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Abstract In this article, a full dynamic data-
driven application system (DDDAS) is proposed
for dynamically estimating a concentration plume
and planning optimal paths for unmanned aerial
vehicles (UAVs) equipped with environmental
sensors. The proposed DDDAS dynamically in-
corporates measured data from UAVs into an
environmental simulation while simultaneously
steering measurement processes. In order to as-
similate incomplete and noisy state observations
into this system in real-time, the proper orthog-
onal decomposition (POD) is used to estimate
the plume concentration by matching partial ob-
servations with pre-computed dominant modes
in a least-square sense. In order to maximize
the information gain, UAVs are dynamically
driven to hot spots chosen based on the POD
modes. Smoothed particle hydrodynamics (SPH)
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techniques are used for UAV guidance with col-
lision and obstacle avoidance. We demonstrate
the efficacy of the data assimilation and control
strategies in numerical simulations. Especially, a
single UAV outperforms the ten static sensors in
this scenario in terms of the mean square error
over the full time interval. Additionally, the multi-
vehicle data collection scenarios outperform the
single vehicle scenarios for both static sensors at
optimal positions and UAVs controlled by SPH.

Keywords DDDAS · UAV · Environmental
measurement · POD · Path planning · SPH

1 Introduction

The use of cooperative, small unmanned aerial ve-
hicles (UAVs) equipped with simple environmen-
tal sensors provides a promising option for safe
and cost-effective data collection. Two benefits of
such a system are the relatively low-cost of indi-
vidual vehicles and the safety of using unmanned
vehicles for missions involving harsh atmospheric
conditions or toxic environments. The mobility
of UAVs allows for information gathering over
large areas and the ability to backtrack, providing
for more complete data collection in a dynamic
environment when compared to static sensors. A
sample of the work that has been conducted in
the last few years using smaller and lower-cost
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vehicles equipped with atmospheric sensors can
be found in [1–6]. The extensive amount of data
obtained from small, cooperative UAVs equipped
with simple, low accuracy sensors allows for the
potential of more efficient data collection com-
pared to a single vehicle with more expensive,
more accurate sensors.

Regardless of the number of UAVs employed
in an application, the key consideration in the
use of UAVs is how to position them in order
to gain useful information from their locations
and/or path. Dynamic data driven application sys-
tems (DDDAS) provide a means to position the
UAVs in an efficient manner using the real time
data obtained from the sensors. The framework
of DDDAS is driven by the goal of dynamically
incorporating data into a running application (e.g.
an environmental simulation) while simultane-
ously using the application to steer measurement
processes [7]. The DDDAS framework is widely
used in wildfire simulation [8, 9], identification
of airborne contaminants [10–12], and weather
forecasting [13].

In this article, a two-dimensional plume evo-
lution problem is considered. The concentration
plume is released upwind of two square obstacles
(representing buildings) and travels downstream
according to the advection-diffusion equation. For
real-time plume simulation and estimation, the
unknown parameters in our problem include not
only the initial condition of the plume concen-
tration, but also the plume source distribution.
This leads to an ill-posed inverse problem with
high-dimensional control spaces in the form of un-
known parameters, whose solution is not unique.
This motivates the construction of reduced-order
surrogate models to uniquely determine these pa-
rameters in DDDAS. It is noticed that the proper
orthogonal decomposition (POD) [14] seeks to
replace a high-dimensional system with a system
of substantially lower dimension while preserv-
ing the dominant features of the original system.
An offline-online splitting strategy is applied to
achieve fast online computation. In an offline
stage, we sample the possible plume source loca-
tions and solve the advection-diffusion equation,
which results in possible trajectories of the plume
concentration. Then, the POD method is used to
identify the dominant modes of plume concentra-

tion. In the online stage, point observations of the
plume concentration are recorded by UAVs and
an estimation of the global plume concentration
is computed by fitting the dominant POD modes
to the observations in a least squares sense. Once
the plume concentration is known, it is possible to
solve for the plume source term in the governing
equation.

The proposed DDDAS framework also cre-
ates solutions for efficient data collection and
real-time vehicle control. UAVs are used to col-
lect concentration data throughout the domain
which is then assimilated into a running advection-
diffusion simulation to predict the plume motion.
In order to maximize the information gain of
UAVs, the DDDAS dynamically drives the vehi-
cles to hot spots that contribute the most informa-
tion to the dominant modes. A smoothed particle
hydrodynamics based scheme is used for vehicle
control to provide obstacle and collision avoid-
ance. Once the vehicles are driven to the hot spots
and collect the data, the data assimilation process
will estimate the instantaneous plume concentra-
tion as well as the plume source. We demonstrate
the efficacy of the assimilation strategy as well as
the control strategy of this dynamic data-driven
application system via numerical simulations.

The main contributions of this paper are
twofold: (1) the use of the POD method to reduce
the dimension of a solution space for the data
assimilation process, such that the estimation for
plume concentration can be solved by a least-
squares optimization process and (2) a control
strategy to drive vehicles to the hot spots such
that the main POD modes are captured. The re-
mainder of this article is organized as follows. We
first formulate the problem of plume evolution
within an urban environment. We then discuss
and present the reduced-order data assimilation
procedure. Next, we discuss the path planning
strategy for mobile vehicles. Simulation results are
also provided. Finally, we give a short conclusion.

2 Problem Formulation

The DDDAS approach is quite general and can
be applied to many phenomena where good sim-
ulation models are available. Here, we focus on
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measuring and tracking a concentration plume
from sparse observations in an advection-
diffusion system described by

∂ψ

∂t
+ v · ∇ψ = 1

Pe
∇2ψ + f ; ψ(0, x) = ψ0(x),

(1)

where v = v(t, x) is the background wind veloc-
ity, Pe is the Péclet number which quantifies the
relative strength of the advection and diffusion
terms, ψ(t, x) is the concentration field, f (t, x) is
the plume source, time t ∈ (0,T), and x ∈ �. We
examine the case where a Gaussian plume source
releases a constant plume, which is advected un-
der the action of the velocity field v while also dis-
persing due to the diffusion. After discretization
in space and time through finite differences, Eq. 1
yields

ψk = Ak−1ψk−1 + fk−1; (2)

where ψk ∈ R
n is the concentration at time step

k, A ∈ R
n×n is the discretized linear operator ac-

counting for the advection and diffusion effects
and f ∈ R

n is the plume source. In this model, we
ignore the noise introduced by the uncertainty in
the background velocity field, the diffusion con-
stant, and the concentration source, for simplicity.
The wind velocity v could be obtained by a CFD
model or weather forecasting. In this paper, v is
found by numerically solving the incompressible
NS equations using a finite difference method at
n grid points. The wind velocity v varies with
time. Therefore, both Eqs. 1 and 2 are linear non-
autonomous systems.

The advection-diffusion equation is solved to
simulate the “real” plume concentration by using
a semi-Lagrangian advection step and an implicit
central difference scheme for the diffusion term as
described in [15]. To limit the numerical diffusion
and improve accuracy, a second order midpoint
method is used for the advection step and cubic
splines are used to interpolate from the grid to the
advection points.

For the case of a discrete puff of concentra-
tion being released, the forcing term f in Eq. 1
is zero for t > 0, and the governing equation is
completely known. For this reason, puff estima-
tion problems may be solved by using a Kalman

filter technique or via optimization for the initial
condition [10–12]. However, for plume estimation,
f is an unknown, infinite dimensional parameter
giving the plume source. Additionally, estimation
of f is an inverse problem with a generally non-
unique solution. To address this, we must add
some additional assumptions for well-posedness,
such as f is smooth and compactly supported. Let
V = supp(f ), so V is bounded. In addition, we
seek an approximating solution f̂ that resides on a
linear subspace, which is spanned by a set of basis
functions {φi(x)}vi=1 with supp(φi) ⊂ V , and

f̂ (t, x) =
v∑

i=1

ai(t)φi(x). (3)

For the discrete case,

f̂k =
v∑

i=1

ai
kφi, (4)

where ai
k denotes the coefficient corresponding to

basis vector φi at time step k, f̂k ∈ R
n, and φi ∈ R

n.
In the offline stage, we can precompute the tra-
jectories of the plume concentration for the basis
functions {φi}vi=1, which will span another linear
subspace U . If the plume source f̂k is a constant
for k > 0, and the initial plume concentration is
zero, then the trajectory of f̂k resides on U .

The methods used in this paper combine to
form a full dynamic data-driven application sys-
tem (DDDAS) [7] to effectively and efficiently
control UAVs and estimate plume concentration.
This system can be thought of as an intelligent
autonomous control system [16] designed to per-
form well under significant uncertainties in an un-
known environment for extended periods of time.
A schematic of this system is shown in Fig. 1. An
offline-online splitting methodology is applied. In
the offline stage, we sample the possible plume
source locations and solve the advection-diffusion
equation, which results in possible trajectories
of the plume concentration. This process could
be very expensive if a large ensemble of plume
sources are computed. However, in this DDDAS
application, where the goal is to achieve a very low
marginal cost to compute real-time plume concen-
tration, we can accept an increased offline cost



424 J Intell Robot Syst (2014) 74:421–436

Fig. 1 (Color online) Schematic of the DDDAS. In the
offline stage, the wind velocity is obtained by solving
the NS equations. Then some sample plume concentra-
tion solutions are computed using the advection-diffusion
equation with a sample of basis plume sources. The POD

method is applied to obtain the dominant modes. In the
online stage, the two main components of the system are
a sensor guidance and control loop and a simulation loop.
The two loops interact through data assimilation and sen-
sor placement algorithms

in exchange for greatly decreased online cost for
data assimilation and vehicle control procedures.
In the final offline step, the dominant modes of
plume concentration are identified by the POD
method. In the online stage, two coupled feedback
loops are run in real-time to improve the accuracy
of a running simulation while simultaneously im-
proving the effectiveness of data collection strate-
gies. We refer to the first loop in the DDDAS
as the sensor guidance and control loop. The sys-
tem components in this loop are responsible for
movement, collision avoidance, and data collec-
tion. The second loop in the system is referred
to as the simulation loop. In this loop, a real-time
simulation attempts to model the physical system
of interest; in our case, a concentration plume is
modelled using the advection-diffusion equation
mentioned above. The key to the DDDAS is an
effective, two-way coupling between the simula-
tion loop and the sensor guidance and control
loop. This is accomplished by using a POD based
data assimilation routine to assimilate data col-
lected in the guidance and control loop into the
running simulation loop, resulting in improved
accuracy in the simulation. Meanwhile, in order
to improve the data collection process, the simu-
lation loop could be used to adaptively construct
local POD modes, which are then applied in the
proposed sensor placement algorithm to steer the
UAVs to impactful measurement locations.

In the next two sections, we first discuss the
data assimilation process used in this paper, then
move on to introduce the UAV control scheme

that is used to ensure sensor collision and obstacle
avoidance while guiding sensors to optimal locations.

3 Data Assimilation

Since observations are incomplete and noisy, it is
not sufficient to estimate the instant plume con-
centration in the high dimensional space R

n with
the measured data alone. However, if we restrict
this inverse problem to a subspace S with a lower
number of unknown parameters, the measured
data is sufficient to find an approximate solution
for plume concentration on S with high accuracy.
The error between the real plume concentrationψ
and the estimated concentration ψ̂ can be defined
as e := ψ̂ − ψ . Let eo denote the error component
orthogonal to S, and ei, denote the component
of error parallel to S. The reduced-order data
assimilation technique proposed in this section
seeks to decrease eo and ei simultaneously.

It is noted that eo directly comes from the pro-
jection onto the subspace S. The proper orthog-
onal decomposition method (POD, also known
as Karhunen-Loève decomposition, singular sys-
tems analysis, singular value decomposition and
principle component analysis, PCA) [17] is used
to capture S. In the fields of dynamical systems
and computational fluid dynamics, POD is used
to formulate a simplified surrogate of the original
high-dimensional problem to improve computa-
tional efficiency. In the fields of machine learning,
signal processing, and image processing, POD is
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used to find dominant patterns in signals or input
parameters. In the context of DDDAS, POD was
used in [11, 18] for the former purpose. In this
paper we use POD for the later purpose.

On the other hand, since the observation is
noisy, we cannot completely remove ei. How-
ever, within the subspace S, we can optimize the
coefficients for each basis vector by the regular-
ized least mean square method. Statistically, this
method gives an optimal estimation for all the
collected data to reduce ei while ensuring that the
reformulating inverse problem is well-posed. The
following two subsections discuss the techniques
that reduce ‖eo‖ and ‖ei‖.

3.1 Proper Orthogonal Decomposition

In many applications, conventional methods of
direct numerical simulation (DNS) for resolving
all scales in a system are computationally inten-
sive, and therefore reduced order models (ROMs)
are often desirable. The core of model order re-
duction is to provide an efficient computational
prototyping tool to replace a high order system
of differential equations with a system of sub-
stantially lower dimension, whereby only the most
dominant properties of the original system are
preserved. As a model reduction technique, POD
is widely used in CFD-based modelling and con-
trol [19], electrical power grids [20, 21], struc-
tural dynamics [22], and chemical reaction sys-
tems [23, 24] to name a few. Although POD is
a linear model reduction technique which uses a
linear subspace to represent generally nonlinear
submanifolds, it is computationally tractable and
typically requires only a few modes to capture
the most important aspects of a system. Roughly
speaking, a typical POD procedure involves the
offline-online strategy: given an ensemble of data,
collected from a set of numerical simulations of
the original dynamical system, find a linear sub-
space representation of the data via truncated
singular value decomposition (SVD) in the offline
stage. Then the reduced order model is obtained
via Galerkin projection during computations in
the online stage.

The key idea of POD is to deliver a set of
empirical eigenfunctions (or POD modes) so that
the original data is optimally captured by these

modes in the least squares sense [14]. Suppose a
data ensemble for different trajectories is given by
{ψ(t)}α with t ∈ [0,T], where α is the index for
a trajectory calculated from the original system.
POD seeks a subspace S of fixed dimension d
that minimizes the total error of all state vari-
ables in the data ensemble and their projection
on S [14]. In the numerical simulation, it is more
feasible to rewrite the entire data ensemble in a
discretized form,

X := [ψ1, . . . , ψm], (5)

where the subscript denotes the different snap-
shots in different trajectories. The data ensemble
X can be decomposed by singular value decompo-
sition (SVD),

X = U�VT , (6)

where U ∈ R
n×r and V ∈ R

m×r are orthogonal,
and � ∈ R

r×r is a diagonal matrix which consists
of r = min(n,m) nonnegative diagonal elements
arranged in decreasing order, i.e. λ1 ≥ . . . ≥ λr ≥
0. If the first d singular values are significantly
larger than the rest, one can make a good ap-
proximation of X by only calculating d column
vectors of U and V corresponding to the d largest
singular values. This can be much quicker and
more efficient than dealing with the full system
if d � r. The POD basis {ϕi}d

i=1 is given by the
first d columns of U, which span a subspace S. S
can be represented by the following matrix in the
Stiefel manifold


 := [ϕ1, . . . , ϕd] ∈ R
n×d. (7)

In the rest of this paper, a SVD process refers to
truncated SVD unless otherwise specified.

Let Er denote the energy of the full sys-
tem, Er = ∑r

i=1 λ
2
i and Ed denote the energy

in the optimal d dimensional subspace, Ed =∑d
i=1 λ

2
i . The fractional error in energy η can be

presented by

η = 1 − Ed

Er
. (8)

The POD basis is optimal for model reduc-
tion in the sense that it provides a better energy
approximation than any other linear basis in the
same dimension with respect to the data ensemble
X. If the state variables in X span a linear space
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that contains ψ , then the orthogonal component
of error ‖eo‖ is completely determined by trunca-
tion, and can be estimated by ‖eo‖ ≈ η. Otherwise,
‖eo‖ can be estimated by ‖eo‖ ≈ ξη, and ξ > 1 is a
constant that denotes the deviation from ψ from
the linear space determined by X.

In the online stage, Galerkin projection can
provide a lower dimensional approximation by
projecting the full system onto a linear (or an
affine) subspace. With respect to Eq. 2, the
reduced-order equation is given by left multipli-
cation of 
 on both sides of Eq. 2,

ψ̃k = Ãk−1ψ̃k−1 + f̃k−1; (9)

where ψ̃k = 
Tψk ∈ R
d, f̃k = 
T fk ∈ R

d, and
Ãk = 
T Ak
 ∈ R

d×d. Since ψ̃k is updated in a
much lower dimensional space, calculation of Eq.
9 is much more efficient than Eq. 2. However,
since the velocity field is time-dependent, it re-
quires a lot of memory to save Ãk for all the time
steps. Therefore, although we use POD to find the
dominant modes of plume concentration, we do
not use Eq. 9 for online computation.

3.2 Empirical Interpolation Method

The original empirical interpolation method [25]
and its variant, discrete empirical interpolation
method (DEIM) [26], are used for model order
reduction that reduces the complexity of evalu-
ating the nonlinear term of the reduced model
to a cost proportional to the number of reduced
variables obtained by the POD method. Rather
than calculating the nonlinear vector field of the
original dynamical system in the original space,
DEIM seeks a small number of critical points,
and then interpolates the vector field by matching
the values at these points. We are motivated by
this idea for the DDDAS for plume detection in
two ways. First, we send our UAVs to approach
these critical points, or hot spots, to collect the
most useful information about the system state.
This control strategy will be discussed in the next
section. Secondly, after measuring plume con-
centration at only a small number of the total
grid points, we use the interpolation method to
estimate the plume concentration for the entire
spatial domain. In a slight abuse of terminology
we refer to this method of fitting POD modes to

observations as empirical interpolation. The esti-
mation process is based on the regularized least
mean square method.

Let ψk ∈ R
n denote the “real” plume concen-

tration field at time step k.
 ∈ R
n×d, as defined in

Eq. 7, formed by the first d empirical eigenfunc-
tions. The approximation given by projecting ψk

onto the subspace spanned by column vectors of

 is of the form

ψk ≈ 
ck, (10)

where ck ∈ R
d is the coefficient vector with re-

spect to 
. Suppose at time step k, we have l
observations. Let {βi}l

i=1 denote the indices of
grid points corresponding to these observations.
Let a matrix P = [eβ1, . . . , eβl ] ∈ R

n×l, where eβi =
[0, . . . , 0, 1, 0, . . . , 0]T ∈ R

n is the βith column of
the identity matrix In ∈ R

n×n for i = 1, . . . , l. Let
ξk ∈ R

l denote the noise vector in the observation
and ωk ∈ R

l denote the measured data at time
step k. Then, the relationship between the original
plume field ψk and the observation ωk can be
expressed as

ωk = PT
kψk + ξk, (11)

where we add subscript k for the projection matrix
P to emphasize that the observation could be
taken at different positions and different times,
which is the case for the UAV applications in
this article.

The aim is to find an estimation of plume con-
centration ψ̂k to minimize the �2 error between the
estimated plume concentration PT

k ψ̂k at measured
grid points and the real observation ωk. In order
to obtain a unique, well-behaved solution, we seek
ψ̂k on the subspace spanned by the column vectors
of 
. Substituting ψ̂k by the RHS of Eq. 10 yields

ψ̂k = 
ck. (12)

By defining the quadratic function

E(ck) = 1

2

∥∥PT
k
ck − ωk

∥∥2 + α

2
‖ck‖2 (13)

with a regularization coefficient α, the plume es-
timation problem is reduced to minimizing E(ck)

with respect to ck, which leads to

ck = (

T Pk PT

k
+ αI
)−1

T Pkωk, (14)
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where I denotes the d × d identity matrix. After
solving ck, the approximation ψ̂k is given by Eq. 12
which is the regularized least squares estimation
of plume concentration.

After solving for ψ̂k for two consecutive time
steps, based on the governing equation of plume
evolution (Eq. 2), the instantaneous plume con-
centration could be estimated as

gk−1 ≈ ψ̂k − Ak−1ψ̂k−1. (15)

Usually, there is no guarantee that supp(gk−1) is
bounded due to the error introduced by ψk−1 and
ψk. If the basis functions for the plume source
{φi}vi=1 in Section 3.1 are orthonormal, one may
filter the noise and limit the estimation of plume
source within the domain V by

f̂k−1 =
v∑

i=1

φiφ
T
i gk−1. (16)

Otherwise, one may use the Gram-Schmidt
process to reconstruct an orthonormal basis for
the same subspace and use the above equation to
filter the error from gk−1. Based on this empir-
ical interpolation method, a control strategy for
UAVs is presented in the next section to obtain
maximal measured information and to minimize
the estimation error.

4 Sensor Mobility Control

Although the above mentioned data assimila-
tion method can effectively reduce the stochastic
noise in the measurements, the final estimation
of plume concentration is highly dependent on
where the data is collected. In the worst case,
if all the UAVs are located in a region where
there is no plume concentration, the least squares
problem is ill-conditioned and the results will be
determined by the stochastic measurement noise
rather than helping to reduce this noise. Sensor
mobility control refers to a strategy for gathering
sensor measurements to support a sensing objec-
tive, such as environmental measurement. When
the sensors are installed on robotic platforms an
important part of the problem is planning the
sensor path to achieve low working time or low
energy consumption [27], obstacle avoidance in

unstructured dynamic environments [28–30], or
efficiently gather target information [31]. Using
the POD-based data assimilation method, a hier-
archical control strategy is proposed here to max-
imize the useful information collected by mobile
sensors. Based on the speed limitation of UAVs,
the entire time domain is artificially partitioned
into N smaller subintervals such that during each
subinterval, any UAV has the ability to reach
(or at least approach) any important measure-
ment location. Inspired by the greedy algorithm
in [26], we develop an algorithm to find the the
important positions, or hot spots, for a fixed time
interval where sensors may obtain more informa-
tion than arbitrarily chosen positions. At a lower
level, smoothed particle hydrodynamics (SPH) is
used to guide UAVs to the chosen hot spots at
each time interval while simultaneously avoiding
collisions with obstacles or other sensors.

4.1 Sensor Placement

The sensor placement procedure is employed to
choose sensor locations at hot spots in the domain
to improve the estimation of plume concentration.
There are several common strategies to address
this fundamental task to maximize the entropy
or mutual information [31, 32]. For our DDDAS
application, a small number of UAVs have the
potential to gain much more information than
fixed sensors, but also provide more challenges.
Since physical plumes typically have a large Péclet
number, their evolution is mainly governed by the
advection term in Eq. 1, and the concentration
varies in time due to the time varying velocity
field. Therefore, we cannot expect to obtain max-
imal information by setting hot spots at the same
positions for the whole time domain. Instead, we
need to dynamically locate hot spots for each
time interval. By adaptively choosing snapshots
in the database, we can calculate POD modes
corresponding to the local time interval. For each
POD mode, the greedy algorithm proposed in
this section is a polynomial-time approximation to
detect the most informative positions with respect
to minimizing the �2 error for the estimated plume
concentration. Compared with A-, D- or E- op-
timal design for entropy maximization [32], it is
much more efficient.
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After spatial discretization, m hot spots can be
determined by the location indices {γi}m

i=1. Due
to the presence of obstacles (buildings) in the
domain and the uncertainly of vehicle trajectories,
some portions of the domain inaccessible or un-
safe for UAV placement. We still use {ϕi}d

i=1 to
denote the first d dominant modes for a given
time interval, which change from one interval to
another. We call these the local POD modes. The
proposed algorithm is to choose {γi}m

i=1 such that
at each time step the coefficients corresponding
to these modes (Eq. 14) may be calculated with
the highest accuracy in a statistical manner. Let
ϕi( j) ∈ R denote the jth element of mode i, then
we can define a projection ϕ̃i ∈ R

n of ϕi, such that
ϕ̃i( j) = ϕi( j) when j is an accessible position for
UAVs and ϕ̃i( j) = 0 otherwise.

The proposed greedy algorithm seeks to find
the optimal positions for hot spots within each
period, whereby the measured data at these po-
sitions enables accurate computation of the POD
mode coefficients. Intuitively, the positions cor-
responding to higher values of ϕ̃i are desirable
because observations at these positions are certain
to contain information about the contribution of
mode ϕi. So we set γ1 to be the location of ϕ̃1 with
the largest magnitude. The remaining interpola-
tion indices, γi for i = 2, . . . ,m, correspond to the
largest magnitude of the residual ri = ϕ̃i − Udi,
where ri is the residual or the error between the
input basis ϕ̃i and its projection on a subspace
spanned by interpolation basis U = [ϕ1, . . . , ϕi−1].
Algorithm 1 shows the complete algorithm de-
tails, whereby the notation “max” is such that
[|ρ|, γ1] =max{|ϕ̃1|} implies position γ1 has the
largest magnitude of ϕ̃1, with a value of |ρ|.

4.2 Path Planning and Vehicle Control

The sensor guidance and control aspect of the
DDDAS is managed using a smoothed particle
hydrodynamics (SPH) based control scheme to
drive UAVs toward the hot spots. SPH has been
previously used in many cooperative control ap-
plications [33–38] and results in a computationally
efficient control scheme that gives fluid-like vehi-
cle motions while providing obstacle and collision
avoidance. The SPH equations are derived from
the NS equations of fluid motion [39, 40] and

Algorithm 1 Construct the indices for hot spots
Require: Dominant modes of the plume concen-

tration {ϕi}d
i=1 ⊂ R

n and its projection to the
accessible region {ϕ̃i}d

i=1 ⊂ R
n.

Ensure: Indices {γi}d
i=1 for the first d hot spots.

Select the first hot spot index:
[|ρ|, γ1] =max{|ϕ̃1|}. Initialize U = [ϕ1].
for i = 2 to d do

1: Solve the coefficient vector di for ϕ̃i,
(ET U)di = ET ϕ̃i.

2: Calculate the residual ri = ϕ̃i − Udi.
3: Select the interpolation index corre-

sponding to the largest magnitude of the
residual [|ρ|, γi] = max{|ri|}.

4: Add a new mode, U = [U ϕi].
end for

provide an intuitive way of changing the sensor
motion qualities by adjusting relevant fluid prop-
erties such as Reynolds number and Mach num-
ber. Since this technique is not new, only the most
essential parts of the method are presented here.

In the SPH representation, Lagrangian parti-
cles are used to represent the fluid; all fluid prop-
erties are applied through the use of a “smoothing
kernel” centered at each particle location. The
smoothing kernel used in this application is given
by

Wij = 10

7πh2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 3

2
s2 + 3

4
s3 if 0 ≤ s ≤ 1

1

4
(2 − s)3 if 1 < s ≤ 2

0 if s > 2

, (17)

where h is the smoothing width of the kernel, s =
rij/h, and rij is the distance between particles i and
j. The kernel is shown in Fig. 2. The NS equations
for conservation of mass and momentum are then
discretized as

ρi =
∑

j

m jWij, (18)

Dui

Dt
= −

∑

j

[
m j

(
Pi

ρ2
i

+ P j

ρ2
j

)
∇iWij

]

+
∑

j

(
�ij

rij

∂Wij

∂rij

)
+ Fi, (19)
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Fig. 2 The smoothing kernel used for the SPH
computations

where subscripts denote particle identity, ∇i de-
notes the gradient with respect to particle i, ρ
is density, u is velocity, m is mass, � is the vis-
cous stress, and F is an external forcing term. We
slightly abuse the notion and denote by P the
pressure, which is computed using the equation
of state

Pi = Kiρi

(
ρi

ρ0
− 1

)
. (20)

All spatial derivatives that are normally present
in the NS equations now manifest themselves as
the ∇W terms and the SPH equations form a
system of ordinary differential equations that may
be integrated in time.

To apply the SPH equations of motion to a
cooperative control system, each vehicle in the
system is treated as a single fluid particle. Since
W is compactly supported, vehicle-vehicle inter-
actions have a limited range and the SPH equa-
tions are very efficient to compute on resource
constrained UAVs. The SPH equations provide
a repulsive force between particles that come too
close, providing for collision avoidance, and obsta-
cles are treated using one or more virtual particles
to ensure obstacle avoidance.

Just as fluid flows may be driven by external
forces such as gravity, vehicle guidance is handled
through external forcing terms. A loiter circle
is often necessary for aerial vehicles that must
maintain a minimum speed and in this application
an external force is used to guide vehicles into a
loiter circle at a desired location. A potential force
Fr = ∇ P is used to guide the vehicles to the loiter
circle based on the potential

P = (r − R) · tanh
(

4
r
R

− 4
)
, (21)

where R is the loiter circle radius and r is the
distance from the loiter circle center. A circulation
force is also added to guide the vehicles around
the loiter circle. This circulation force has the form

Fθ =
( r

R

)2
exp

(
2 − 2

( r
R

)2
)

eθ , (22)

where eθ is a unit vector in the circumferential
direction. The total external force is then given by

F = C(Fr + Fθ ) (23)

where C is a scaling coefficient to make the exter-
nal force the same order as the SPH forces. This
external force is shown in Fig. 3.

In simulation, the vehicle velocities are com-
puted by applying velocity and acceleration con-
straints to the SPH equations and then adding on
the effect of the background wind speed. For sim-
plicity, no vehicle dynamics or inertial effects are
considered in the contribution of the background
wind speed.

5 Simulation

In this section, the proposed data assimilation and
control strategy described above are shown to
successfully monitor and characterize a simulated
concentration plume that is analogous to the re-
lease of a plume of toxic chemicals in an urban
environment. The plume motion is governed by
the advection-diffusion equation given in Eq. 1.
For simplicity, the initial plume concentration is
zero. However, in this test, neither the precise
location nor the extent of the plume source is

2

1

0

–1

–2

Fo
rc

e

0 2 4
Radius

6

Fr
Fθ

Fig. 3 The external force that is used to drive vehicles to a
loiter circle, in this case the loiter circle has radius R = 2.
Fr denotes the force in the radial direction and Fθ denotes
the circumferential force
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Fig. 4 The background wind velocity field at t = 0

known. As time progresses the DDDAS is able
to identify and update the plume concentration
by guiding the UAVs to measurement plume con-
centration near hot spots while assimilating the
data measured along the sensor paths. Finally, the
plume source is calculated.

5.1 Simulation Setup

In the simulation, the wind velocity is computed
by solving the non-dimensional NS equation on
the spatial domain � = [0, 30] × [0, 10] (see Fig.
4), which is treated as the “real wind”. This is then
assumed to be a known quantity. The plume con-
centration is governed by the advection-diffusion
Eq. 1, which is solved on the same domain. A
Reynolds number of 10,000 and a Péclet number
of 5,000 were used to provide a reasonable veloc-
ity field with a mildly diffusive plume. The velocity
boundary conditions are set as u = 1, v = 0 at the
left and right boundaries with free-slip wall con-
ditions at the top and bottom of the domain. Ad-
ditionally, two square obstacles are placed within
the domain to simulate buildings in an urban
environment. The squares are of size 1 and are
centered at (5.5, 4) and (7.5, 6). These obstacles
were applied using no-slip boundary conditions.
All concentration boundary conditions were set

to ψ = 0 for simplicity. As the concentration field
evolves, the plume interacts with the buildings in
the domain, passing between and around them.
The simulation is run from t = −40 to t = 0 with
no concentration field in order to allow the ve-
locity field to spin up. For time t > 0, a constant
plume source is set as f (t, x) = 1.2 exp(−||x −
x∗||22) where x∗ = (2.3, 4.1) (see Fig. 5). This cor-
responds to a plume source centered at (2.3, 4.1).
This will be used as the true plume solution and as
a reference for all measures of accuracy. For our
purposes, the physical accuracy of the simulation
is not as important as having a reasonable plume
data set to use. The total time domain of interest
is [0, 30] from the release of plume source to the
time for the front of the plume to reach the right
edge of the spatial domain. This simulation uses
a grid spacing of �x = 0.2 and a time step of
�t = 0.2.

The DDDAS described in previous sections is
then applied to this data set. In the offline stage,
the plume source is assumed to be unknown so it
is initially estimated to be within the square region
[1.5, 3] × [3.5, 5]. A linear combination of kernel
basis functions are used in Eq. 4 to approximate
the real plume source. The basis functions used
here are set as φi(x) = 0.1 exp(−||x − xi||22/0.82).
The centers xi of these Gaussian kernel functions
are located on the grid points at 2, 2.5 in horizontal
direction and 4, 4.5 in vertical direction. Using
these basis functions for plume source, we gener-
ate corresponding trajectories for the evolution of
plume concentration and build a discrete data en-
semble. The POD method is then used to capture
the dominant modes of all the possible states for
a given time domain. The contribution to energy
is characterized by the corresponding singular val-
ues. If fixed sensors are used to measure the plume
concentration, we take all the snapshots for the

Fig. 5 (Color online) The
plume source and
randomly chosen
positions for fixed sensors
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global time domain. However, if UAVs are used,
we can artificially partition the global time domain
into 30 periods, and focus on the local POD modes
for each time interval. Thus, each interval lasts
for 1 dimensionless time. It is noticed that if the
estimated or predicted plume source is local in
space, then only the overlapped plume sources
in the precomputed database could contribute
useful snapshots for the local POD modes. For
simplicity, we simply assume all the plume sources
in the database overlap the “real” plume source,
and use all the plume sources in the database
to form local POD modes. Figure 6 shows the
singular values for the first 10 global POD modes
as well as the singular values for the first 10 local
POD modes for subinterval 1, 15, and 30. All
the singular values are normalized such that for
a same data ensemble, the maximal singular value
is 1. Singular values for local POD modes drops
much faster than global modes. From the 4th local
POD modes, the values are less than 0.1. Based
on Eq. 8, the truncation error from the three
modes are less than 0.1 in terms of the fractional
energy. Since the real plume concentration does
not reside precisely on the subspace spanned by
this data ensemble, only the first three local POD
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Global POD
Local POD 1
Local POD 15
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Fig. 6 (Color online) The normalized singular values.
Global POD modes are computed from SVD for the all
the snapshots in the time domain [0, 30]. “Local POD 1”
refers to the local POD modes for the first time interval [0,
1], “Local POD 15” corresponds to the 15th time interval
[14, 15], and “Local POD 30” corresponds to the last time
interval [29, 30]

modes are used to approximate the real plume
concentration. The number of modes used may
be altered to achieve a different balance between
accuracy and computational speed. However, in
the rest of this section, we only use three local
POD modes in the data assimilation process for
all the measurement schemes. Since there are only
three unknown coefficients for the corresponding
modes, solving the inverse problem in Eq. 14 is
very efficient.

5.2 Data Assimilation and Error Analysis

In order to test the proposed data assimilation
technique and the sensor place strategy, we focus
on the effect of varying two parameters in the
DDDAS simulation: the number of UAVs and the
type of control scheme. There are four types of
control scheme. The first scheme uses randomly
placed fixed sensors. The sensor locations are cho-
sen from a uniform distribution on the simulation
domain (excluding the building locations). Figure
5 shows one example sensor distribution gener-
ated by the pseudo-random numbers. This scheme
is certainly not optimal and is used for comparison
with other schemes. The second scheme is an
optimal scheme for fixed sensors, where sensors
are exactly located at hot spots chosen based on
the global POD modes (see Fig. 7). The hot spots
are calculated based on the greedy algorithm dis-
cuss in Section 4.1. The third scheme is an ideal
(but unrealistic) case. It is assumed that UAVs
are able to be placed precisely at the different
hot spots at different time intervals. Due to the
limitations of the UAVs, primarily the limited
vehicle speed and uncertainty in the trajectories,
the sensor placement sensor placement routine
considers only six time intervals with time period
�t = 5 to limit the number of hot spots that the
sensors must attempt to reach. Figure 8 shows the
first 10 hot spots for the interval [25, 30] as well
as the first 3 corresponding local POD modes for
the same interval. Different from fixed sensors,
UAVs cannot be located very close to buildings
for safety reasons, therefore, all the hot spots are
excluded from circular regions around buildings.
Figure 9 shows the trajectories of the hot spots for
the first 3 modes. In the last scheme, the UAVs are
guided toward the hot spots (in scheme 3) using
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Fig. 7 (Color online) The
hot spots corresponding
to the first 10 global POD
modes (for time interval
[0, 30]) with the profile of
the first global POD
mode at top, with the
second one in the middle,
and with the third one at
bottom
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Fig. 8 (Color online) For
the last time interval [25,
30], the hot spots
corresponding to the first
10 local POD modes with
the profile of the first
local POD mode at top,
with the second one in the
middle, and with the third
one at bottom. Hot spots
are chosen outside the
circular regions around
buildings
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Fig. 9 (Color online) The trajectories for the hot spots
corresponding to the first three local POD modes. The first
hot spot (blue) stays near the plume source, the second one
(red) moves toward the right region as plume is advected

by wind, the third one (green) is around the building area
to minimize the residual error. The plume profile shows
the instantaneousness plume concentration of the “real
plume” for t = 30

the SPH method described in Section 4.2. Each
virtual particle is set at the corresponding hot spot
to attract the real vehicle. In order to maintain
minimal velocity and obtain a wide coverage for
measurement, each vehicle moves in a loiter circle
once it nears the desired hot spot. The sensors be-
gin near the origin (0, 0) and travel at a dimension-
less speed of about four to five (compared to the
unit incoming wind speed) toward the hot spots
for the first time interval to begin data collection.

For direct comparison, all these control
schemes use the same procedure for data
assimilation. Specifically, each sensor measures
the true concentration value at its position
and data assimilation is performed using these
values at a frequency of 1 dimensionless time to
estimate the coefficients for local POD modes
corresponding to this time interval. To increase
realism, Gaussian noise with standard deviation
of 0.2 was added to the data before assimilation.

Fig. 10 (Color online)
The magnitude of relative
error, defined as E(t) :=
‖ψ̂(t)− ψ(t)‖/‖ψ(t)‖, of
plume concentration with
time evolution. a Sensors
are located at fixed
positions randomly
chosen. b Sensors are
located at fixed positions
according to global POD
modes. c Sensors are
located at the hot spots
corresponding to local
POD modes, which
update every �T = 5. d
UAVs are guided towards
to the first few hot spots
corresponding to local
POD modes by SPH
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Fig. 11 (Color online) The average error of plume con-
centration, given by Ē := ∫ T

0 E(t)/T , with the number of
UAVs for a static sensors at the hot spots corresponding

to global POD modes (range from 0.56 to 0.72), b UAVs
governed by the SPH model (range from 0.22 to 0.32). Note
that the y-axis has a different range in each plot

Since the maximum concentration is about 2.5,
the relative noise of the measurement is more
than 8 %.

In Fig. 10, our metric for comparison is the rela-
tive error in the simulated concentration plume as
a function of time for the above mentioned proce-
dure using the four different control schemes. This
error is computed using the �2 norm. For scheme
1, the relative errors are near 1 in Fig. 10a, which
means randomly distributed static sensors rarely
obtain much useful information. Adding more
static sensors beyond three does not significantly
improve the results. This can be explained by the
fact that for the sensor distribution in Fig. 5, the
second and the third sensors are located at more
informative positions while the other sensors are
not. The second scheme, as shown in Fig. 10b, still
shows a large relative error in the range of about
0.4–0.8 for most of the time. In a global sense, all
the static sensors are at the optimal position. But
since they lack flexibility to move over time as the
plume evolves, even 10 static sensors are still not
enough to obtain a good estimation. For scheme 3,
when sensors are located at the hot spots for each
time interval, the error drops significantly, as seen
in Fig. 10c. When three or more sensors are used,
the error drops below 0.3 for most of the time
domain. For the last scheme, as seen in Fig. 10d,
the sensors require a small amount of time to
first reach the plume and start collecting useful
data. Once the UAVs get close to the hot spots,

the �2 error drops significantly. For one vehicle
(blue line), the error tends to increase with time
evolution. This is because the plume is advected
by the wind while the first hot spot is very near
to the plume source, and the vehicle does not
measure the using additional UAVs which mea-
sure near the hotspots in the downwind direction
as well.

Lastly, we examine the importance of the num-
ber of UAVs used in the DDDAS. In Fig. 11,
as expected, the multi-vehicle data collection sce-
narios outperform the single vehicle scenarios for
both (a) static sensors at optimal positions and
(b) UAVs controlled by SPH. On the other hand,
performing data assimilation with the static sen-
sors decreases the error, but not nearly as much
as when a DDDAS is used with UAVs. In fact, a
single UAV outperforms the ten static sensors in
this scenario in terms of the mean �2 error over
the full time interval. In particular, Fig. 11b shows
that three UAVs can decrease the average error
below 0.25.

6 Conclusions

In this article, we propose a complete dynamic
data-driven application system (DDDAS) for
measuring and simulating a concentration plume
and estimating the plume source in a dynamic
environment. The dynamic evolution of plume



J Intell Robot Syst (2014) 74:421–436 435

concentration is governed by the advection-
diffusion equation with unknown plume source. In
order to assimilate incomplete and noisy state ob-
servations into this system in real-time, an offline-
online approach is used. In the offline stage, we
build a database by sampling several possible
plume source regions and solving the governing
equation to obtain possible trajectories for the
plume concentration. We then use the proper
orthogonal decomposition (POD) to find a few
dominant modes. In the online stage, estimations
of plume concentration are restricted to the sub-
space of the POD modes to best match partial
observations in a least-squares sense. The pro-
posed data assimilation method also leads to a
hierarchical vehicle control strategy. On one level,
hot spots are chosen such that maximal informa-
tion can be obtained by UAVs. On another level,
smoothed particle hydrodynamics (SPH) is used
for vehicle path planning and control. Both the
assimilation method and the control strategies are
very computationally efficient and can be carried
out in real time. The simulation results verify
the utility of the proposed DDDAS. Specifically,
three UAVs are able to approach three hot spot
locations and produce a greatly improved estimate
of plume concentration when compared to the use
of static sensors. The relative �2 error for three
UAVs reaches about 0.25 in the simulation, which
outperforms 10 randomly placed static sensors.
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