D slug model predicting the lowest circulation at the final
time when the jet flow is terminated. The rate of circulation added to the system is
dependent on the centreline axial velocity, u0, and not the piston velocity, up; therefore,
a parabolic velocity profile will have a greater flux of circulation for the same piston
velocity. The axial velocity parameter model accurately captures the parabolic axial
profile, but still calculates the final circulation too low. Including contributions from
vortex ring-induced radial velocity brings the calculated circulation very close to the
final jet circulation.

The total circulation of the converging jet just after pulsation is significantly higher
than the circulation predicted by the 1D slug model and the axial velocity parameter
model. In this configuration the centreline velocity still experiences a slight increase,
which causes the axial velocity parameter model to calculate a higher circulation than
the 1D slug model, but the effect of the converging radial velocity at the entrance
boundary is much more apparent. Including the contribution from the radial terms
nearly doubles the computed circulation and captures the actual circulation of the jet.
This radial velocity component causes the total circulation of the converging jet to
be double the total circulation of the parallel jet (103 % larger), for the same piston
velocity and a low stroke ratio, L/D= 2.4.
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FIGURE 17. (Colour online) Evolution of circulation for (a) a parallel jet, case 2, and (b) a
converging jet, case 4, with a stroke ratio of L/D≈ 7 and a jet velocity of ≈7 cm s−1.

The circulation of both parallel and converging jets with a larger stroke ratio,
L/D ≈ 7, is shown in figure 17, and again the 2D model circulation comes close
to the circulation of both parallel and converging jets. Here the longer formation
time and more developed axial velocity profile of the parallel jet produces a large
increase in circulation; as is calculated by the axial velocity parameterization. Whereas
the effect of the radial velocity component, which exists for a short period of time
during initial ring formation, only increases the predicted circulation by a negligible
amount. The converging jet experiences less development in the axial velocity profile
due to boundary layer growth and the axial velocity parameter model for this case
calculates a similar increase over the 1D slug model as the low-stroke-ratio case.
The persistent converging radial velocity again nearly doubles the total jet circulation
which is captured by the 2D model. In total, the converging jet produces 94 % more
circulation than the parallel jet with a stroke ratio L/D≈ 7.

7.3.2. Impulse
One reason for the deviation of the axial velocity parameter model from the 1D

slug model for tube nozzle flows is the change in the effective volume flux, Ωeff , and
effective radius, Reff , which are due to entrainment of fluid at the entrance boundary.
Interestingly the initial entrained fluid increases the effective volume flux for the
parallel jet, but it also increases the effective radius, sometimes to the point where
there is a slight decrease in effective piston velocity. This effect can result in a total
jet impulse which is lower than that predicted by the 1D slug model as can be seen
in figure 18, which shows the total impulse of both parallel and converging jets with
a stroke ratio L/D = 2.4. This fairly minimal decrease in impulse of the parallel jet is
captured by the axial velocity parameter model, and the contribution from the radial
velocity terms is negligible for this case. Krueger & Gharib (2003) measured the total
impulse imparted by expelling a parallel jet with a stroke ratio of L/D = 2, to be
40 % larger than the ‘momentum impulse’, which is given by the 1D slug model.
The discrepancy between those results and impulse measured for parallel jets in this
investigation could result from a number of differences in the experimental set-up. The
velocity program used here has a very fast acceleration then levels off and remains at
a constant value for the rest of the pulsation, as opposed to the velocity programs of
Krueger and Gharib which are more triangular than trapezoidal. The slow acceleration
might cause the vortex ring to grow close to the nozzle exit for a longer period of
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FIGURE 19. (Colour online) Evolution of impulse for (a) a parallel jet, case 2, and (b) a
converging jet, case 4, with a stroke ratio of L/D≈ 7 and a jet velocity of ≈7 cm s−1.

time and induce a more significant radial velocity on the starting jet, especially since
the slope of the radial velocity gradient, k?2, was observed in figure 15 to be sensitive
to the acceleration during the vortex ring formation stages for tube nozzle flows. In
addition, the jets of Krueger and Gharib have a Reynolds number on the order of
20 000, whereas the parallel jet of figure 18(a) has a Reynolds number of 3046 and the
thinning of the shear layer associated with increased Reynolds number possibly helps
to keep the effective radius small.

The axial velocity parameter model shows that the converging jet impulse is
increased due to the peak of the axial velocity towards the edge of the nozzle, but
the jet impulse is mostly affected by the radial velocity, and again the increase is
accurately captured by the 2D model. Overall the converging jet impulse is 73 %
higher than the parallel jet for the same piston velocity with a low stroke ratio.

Figure 19 shows the hydrodynamic impulse of both parallel and converging jets
with a stroke ratio L/D ≈ 7. The impulse of the parallel jet is fairly well predicted
by the 1D slug model. The effect of the radial velocity induced by the formation of
the primary vortex ring is almost non-existent for the parallel jet with a large stroke
ratio. The total converging jet impulse is well captured by the 2D model. In total
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the converging jet has 75 % more impulse than the parallel jet with the same piston
velocity and stroke ratio, L/D ≈ 7. Again the impulse measured for the parallel jet
does not acquire the ‘pressure impulse’ reported by Krueger & Gharib (2003) for a
stroke ratio L/D = 8; however, it should be noted that at such large stroke ratios the
additional thrust attributed to nozzle over-pressure is greatly diminished because of the
marginalized influence of the initial vortex ring formation.

7.3.3. Kinetic energy and nozzle pressure
The kinetic energy of the jets were determined using the DPIV algorithms and

recorded over time. Unfortunately, there is no direct pressure measurement at the
nozzle exit plane, so the accuracy of nozzle pressure calculation is difficult to
determine. However, the energy model requires knowledge of the pressure at the
nozzle (pressure work done at the boundary), so that validation of the kinetic energy
indirectly validates the pressure model as well. Even though the pressure distribution
was not measured experimentally, it was calculated at the nozzle exit plane from the
jet velocity profile according to (2.23). The pressure profile is shown with respect
to radius in figure 20. It can be seen in this figure that the initial stages of vortex
ring formation induce over-pressure within the nozzle exit area and under-pressure just
outside the nozzle radius, for both cases, but the over-pressure on the orifice nozzle is
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FIGURE 22. (Colour online) Kinetic energy of jets created with a piston velocity of
≈7 cm s−1 and stroke ratio of L/D ≈ 7: (a) a parallel jet, case 2, and (b) a converging jet,
case 4.

minimal at the start of motion. After this formation period the converging jet maintains
over-pressure at the nozzle exit area but the parallel jet drops to stagnation pressure.

The kinetic energy of both parallel and converging starting jets, expelled with low
stroke ratios, L/D = 2.4, and equivalent piston velocities up ≈ 7 cm s−1 are shown
in figure 21. While the parallel jet energy is well captured by the 1D slug model,
the converging jet has a much larger kinetic energy. Some of the additional energy
is due to a peak in axial velocity towards the nozzle edge; however, a much larger
portion of the increased energy is due to the increased pressure at the centreline
required to support the radial velocity gradient. The 2D model provides a very close
approximation to the actual kinetic energy of the jet. Overall the converging jet has a
kinetic energy more than double (135 %) the parallel jet.

For the jets with large stroke ratio, L/D≈ 7, again all three models provide a decent
approximation of the parallel jet energy, as can be seen in figure 22, and the 2D model
accurately computes kinetic energy of the converging jet. Overall the converging jet
contains 105 % more kinetic energy than the parallel jet, for large stroke ratios.
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8. Conclusion
There are several real-world flows which involve non-parallel starting jets, but

analysis has been largely focused on parallel starting jets; and specifically those
created by a piston–cylinder vortex generator. It was demonstrated here that the 1D
slug model, which is traditionally used to model circulation, impulse and energy of
starting jets, drastically under-predicts these quantities if the incoming flow has a
converging radial velocity and it is predicted that the 1D slug model will over-predict
the quantities if there is a diverging radial velocity. In addition, the 1D slug model
provides a poor prediction of the circulation of parallel jets and provides a poor
prediction of the impulse of parallel jets at low stroke ratios, where the leading vortex
ring and boundary layer development have a strong influence on the incoming jet flow,
as has been observed previously.

These model deficiencies were addressed by Krueger & Gharib (2005) by including
contributions from over-pressure; whereas, this paper derives a new model to predict
circulation, impulse and energy of starting jets which specifically accounts for a radial
velocity at the source of the jet flow. This model only requires the knowledge of
jet kinematics at the entrance boundary of any axisymmetric control volume. This
is a powerful tool for modelling jet flows and can even be extended to continuous
jets by changing the treatment of far-field boundaries, as will be examined in future
publications. We also presented generic axial and radial velocity profiles which can be
used to parameterize a wide variety of experimental jet flows, and the jet circulation,
impulse and energy were then derived in terms of the velocity profile parameters.

One obvious application of modelling starting jet impulse comes in the design
of pulsatile jet thrusters for underwater vehicle maneuvering. This analysis allows
the total jet impulse to be optimized for any given flow constraint in terms of the
limited number of jet flow parameters. Although not specifically addressed here, future
studies will identify exactly how the velocity parameters, b, k?1 and k?2, can be adjusted
by nozzle geometry and piston velocity programs. This will reduce the problem to
designing a device which creates optimal velocity parameters, rather than optimizing
the thrust of the device through the slow process of testing all the various nozzle
configurations until an optimum is found. Another similar application is the design of
more effective synthetic jet actuators.

Both parallel and converging starting jets were created experimentally by ejecting
fluid through a set of tube and orifice nozzles, and the velocity fields of these jets
were captured using DPIV techniques. The DPIV data was used to parameterize the
velocity profiles at the exit of these nozzles, as well as to validate the circulation,
impulse and energy models. The velocity profiles of parallel jets expelled through a
tube nozzle and subsequently circulation, impulse and energy of the jet are highly
sensitive to the formation of the primary vortex ring as indicated by the large variation
in dynamics between high and low stroke ratios. Whereas, the orifice nozzle used to
create a converging jet resulted in a more uniform velocity profile throughout pulsation
for all stroke ratio. The radial velocity at the entrance boundary has a drastic effect on
the circulation, impulse and energy of the starting jet. The converging jet was observed
to have as much as 100 % more circulation and energy, and 75 % more impulse than
the parallel jet with the same mass flux and nozzle diameter, and this increase was
very well captured by the new jet model.

Ignoring the radial velocity will create an under-specified model for circulation,
impulse, and energy (meaning that a model scaled only by characteristic axial velocity
will predict the same quantities for parallel and converging jets with the same piston
velocity), which will result in significant scatter in reported experimental data for jet
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FIGURE 23. (Colour online) A single frame depicting the flow visualization used to calibrate
piston velocity. Seeding particles are illuminated by a laser sheet entering from the nozzle
opening.

circulation, impulse and energy with a given characteristic axial velocity. Rather than
focusing on corrections to an overly simplified model which are geometry specific,
we believe a more fundamental understanding comes from incorporating the radial
velocity in the normalizations and then identifying how the nozzle geometry affects
these quantities. This could have a profound effect on analysis of synthetic jet
actuators which have a wide variety of publications focusing on the effect of the
specific orifice geometry.
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Appendix A. Piston velocity validation
The piston velocity, up, is determined from motor encoder velocity, assuming that

the plunger has a linear correspondence between deflection and volume displacement.
The displaced volume was measured at several plunger deflections to test this
relationship. However, this testing used static volume measurement techniques and
further validation was needed to ensure that this relationship is preserved during high-
speed operation, especially considering that the plunger is constructed with a flexible
rubber which might have load-dependent deformation characteristics.

Fortunately, one of the tube nozzles is constructed out of clear acrylic which
allowed visual access to the internal flow. A sample image of the clear tube nozzle
with illuminated internal flow is depicted in figure 23.

A typical driving signal was sent to the thruster (nearly impulsive program described
in § 3.2). The internal tube flow was filmed and processed using the commercial DPIV
algorithms (see § 5). The velocity profile across the nozzle area was determined at
multiple locations. Although the nozzle itself is a cylindrical plastic tube, the optical
density of acrylic is close enough to water that the optical distortion will be negligible.
The velocity profile across the nozzle was also observed to be nearly uniform except



522 M. Krieg and K. Mohseni

Time (s)

Pi
st

on
 v

el
oc

ity
 (

cm
 s

–1
)

 

 

–4

–2

0

2

4

6

8

0.2 0.4 0.6 0.8 1.0 1.2

PIV
Encoder

FIGURE 24. (Colour online) Piston velocity is shown versus time determined form DPIV and
motor encoder data.

at the nozzle surface accounting for boundary layer development. The volume flux, Ω ,
was calculated by integrating the DPIV velocity profile over the nozzle area,

Ω = 2π
∫ R

0
ur dr. (A 1)

The piston velocity is determined from the volume flux in the usual way, up =Ω/πR2.
The piston velocity was also determined from the motor encoder data for the same
trial run. The piston velocity determined from each method is plotted as a function of
time in figure 24.

For the majority of the pulsation the piston velocity determined from DPIV matches
the piston velocity determined by the encoder with the exception of the end of
pulsation where the sudden termination of plunger motion results in some oscillation
associated with elastic vibrations in the plunger surface.

Appendix B. Analytic pipe flow solutions for impulsive startup
Consider the flow in an infinitely long pipe, such that the radial velocity, v, vanishes

and the governing dynamics of the flow can be described by the Navier–Stokes
equation in the axial direction,

∂u

∂t
=− 1

ρ

∂P

∂x
+ ν

[
∂2u

∂r2
+ 1

r

∂u

∂r

]
, (B 1)

or in non-dimensional terms with normalized variables u? = u/um and r? = r/R,

∂u?

∂t
=− 1

umρ

∂P

∂x
+ ν

R2

[
∂2u?

∂r?2
+ 1

r?
∂u?

∂r?

]
. (B 2)

Szymanski (1932) solved this flow analytically assuming a constant pressure
gradient, enforcing the no-slip boundary condition at the edge of the pipe u?(t, 1) = 0,
and imposing the initial condition that the flow starts at rest u?(0, r?) = 0. These
conditions resulted in the analytical solution,

u? = (1− r?2
)− ∞∑

n=1

8J0 (λnr?)

λ3
nJ1 (λn)

e−λ
2
nνt/R2

, (B 3)
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and the velocity scaling is related to the pressure gradient by um = −(∂P/∂x)(R2/4µ).
This solution provides an axial velocity profile within the pipe which over time
accelerates under the constant pressure gradient and slowly develops a boundary layer
on the edge of the pipe, becoming the steady Hagen–Poiseuille flow at large time
values. Unfortunately, this flow is not exactly representative of the flow inside the tube
nozzle for nearly impulsive velocity programs. For a truly impulsive flow the volume
flux through the pipe reaches a steady value at the onset of motion, and this is realized
by a pressure gradient which starts out very large and settles upon a constant value as
the flow becomes fully developed.

In order to more closely capture this transient behaviour we provide a similar
analytical solution with two changes. First it is assumed that the pressure gradient
is equal to the sum of a constant and an additional term which diminishes at the
same rate as the transients in the flow profile and secondly the initial condition
is imposed that at time t = 0, the flow starts out with uniform distribution,
u?(0, r?) = (1 − H(r? − 1))/2, where H is the heaviside function. Although this
initial condition is discontinuous it satisfies the no-slip condition and the velocity
profile will become continuous immediately after this initial time. If we assume the
velocity profile at any time is equal to the steady Poiseuille solution added to the
transient terms, u? = 1 − r? + u?1(t)u

?
2(r

?), and assume the pressure gradient transients
are proportional to the velocity transients, ∂P/∂x = k

[
1+ αu?1(t)u

?
2(r

?)
]
, and substitute

back into the governing equation (B 3) then the constant pressure gradient terms cancel
with spacial derivatives of the steady velocity profile resulting in the same velocity
scaling um = −kR2/4µ. The governing equation can then be separated into differential
equations of time and radius, both equal to the separation constant, −σ 2, and the
general form of the transients is

u?1(t)u
?
2(r

?)= Ce−σ
2tJ0(λr?), (B 4)

where λ is related to the separation constant, σ 2 = (λ2 − 4α)ν/R2. In order to satisfy
the no-slip boundary condition λ must be set to one of the infinite zeros of J0 denoted
λn. Imposing the new boundary condition and utilizing the orthogonality of Bessel
functions allows the coefficient Cn corresponding to each zero λn to be determined,

Cn = λ2
n − 8

λ3
nJ1(λn)

. (B 5)

Therefore, the starting flow in an infinitely long pipe under the impulsive initial
conditions is

u? = (1− r?2
)+ ∞∑

n=1

(λn − 8)J0 (λnr?)

λ3
nJ1 (λn)

e−((λ
2
n−4α)ν/R2)t. (B 6)

Setting α = 0 produces the velocity profiles in a pipe with a constant pressure gradient
and the impulsive initial condition. These velocity profiles are shown over time in
figure 25(a), which shows that the velocity profile is the uniform 1D slug model
profile at time t = 0 and becomes nearly fully developed by t = 10 s. The average
velocity, ū, is easily calculated for this flow as the total volume flux over area, and
is shown for this case over the first 5 s of pulsation in figure 25(b). It can be seen
that at the onset of flow the average velocity is equal to one, corresponding to the
impulsive piston velocity as is specified by the initial condition. But the constant
pressure gradient is insufficient to maintain this volume flux, which immediately drops
and does not return to the impulsive piston velocity until the flow reaches steady state.
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FIGURE 25. (Colour online) The analytical solution to velocity profiles of an impulsively
started pipe flow are shown in (a) where the parameter α is set to zero. The resulting average
velocity at these times are shown for this case in (b) as well as the case where α = 10.

By increasing the value of α we are essentially increasing the magnitude of the
pressure gradient during the transient stages to maintain the impulsive piston velocity.
It can be seen in figure 25(b) that a larger α (α = 10) lessens the drop in volume flux
during the transient stages and the increase in pressure gradient during these stages can
also be seen to accelerate the boundary layer development. Therefore, the parameter α
can be tuned so that the volume flux of the analytical solution comes very close to the
volume flux of the nearly impulsive starting flow. If this parameter is tuned correctly,
then the analytical solution will provide the velocity profile within the tube nozzle
throughout the pulsation. This solution is not valid at the exit plane (or entrance) of
the tube nozzle where the spiralling free shear layer induces a radial velocity and
axial velocity gradient, ∂u/∂x, contradicting the pipe flow governing equation (B 1).
However, the infinite pipe solution does correctly identify the level of boundary layer
development giving a reasonable prediction of the axial velocity parameter, b, for tube
nozzle flows as validated in § 7.2.
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