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Abstract. In this paper, a symplectic model reduction technique, proper symplectic decompo-
sition (PSD) with symplectic Galerkin projection, is proposed to save the computational cost for the
simplification of large-scale Hamiltonian systems while preserving the symplectic structure. As an
analogy to the classical proper orthogonal decomposition (POD)-Galerkin approach, PSD is designed
to build a symplectic subspace to fit empirical data, while the symplectic Galerkin projection con-
structs a reduced Hamiltonian system on the symplectic subspace. For practical use, we introduce
three algorithms for PSD, which are based upon the cotangent lift, complex singular value decom-
position, and nonlinear programming. The proposed technique has been proven to preserve system
energy and stability. Moreover, PSD can be combined with the discrete empirical interpolation
method to reduce the computational cost for nonlinear Hamiltonian systems. Owing to these prop-
erties, the proposed technique is better suited than the classical POD-Galerkin approach for model
reduction of Hamiltonian systems, especially when long-time integration is required. The stability,
accuracy, and efficiency of the proposed technique are illustrated through numerical simulations of
linear and nonlinear wave equations.
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1. Introduction. To save computational costs, model reduction seeks to ap-
proximate high-dimensional dynamical systems using simpler, lower-order ones that
can capture the dominant dynamic properties. The need for model reduction arises
because, in many cases, direct numerical simulations are often so computationally
intensive that they either cannot be performed as often as needed or are performed
only in special circumstances. See [2] for a survey on the available model reduction
techniques.

Among these techniques, the proper orthogonal decomposition (POD) with
Galerkin projection, which was first introduced by Moore [24], has wide applica-
tions in many fields of science and engineering, such as electric circuit analysis [25],
structural dynamics [1], and fluid mechanics [17, 29], to list a few. As an empirical
model reduction technique, the POD-Galerkin approach (or POD for short) involves
an offline-online splitting methodology. In the offline stage, empirical data is gener-
ated by direct numerical simulations of the original system. If the original system is
represented by a PDE, a discretized high-dimensional model can be derived by the
finite difference, finite element, and finite volume methods. The POD can be applied
to compute an optimal subspace to fit the empirical data. A reduced system is then
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A2 LIQIAN PENG AND KAMRAN MOHSENI

constructed by projecting the high-dimensional system to this subspace. In the online
stage, one can solve the reduced system in the low-dimensional subspace. Recently,
many variants of POD-Galerkin have been developed to reduce the complexity of
evaluating the nonlinear term of the vector field, such as trajectory piecewise linear
approximation [28], missing point estimation [3], gappy POD [6, 32, 7], empirical in-
terpolation [4, 13], and the discrete empirical interpolation method (DEIM) [9, 10].
Thanks to these methods, the computational complexity during the online stage is
independent of the dimension of the high-dimensional model.

Generally, the classical POD method is not guaranteed to yield a stable reduced
system, even if the original system is stable [27, 26]. The instability of a reduced
system is often accompanied by blowup of system energy and flow volume. There-
fore, when the original large-scale system is conservative, it is preferable to construct
a low-dimensional reduced system that preserves the geometric structure and allows
symplectic integrators. However, much less effort has been expended in the field of
geometric model reduction. In the context of lagrangian systems, Lall, Krysl, and
Marsden showed that performing a Galerkin projection on the configuration space
and lifting the projection to the phase space lead to reduced systems that preserve
the original Lagrangian structure [18]. In order to reduce the complexity of non-
linear Lagrangian systems, Carlberg, Tuminaro, and Boggs combined Lall’s method
with the gappy POD to derive reduced nonlinear Lagrangian systems [8]. In the con-
trol community, the balanced truncation [16], moment matching [30], and tangential
interpolation [14] approaches were used to preserve the port-Hamiltonian structure.

In this paper, we propose a new model reduction technique, proper symplectic
decomposition (PSD), that preserves the symplectic structure underlying the Hamil-
tonian mechanics. Our main focus is to develop a basic framework behind symplectic
model reduction, which allows us to derive energy preservation and stability preser-
vation. The proposed technique yields reduced Hamiltonian systems which are ap-
plicable to long-time integration. Compared with other empirical model reduction
algorithms that preserve system energy, the PSD is easier for applications; the com-
putation complexity can be the same magnitude as the original POD and DEIM for
both offline and online stages. The PSD also increases the flexibility to construct
an optimal subspace that can yield a more accurate solution for the same subspace
dimension.

The remainder of this paper is organized as follows. Preliminaries of Hamilto-
nian systems and symplectic integrators are briefly reviewed in section 2. Section 3
presents the symplectic projection, which constructs reduced Hamiltonian systems. In
section 4, three different PSD algorithms are proposed to construct a symplectic ma-
trix, including the cotangent lift, complex singular value decomposition (SVD), and
nonlinear programming (NLP). In section 5, the symplectic discrete empirical interpo-
lation method (SDEIM) is developed in order to reduce the complexity of evaluating
the nonlinear vector term. Sections 3, 4, and 5 are respectively analogous to the clas-
sical Galerkin projection, POD, and DEIM. In section 6, the stability, accuracy, and
efficiency of the proposed technique are illustrated through numerical simulations of
linear and nonlinear wave equations. Finally, conclusions are offered in section 7.

2. Hamiltonian system and symplectic integrator. Let V be a vector space
of dimension 2n. A symplectic form on V is a nondegenerate and alternating bilinear
form, Ω : V× V → R. The pair (V,Ω) is called a symplectic vector space. Assigning
a symplectic form Ω to V is referred to as giving V a symplectic structure. With
canonical coordinates on V denoted by (q1, . . . , qn, p1, . . . , pn), Ω takes a canonical
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A3

form, Ω =
∑n

i=1 dqi ∧ dpi. Throughout this paper, we implicitly assume that V is
defined over the field R, which means V ∼= R2n. Moreover, for all v1, v2 ∈ V, Ω is
represented by the Poisson matrix J2n, i.e.,

Ω(v1, v2) = vT1 J2nv2, J2n =

[
0n In
−In 0n

]
,

where In is the n×n identity matrix. It is easy to verify that J2nJ
T
2n = JT

2nJ2n = I2n,
and J2nJ2n = JT

2nJ
T
2n = −I2n, where the superscript T represents the transpose of a

matrix.
Let H : V → R denote a smooth Hamiltonian function. The time evolution of an

autonomous Hamiltonian system is given by

(2.1) q̇ = ∇pH(q, p), ṗ = −∇qH(q, p),

where q = [q1; . . . ; qn] ∈ Rn, and p = [p1; . . . ; pn] ∈ Rn. We abstract this formulation
by introducing the phase space variable x = [q; p]1 and the abstract Hamiltonian
differential equation

(2.2) ẋ = XH(x),

where XH(x) := J2n∇xH(x) is the Hamiltonian vector field. The flow Ψt of XH is
a symplectomorphism, meaning that it conserves the symplectic form Ω, the system
Hamiltonian H , and the volume of flow Θ [20].

Symplectic integrators are numerical schemes for solving a Hamiltonian system
while preserving the underlying symplectic structure. If the symplectic structure
is preserved, then the flow volume and system energy are automatically conserved
during time integration. By virtue of these advantages, symplectic integrators have
been widely applied to long-time integrations of molecular dynamics, discrete element
methods, accelerator physics, and celestial mechanics [15].

Let δt denote the unit step for time integration. The symplectic Euler methods{
qj+1 = qj + δt∇pH(qj+1, pj)
pj+1 = pj − δt∇qH(qj+1, pj)

or

{
qj+1 = qj + δt∇pH(qj , pj+1)
pj+1 = pj − δt∇qH(qj , pj+1)

are symplectic integrators of order one. They are implicit for general Hamiltonian
systems. For separable H(q, p) = T (p) + U(q), however, both variants turn out to be
explicit [15]. If the implicit midpoint rule is applied, then a second-order scheme is
obtained:

(2.3) xj+1 = xj + δtXH

(
xj+1 + xj

2

)
.

In section 6, we will use the implicit midpoint rule for time integration. When XH is a
Hamiltonian vector field, (2.3) gives a symplectic scheme, and the sympletic structure
is preserved at each step. When XH is not a Hamiltonian vector field, (2.3) can still
be used for time integration, but the energy and stability are not preserved in general.

Most of the usual numerical methods, such as the primitive Euler scheme and
the classical Runge–Kutta scheme, are not symplectic integrators. A comprehensive
review of symplectic integrators and their applications for Hamiltonian ODEs can be
found in [15, 21]; the extension for Hamiltonian PDEs can be found in [5], where some
structure-preserving discretization methods are discussed to transform Hamiltonian
PDEs into Hamiltonian ODEs.

1The notations [q, p] and [q; p] are the same as the corresponding functions in MATLAB.
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A4 LIQIAN PENG AND KAMRAN MOHSENI

3. Symplectic projection. The symplectic projection takes advantage of em-
pirical data to construct a reduced system while simultaneously preserving the un-
derlying symplectic structure. In other words, if the original system is Hamiltonian,
the reduced system remains Hamiltonian, but with significantly fewer dimensions.

3.1. Definitions of symplectic projection. Let (V,Ω) and (W, ω) be two
symplectic vector spaces; dim(V) = 2n, dim(W) = 2k, and k ≤ n.

Definition 3.1. A symplectic lift is a linear mapping σ : W → V that preserves
the symplectic structure

(3.1) ω(z, w) = Ω(σ(z), σ(w))

for all z, w ∈ W.
Let z ∈ W and x ∈ V. Using canonical coordinates, a symplectic lift σ : z �→ x

can be written as x = Az,

where A ∈ R2n×2k, and satisfies

(3.2) AT J2nA = J2k.

A matrix that satisfies (3.2) for some k and n with k ≤ n is called a symplectic matrix.
The set of all 2n× 2k symplectic matrices is the symplectic Stiefel manifold, denoted
by Sp(2k,R2n). Moreover, since J2n and J2k are nonsingular, (3.2) itself requires that
k ≤ n and rank(A) = 2k.

Definition 3.2. The symplectic inverse of a real matrix A ∈ R2n×2k, denoted
as A+, is defined by

(3.3) A+ = JT
2kA

TJ2n.

Although A+ is not equal to the Moore–Penrose pseudoinverse (ATA)−1AT in gen-
eral, A+ has several interesting properties, as stated in the following two lemmas.
Using the definition of A+, it is straightforward to verify Lemma 3.3.

Lemma 3.3. Suppose A ∈ R2n×2k and A+ is the symplectic inverse of A. Then,

(3.4) A = (A+)+,

(3.5) A = (((A+)T )+)T ,

(3.6) A+J2n = J2kA
T .

Lemma 3.4. Suppose A ∈ R2n×2k and A+ is the symplectic inverse of A. Then
the following are equivalent:

(a) A ∈ Sp(2k,R2n).

(b) (A+)T ∈ Sp(2k,R2n).

(c) A+A = I2k.
Proof. (a) ⇒ (b). Replacing A+ by (3.3) and using AT J2nA = J2k yield

A+J2n(A
+)T = (JT

2kA
TJ2n)J2n(J

T
2nAJ2k) = JT

2k(A
T J2nA)J2k = J2k.

Since ((A+)T )T = A+, we have (A+)T ∈ Sp(2k,R2n).
(b) ⇒ (c). Since (A+)T ∈ Sp(2k,R2n), we have A+J2n(A

+)T = J2k. Substituting
A by (3.5) and simplifying the expression yield

A+A = A+(((A+)T )+)T = A+(JT
2k((A

+)T )T J2n)
T = A+(JT

2kA
+J2n)

T

= A+JT
2n(A

+)T J2k = −(A+J2n(A
+)T )J2k = −J2kJ2k = I2k.D
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A5

(c) ⇒ (a). Replacing A+ by (3.3) and plugging it into A+A = I2k, we ob-
tain JT

2kA
T J2nA = I2k. Left multiplying J2k on both sides of this equation yields

AT J2nA = J2k.
Definition 3.5. Suppose σ : W → V is a symplectic lift. Then the adjoint of σ

is the linear mapping π : V → W satisfying

(3.7) ω(w, π(x)) = Ω(σ(w), x)

for all w ∈ W and x ∈ V. We say π is the symplectic projection induced by σ.
Since a symplectic projection is linear, π : x �→ z has the form z = Bx, where

B ∈ R2k×2n. Using canonical coordinates, (3.7) yields

wT J2kBx = (Aw)T J2nx = wTAT J2nx,

where A is the symplectic matrix that represents σ. Since w and x are arbitrary, we
must have J2kB = ATJ2n. It follows that B = A+, and the symplectic projection
π : x �→ z can be written as

(3.8) z = A+x.

Since A+A = I2k, π ◦ σ is the identity map on W.
Remark 3.6. If we generalize (W,Ω) and (V, ω) to two symplectic manifolds

and consider nonlinear transformations, the symplectic lift and symplectic projection
respectively correspond to the symplectic embedding and symplectic submersion in
symplectic geometry. Since this paper focuses on providing efficient numerical algo-
rithms for practical applications, we consider only linear transformations between two
vector spaces, although both the original and reduced systems can be nonlinear.

Now suppose AT J2nA = J2k and x(t) ∈ Range(A) for all t. Then, x(t) = Az(t).
Using the chain rule, we obtain ∇zH(Az) = AT∇xH(x). Taking the time derivative
of (3.8) and using (2.2) and (3.6), the time evolution of z is given by

ż = A+ẋ = A+J2n∇xH(x) = J2kA
T∇xH(x) = J2k∇zH(Az),

where the last expression is a Hamiltonian vector field. Even if x(t) /∈ Range(A) for
some t, the last expression is still well-defined. Thus, we can define the symplectic
Galerkin projection.

Definition 3.7. The symplectic Galerkin projection, or symplectic projection,
of a 2n-dimensional Hamiltonian system ẋ = J2n∇xH(x) with an initial condition
x(0) = x0 is given by a 2k-dimensional (k ≤ n) system

(3.9) ż = J2k∇zH̃(z); z0 = A+x0,

where H̃ := H◦A is the reduced Hamiltonian function, A ∈ Sp(2k,R2n) is a symplectic
matrix, and A+ = JT

2kA
T J2n is the symplectic inverse of A.

Remark 3.8. Some Hamiltonian systems, such as the Burgers equation and the
KdV equation, have nontrivial symplectic structures [20], which can be written in the
form

(3.10) ẋ = J∇xH(x),

where J ∈ R2n×2n is a nonsingular skew-symmetric matrix. When J �= J2n, (3.10)
does not denote a standard Hamiltonian system. Nevertheless, for any nonsingu-
lar skew-symmetric matrix J , there exists a congruent transformation such that

D
ow

nl
oa

de
d 

01
/0

7/
16

 to
 1

28
.2

27
.1

65
.1

81
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A6 LIQIAN PENG AND KAMRAN MOHSENI

QJQT = J2n [11], where Q is a nonsingular matrix. Let y = Qx, then ∇xH(x) =
QT∇yH(Q−1y). It follows that

ẏ = Qẋ = QJ∇xH(x) = J2n(Q
−1)T∇xH(x) = J2n∇yH(Q−1y).

The last equation indicates that a Hamiltonian equation with a nontrivial symplectic
structure can be transformed to the canonical form and therefore can be simplified
by the symplectic projection.

3.2. Linear Hamiltonian systems. A Hamiltonian system is linear if H(x) =
1
2x

TLx, where L is a 2n× 2n real symmetric matrix. Let K := J2nL; the linear
Hamiltonian system can be written as

(3.11) ẋ = J2nLx = Kx.

A matrix of the formK = J2nL, where L is symmetric, is called a Hamiltonian matrix.
In addition, the set of all 2n× 2n Hamiltonian matrices, denoted by sp(R2n), is a Lie
algebra [22]. The fundamental matrix solution to (3.11) is given by

(3.12) x(t) = eKtx0.

Since (exp(Kt))TJ2n exp(Kt) = J2n, we have exp(tK) ∈ Sp(2n,R2n), which means
that the matrix exponential of a Hamiltonian matrix is symplectic. Conversely, the
logarithm of a square symplectic matrix is Hamiltonian [23].

Plugging the H̃(z) = H(Az) = 1
2 (Az)

TL(Az) into (3.9) yields a reduced system,

(3.13) ż = J2kL̃z = K̃z,

where L̃ := ATLA and K̃ := J2kL̃. Since L̃ is symmetric, we have K̃ ∈ sp(R2k),
which implies that the reduced linear system (3.13) is also Hamiltonian.

Since the reduced system constructed by the symplectic projection is always
Hamiltonian, energy and stability are preserved during the time evolution.

3.3. Energy preservation. Let ΔH(t) := H(x(t))− H̃(z(t)) denote the energy
discrepancy between the state x(t) and its approximation, Az(t), derived from a
reduced system. Since both the original and reduced systems are Hamiltonian, the
system energy is conserved during time evolution. Moreover, H̃ = H ◦ A by the
definition. Thus, ΔH(t) is determined by the initial condition x0 and the basis matrix
A for all t, i.e.,

(3.14) ΔH(t) = H(x(0))− H̃(z(0)) = H(x0)−H(AA+x0).

If x0 ∈ Range(A), we have AA+x0 = x0, which implies ΔH(t) = 0 for all t; we say
that the reduced system is energy preserving.

If x0 /∈ Range(A), we can always extend A to a larger symplectic matrix Aext such
that the reduced system remains energy preserving. Specifically, suppose A = [Aq, Ap]
for Aq, Ap ∈ R2n×k. Since x0 /∈ Range(A), we must have r0 := x0 − AA+x0 �= 0.
Thus, the unit vector, r̂0 := r0/‖r0‖, is well-defined. One possible extension of A is
given by

(3.15) Aext = [Aq, r̂0, Ap, J
T
2nr̂0].

It is straightforward to verify that AT
extJ2nAext = J2k+2 and x0 − AextA

+
extx0 = 0.

The last equation means that x0 ∈ Range(Aext), and therefore, ΔH(t) = H(x0) −
H(AextA

+
extx0) = 0 for all t.
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A7

3.4. Stability preservation. In this subsection, we assume that the reduced
system is constructed by the symplectic Galerkin projection. We also assume x0 ∈
Range(A), and the initial condition of the reduced system is given by z0 = A+x0.
The following two theorems imply that energy preservation is a strong indicator for
preserving stability.

Theorem 3.9. Consider the Hamiltonian system (2.2) with the initial condition
x0 ∈ R2n. If there exists a bounded neighborhood U of x0 in R2n such that H(x0) <
H(x), or H(x0) > H(x), for all x on the boundary of U , then both the original system
and the reduced system constructed by the symplectic projection are uniformly bounded
for all t.

Proof. We first assume that H(x0) < H(x) for all x ∈ ∂U , where ∂U denotes
the boundary of U . Since U is bounded, so is ∂U . Because ∂U is also closed, ∂U
is compact. Since H : R2n → R is continuous, by the extreme value theorem, there
exists a point x1 of ∂U such that H(x) ≥ H(x1) for all x ∈ ∂U . Since H(x0) < H(x)
for all x ∈ ∂U , H(x0) < H(x1). Because the system energy is conserved during time
evolution, we have H(x(t)) = H(x0) < H(x1) for all t. It follows that x(t) ∈ U for
all t, because if not, there is a time t1 when x(t1) ∈ ∂U , and H(x(t1)) ≥ H(x1), a
contradiction.

Let UA = U ∩ Range(A). Since U is a bounded open set in V, UA is also open
in Range(A) and bounded. Let ∂UA be the boundary of UA in Range(A), ∂UA ⊂
∂U ∩ Range(A). Thus, H(x0) < H(x) for all x ∈ UA. By the argument in the last
paragraph, we have Az(t) ∈ UA for all t.

Finally, if H(x0) < H(x) is replaced by H(x0) > H(x), we can define Ĥ(x) =
−H(x). Then, Ĥ(x0) < Ĥ(x) for all x ∈ ∂U . Thus, the conclusion still holds.

An equilibrium point x∗ of system (2.2) is Lyapunov stable if for every ε > 0, there
exists a δ > 0 such that ‖x(t)− x∗‖ < ε for all t > 0 whenever ‖x0 − x∗‖ < δ. When
(2.2) is linear and uniformly bounded, it is marginally stable in the sense of Lyapunov.
In section 3.2, we show that when the original Hamiltonian system is linear, then the
reduced system constructed by the symplectic projection is also linear. Thus, if the
assumption of Theorem 3.9 holds, both the original and reduced systems are Lyapunov
stable.

Theorem 3.10. If x∗ ∈ Range(A) is a strict local minimum or maximum of
H, then x∗ is a stable equilibrium for both the original Hamiltonian system and the
reduced system constructed by the symplectic projection.

Proof. We first assume that x∗ is a strict local minimum of H . Then, there
is an η > 0 such that H(x∗) < H(x) for all x satisfying 0 < ‖x − x∗‖ ≤ η. Let
κ = min(ε, η) and S = {x ∈ R

2n : ‖x − x∗‖ < κ}. Since ∂S is compact, by the
extreme value theorem, there exists a point x1 of ∂S such that H(x) ≥ H(x1) for
all x ∈ ∂S. Since x1 ∈ ∂S, H(x∗) < H(x1). Because H : R2n → R is continuous,
there is a δ > 0 such that H(x) < H(x1) for ‖x − x∗‖ < δ. If ‖x0 − x∗‖ < δ, then
H(x0) < H(x1) ≤ H(x) for all x ∈ ∂S. By Theorem 3.9, x(t) ∈ S for all t. Thus, x∗
is a stable equilibrium for (2.2).

Suppose U is a neighborhood of x∗, and x∗ is the minimum of H in U . It imme-
diately follows that x∗ is also the minimum of H in UA, where UA = U ∩ Range(A).
Thus, by the argument in the last paragraph, x∗ is also the stable equilibrium of the
reduced Hamiltonian system.

Finally, if x∗ is a strict local maximum of H , x∗ is a strict local minimum of Ĥ ,
where Ĥ(x) = −H(x) . Therefore, the conclusion still holds.
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A8 LIQIAN PENG AND KAMRAN MOHSENI

The symplectic projection is analogous to the Galerkin projection, both of which
construct reduced equations in some low-dimensional subspaces. However, the sym-
plectic projection yields a reduced symplectic system by (3.9), while the Galerkin
projection generally destroys the symplectic structure. Evolving the system (3.9) by
a symplectic integrator preserves system energy and stability. By contrast, even if
the POD subspace can provide an accurate representation of the empirical data, the
reduced system constructed by the Galerkin projection may not be able to preserve
these properties of the dynamics. In the next section, we shall discuss some PSD
algorithms to construct a symplectic matrix A. This approach is an analogy to POD
that constructs an orthonormal basis matrix.

4. Proper symplectic decomposition. Let x(ti) = [q(ti); p(ti)] ∈ R2n (i =
1, . . . , N) denote N data points. Define a snapshot matrix

(4.1) Mx := [x(t1), . . . , x(tN )].

The symplectic projection of Mx onto a low-dimensional subspace is given by Mz =
A+Mx, where A ∈ Sp(2k,R2n), Mz = [z(t1), . . . , z(tN )] ∈ R2k×N , and z(ti) =
A+x(ti). The same projection of Mx in the original coordinates is given by AMz,
or AA+Mx.

The Frobenius norm ‖ · ‖F can be used to measure the error between Mx and its
projection M̃x. Suppose a symplectic matrix A minimizes the projection error in a
least squares sense. Then, A is a solution of the following optimization problem:

(4.2)
minimize ‖Mx −AA+Mx‖F
subject to ATJ2nA = J2k.

Since the objective function has a fourth-order term in A after an expansion, (4.2)
can be solved only iteratively. Because matrix A has 4nk elements, directly solving
(4.2) is very expensive if n� 1. For this reason, we propose three efficient algorithms
to construct an approximated optimal solution for the symplectic matrix A: these are
the cotangent lift, complex SVD, and NLP.

4.1. Cotangent lift. In this section, an SVD-based algorithm is proposed to
construct a symplectic matrix directly. The idea is to search the optimal matrix, A1,
in a subset of Sp(2k,R2n), such that all the empirical data approximately lies on the
range of A1. In particular, we define a set M1(2n, 2k) by

(4.3) M1(2n, 2k) := Sp(2k,R2n) ∩
{ [

Φ 0
0 Φ

]∣∣∣∣Φ ∈ R
n×k

}
.

If A1 ∈ M1(2n, 2k), A1 = diag(Φ,Φ) for some Φ ∈ Rn×k. Then, AT
1 J2nA1 = J2k

if and only if ΦTΦ = Ik, which implies that Φ is an element of the Stiefel manifold
Vk(R

n). It follows that

(4.4) M1(2n, 2k) =

{ [
Φ 0
0 Φ

]∣∣∣∣Φ ∈ Vk(R
n)

}
.

Let R and Q denote two vector spaces; dim(R) = k, dim(Q) = n, and k ≤ n.
Then, TR ∼= R × R (resp., TQ ∼= Q × Q) gives the tangent bundle of R (resp., Q).
Suppose f : R→ Q and π : Q→ R are linear mappings satisfying π ◦ f = idR. Then,
a tangent lift f∗ : TR → TQ of f can be defined by (r, w) �→ (f(r), f(w)), and a
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A9

tangent lift π∗ : TQ → TR of π can be defined by (q, u) �→ (π(q), π(u)). The f and
the tangent lift π∗ induce a cotangent lift π∗ of π.

Definition 4.1. Let R∗ (resp., Q∗) be the dual space of R (resp., Q), and let
〈·, ·〉R := R∗ × R → R (resp., 〈·, ·〉Q := Q∗ × Q → R) be the duality paring. Let
W = T ∗R ∼= R × R∗ (resp., V = T ∗Q ∼= Q × Q∗) denote the cotangent bundle of R
(resp., Q). The cotangent lift, π∗ : W → V, of π is defined by a linear mapping

(4.5) (r, s) �→ (f(r), σ(s)),

where r ∈ R, s ∈ R∗, and σ : R∗ → Q∗ is the adjoint of π satisfying

(4.6) 〈σ(s), u〉Q = 〈s, π(u)〉R
for all u ∈ Q.

Given bases in R and Q, the linear mappings f and π can be represented by
matrices Φ and ΨT for Φ,Ψ ∈ Rn×k. The constraint π ◦ f = idR requires that
ΨTΦ = Ik. By choosing dual bases in R∗ and Q∗, (4.6) yields σ(s) = Ψs. Thus, the
cotangent lift π∗ can be written as

x = π∗(z) = Bz

for z ∈ W and x ∈ V, where B := diag(Φ,Ψ). Since B+B = I2k, Lemma 3.4 yields
that B ∈ Sp(2k,R2n).

Especially when Φ = Ψ, B degenerates to A1, and the constraint ΨTΦ = Ik
becomes ΦTΦ = Ik. In this scenario, the range of Φ should approximately fit for
both q(t) and p(t). As Algorithm 1 indicates, Φ can be computed by the SVD of an
extended snapshot matrix M1 ∈ Rn×2N , which is defined by

(4.7) M1 := [q(t1), . . . , q(tN ), γp(t1), . . . , γp(tN)],

where γ represents a weighting coefficient that balances the SVD truncation error of
q(ti) with p(ti). Let q̂(t) and p̂(t) denote approximating solutions obtained from a
reduced system. If the goal is to minimize ‖[q̂(t); p̂(t)] − [q(t); p(t)]‖2, we can choose
γ = 1 so that q(t) and p(t) have the same status in the SVD truncation. If the goal
is to minimize ‖q̂(t)− q(t)‖2, we can simply choose γ = 0.2

Algorithm 1. Cotangent lift.

Require: An empirical data ensemble {q(ti), p(ti)}Ni=1.
Ensure: A symplectic matrix A1 in block-diagonal form.
1: Construct an extended snapshot matrix M1 as (4.7).
2: Compute the SVD of M1 to obtain a POD basis matrix Φ.
3: Construct the symplectic matrix A1 = diag(Φ,Φ).

Theorem 4.2. Suppose Mx ∈ R2n×N is the snapshot matrix defined by (4.1). If
we select γ = 1 in (4.7), the symplectic matrix A1 constructed by Algorithm 1 is the
optimal solution in M1(2n, 2k) that minimizes the error in the projection of Mx onto
the column space.

2However, if the Hamiltonian has the form H(q, p) = 1
2
pT p − V (q), where V : Rn → R denotes

the potential function, one may consider q(ti) ± δtṗ(ti) to also be a snapshot of the trajectory of
q(t). Thus, if the goal is to minimize ‖q̂(t) − q(t)‖2, we can also choose γ = δt for this special case.
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A10 LIQIAN PENG AND KAMRAN MOHSENI

Proof. Similar to (4.2), we can express the optimization problem as

(4.8)
minimize ‖Mx −A1A

+
1 Mx‖F

subject to A1 ∈ M1(2n, 2k).

Let Mq := [q(t1), . . . , q(tN )] and Mp := [p(t1), . . . , p(tN )]. By definition, Mx =
[Mq;Mp]. Since A1 = diag(Φ,Φ) and ΦTΦ = Ik, we have A+ = diag(ΦT ,ΦT ).
Moreover, γ = 1 implies that M1 = [Mq,Mp]. Then, the objective function becomes

‖Mx −A1A
+
1 Mx‖F =

∥∥∥∥
[
Mq

Mp

]
−
[
Φ 0
0 Φ

] [
ΦT 0
0 ΦT

] [
Mq

Mp

]∥∥∥∥
F

=

∥∥∥∥
[
(In − ΦΦT )Mq

(In − ΦΦT )Mp

]∥∥∥∥
F

=
∥∥[(In − ΦΦT )Mq, (In − ΦΦT )Mp]

∥∥
F

=
∥∥(In − ΦΦT )[Mq, Mp]

∥∥
F

=
∥∥M1 − ΦΦTM1

∥∥
F
.

Thus, Φ can be directly solved by the truncated SVD of M1,

(4.9) M1 ≈ ΦΣΨT ,

where the matrix Σ is a k × k diagonal matrix with nonnegative real numbers on
the diagonal; Φ and Ψ are real matrices and satisfy ΦTΦ = ΨTΨ = Ik. Thus, the
symplectic matrix A1 constructed by Algorithm 1 is the optimal solution for the
optimization problem (4.8).

It should be mentioned that in [18], a tangent lift method is used to construct a
reduced Euler–Lagrange equation to preserve the Lagrangian structure of the original
system. Specifically, a POD basis matrix Φ ∈ Rn×k can be constructed by the SVD
of a snapshot matrix [q(t1), . . . , q(tN )] for q(t) ∈ Q. Then, the original Lagrangian
L(q, q̇) in the tangent bundle TQ is approximated by L̃(r, ṙ) = L(Φr,Φṙ) in TR,
where r(t) ∈ R. Thus, a reduced system for (r, ṙ) can be given by the Euler–Lagrange
equation of L̃(r, ṙ).

By the Legendre transformation, the reduced Lagrangian system can be trans-
formed into a reduced Hamiltonian system. Meanwhile, the proposed cotangent lift
method can yield another reduced Hamiltonian system. However, the two reduced
systems are not equal in general, in two aspects.

First, the two reduced systems reside on different subspaces. In either case, the
subspace can be presented as the column space of A1 = diag(Φ,Φ), where Φ is a POD
basis matrix for the generalized coordinates. In [18], the tangent lift constructs Φ from
a snapshot ensemble of q(t). In this paper, the proposed cotangent lift constructs Φ
from a snapshot ensemble of q(t) and p(t), as (4.7) indicates.

Second, the two reduced systems give different trajectories on R2k. Consider
a Lagrangian of the form L(q, q̇) = 1

2 q̇
TMq̇ − V (q), where the mass matrix M ∈

Rn×n is nonsingular and the potential function V : Rn → R is smooth. Then, the
reduced Lagrangian is given by L̃(r, ṙ) = 1

2 ṙ
T M̃ ṙ − V (Φr), where M̃ = ΦTMΦ ∈

Rk×k. Suppose M̃ is also nonsingular; the Legendre transform produces the reduced
momentum by s = M̃ṙ and the corresponding Hamiltonian by

H̃1(r, s) = sT ṙ − L̃(r, ṙ) =
1

2
sT M̃−1s+ V (Φr).
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A11

On the other hand, with p = Mq̇, the original Hamiltonian in R2n is H(q, p) =
1
2p

TM−1p+ V (q). Then, the reduced Hamiltonian constructed by the cotangent lift
method on R2k is given by

H̃(r, s) = H(Φr,Φs) =
1

2
sT (ΦTM−1Φ)s+ V (Φr).

Unless M = In, Φ
TM−1Φ = M̃−1 does not hold in general; thus H̃(r, s) and H̃1(r, s)

can determine two different trajectories on R2k.

4.2. Complex singular value decomposition. This section proposes an SVD-
based algorithm to construct a symplectic basis matrix, such that the off-diagonal
blocks are nonzero submatrices. If we use q(t) + ιp(t) to describe the solution tra-
jectory in the phase space (ι =

√−1), we can construct a complex snapshot matrix
M2 ∈ Cn×N by

(4.10) M2 := [q(t1) + ιp(t1), . . . , q(tN ),+ιp(tN )].

By definition, we haveM2 =Mq+ιMp. Suppose a unitary matrix U ∈ Cn×k minimizes
the error in the projection of M2 onto the column space. Then, U can be obtained
from the following optimization problem:

(4.11)
minimize

∥∥M2 − UUHM2

∥∥
F

subject to UHU = Ik,

where UH is the conjugate transpose of U . The optimal value of U can also be
obtained by the truncated SVD of M2,

(4.12) M2 ≈ UΣV H ,

where the matrix Σ is a k× k diagonal matrix with nonnegative real numbers on the
diagonal, and U and V are complex matrices and satisfy UHU = V HV = Ik.

Let Vk(C
n) denote a complex Stiefel manifold. Then, its element U ∈ Vk(C

n) has
the form U = Φ+ιΨ, where Φ,Ψ ∈ Rn×k. We define a mapping A : Vk(C

n) → R2n×2k

by the formula

(4.13) A (U) =

[
Φ −Ψ
Ψ Φ

]
.

Lemma 4.3. The mapping A is injective. The image of A is equal to M2(2n, 2k),
where

(4.14) M2(2n, 2k) := Sp(2k,R2n) ∩
{ [

Φ −Ψ
Ψ Φ

]∣∣∣∣Φ,Ψ ∈ R
n×k

}
.

Proof. It follows from A ’s definition that it is injective. If Φ+ ιΨ ∈ Vk(C
n), then

(Φ + ιΨ)H(Φ + ιΨ) = Ik, which is equivalent to

(4.15) ΦTΦ +ΨTΨ = Ik, ΦTΨ = ΨTΦ.

Let A2 = A (Φ + ιΨ). Using (4.15), it is easy to verify that AT
2 J2nA2 = J2k. Thus,

A2 ∈ M2(2n, 2k), i.e., A (Vk(C
n)) ⊂ M2(2n, 2k).

D
ow

nl
oa

de
d 

01
/0

7/
16

 to
 1

28
.2

27
.1

65
.1

81
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A12 LIQIAN PENG AND KAMRAN MOHSENI

Conversely, if A2 ∈ M2(2n, 2k), then A
T
2 J2nA2 = J2k. Plugging A2 = [Φ,−Ψ;Ψ,

Φ] into AT
2 J2nA2 = J2k gives (4.15). It follows that (Φ + ιΨ)H(Φ + ιΨ) = Ik. As a

result, Φ + ιΨ ∈ Vk(C
n), and A −1(M2(2n, 2k)) ⊂ Vk(C

n).
Lemma 4.3 implies that the function A ′ : Vk(C

n) → M2(2n, 2k) obtained by
restricting the range of A is bijective. A topology on Vk(C

n) (resp., M2(2n, 2k))
can be set as the subspace topology of Cn×k (resp., R2n×2k) that is induced by a
matrix norm. It is easy to show that both A ′ and (A ′)−1 are continuous mappings
in terms of the subspace topology. Thus, A ′ is a homeomorphism, and M2(2n, 2k) is a
submanifold of Sp(2k,R2n). Consequently, a symplectic matrix A2 can be constructed
through the mapping A . Algorithm 2 outlines the procedure.

Algorithm 2. Complex singular value decomposition.

Require: An empirical data ensemble {q(ti), p(ti)}Ni=1.
Ensure: A symplectic matrix A2 in block form.
1: Construct a complex snapshot matrix M2 as (4.10).
2: Compute the SVD of M2 to obtain a basis matrix Φ + ιΨ.
3: Construct the symplectic matrix A2 = [Φ,−Ψ;Ψ,Φ].

Matrices in M2(2n, 2k) are not only symplectic but also orthonormal. To see
this, we can substitute A2 = [Φ,Ψ;−Ψ,Φ] into (3.3) and obtain A+

2 = JT
2kA

T
2 J2n =

AT
2 . It follows that AT

2 A2 = A+
2 A2 = I2k, i.e., A2 ∈ V2k(R

2n). Conversely, for
any A2 = [Φ,Ψ;−Ψ,Φ] that belongs to V2k(R

2n), (4.15) holds, which means that
A2 ∈ Sp(2k,R2n). Therefore, M2(2n, 2k) can also be defined by

(4.16) M2(2n, 2k) = V2k(R
2n) ∩

{ [
Φ −Ψ
Ψ Φ

]∣∣∣∣Φ,Ψ ∈ R
n×k

}
.

The following lemma gives the other equivalent definition of M2(2n, 2k).
Lemma 4.4. Suppose M2(2n, 2k) is the matrix manifold of R2n×2k defined by

(4.14). Then,

(4.17) M2(2n, 2k) = Sp(2k,R2n) ∩ V2k(R2n).

Proof. By (4.14) and (4.16), M2(2n, 2k) ⊂ Sp(2k,R2n) ∩ V2k(R2n). Conversely,
let A2 = [Aq, Ap] ∈ Sp(2k,R2n) ∩ V2k(R

2n), where Aq = [ξ1, . . . , ξk] ∈ R2n×k and
Ap = [ζ1, . . . , ζk] ∈ R2n×k. Orthonormality of A2 requires that ‖ξi‖ = ‖ζi‖ = 1 for any
i ∈ {1, . . . , k}. It follows that ‖JT

2nξi‖ = 1. Thus, ‖JT
2nξi‖ = ‖ζi‖. On the other hand,

symplecticity of A2 requires that Ω(ξi, ζi) = 1, which implies that
〈
JT
2nξi, ζi

〉
= 1.

The Cauchy–Schwarz inequality states that
〈
JT
2nξi, ζi

〉 ≤ ‖JT
2nξi‖ · ‖ζi‖, and two sides

are equal if and only if JT
2nξi and ζi are parallel. The combination of orthonormality

and symplecticity gives JT
2nξi = ζi. It follows that A2 must have the block form

[Aq, J
T
2nAq], or [Φ,−Ψ;Ψ,Φ] if Aq is written as [Φ;Ψ] for Φ,Ψ ∈ Rn×k. Therefore,

A2 ∈ M2(2n, 2k). Since A2 is arbitrary, Sp(2k,R2n) ∩ V2k(R2n) ⊂ M2(2n, 2k).
Since A ′ is a homeomorphism, (4.16) and (4.17) yield

Vk(C
n) ∼= M2(2n, 2k) = V2k(R

2n) ∩
{ [

Φ −Ψ
Ψ Φ

]∣∣∣∣Φ,Ψ ∈ R
n×k

}
= Sp(2k,R2n) ∩ V2k(R2n).(4.18)

Specifically, when Ψ = 0, we obtain

(4.19) Vk(R
n) ∼= M1(2n, 2k) = V2k(R

2n) ∩
{ [

Φ 0
0 Φ

]∣∣∣∣Φ ∈ R
n×k

}
.
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A13

Moreover, A also preserves algebraic structures, as one can easily verify the
following lemma.

Lemma 4.5. Let C ∈ Cn1×n2 and D ∈ Cn2×n3 . Then, we have A (C)A (D) =
A (CD) and A (CH) = (A (C))T .

Theorem 4.6. SupposeMx ∈ R
2n×N is the snapshot matrix defined by (4.1). The

symplectic matrix A2 constructed by Algorithm 2 is an optimal solution in M2(2n, 2k)
that minimizes the error in the projection of [Mx, J

T
2nMx] onto the column space.

Proof. By Lemma 4.5, the truncated SVD of M2 given by (4.12) yields

(4.20) A (M2) ≈ A (U)A (Σ)A (V H) = A (U)A (Σ)(A (V ))T .

Since UHU = Ik, by Lemma 4.5, we have

(A (U))TA (U) = A (UH)A (U) = A (UHU) = A (Ik) = I2k.

Similarly, (A (V ))TA (V ) = I2k holds due to V HV = Ik. Moreover, A (Σ) is a real
diagonal matrix that contains the largest 2k singular values of A (M2). Thus, the
right-hand side of (4.20) provides a truncated SVD for A (M2).

In Algorithm 2, the symplectic matrix is constructed by A2 = A (U). Meanwhile,
using the definition of M2 and Mx, we have

A (M2) =

[
Mq −Mp

Mp Mq

]
=

[
Mx, J

T
2nMx

]
.

Thus, A2 is a POD basis matrix of [Mx, J
T
2nMx]. Consequently, A2 is an optimal

matrix in R2n×2k (more than just in M2(2n, 2k)) that minimizes the projection error
of [Mx, J

T
2nMx].

Theorem 4.6 implies that the complex SVD is designed to fit [Mx,
JT
2nMx], rather than Mx itself. As a result, Algorithm 2 can only construct a near

optimal matrix in M2.

4.3. Nonlinear programming. Although it is often too expensive to solve the
optimization problem (4.2) directly, one can search a near optimal solution over a
subset of Sp(2k,R2n). The proposed NLP algorithm here is analogous to the opti-
mization algorithm in [12], where an optimal POD basis matrix is constructed from
a linear transformation of a snapshot matrix.

In particular, if we have a prespecified basis matrix A1 ∈ M1(2n, 2r) or A2 ∈
M2(2n, 2r), with k ≤ r ≤ n, we may assume that the near optimal solution A3 ∈
Sp(2k,R2n) is a linear transformation of A1 or A2. Now suppose the cotangent lift
yields a symplectic matrix A1 in M1(2n, 2r). If Range(A3) ⊂ Range(A1), we have

(4.21) A3 = A1 · C,
where C ∈ R2r×2k is the coefficient matrix of A3 with respect to the basis vectors of
A1. Plugging (4.21) into AT

3 J2nA3 = J2k and using AT
1 J2nA1 = J2r give

(4.22) CT J2rC = J2k,

which implies C ∈ Sp(2k,R2r). Since (A1C)
+ = C+A+

1 , the original optimization
problem (4.2) reduces to

(4.23)
minimize ‖Mx −A1CC

+A+
1 Mx‖F

subject to CT J2rC = J2k.
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A14 LIQIAN PENG AND KAMRAN MOHSENI

Let A1 = diag(Φ,Φ), where Φ ∈ Rn×r. The initial value for (4.2) can be A3 =
diag(Φ′,Φ′), where Φ′ denotes the first k columns of Φ. Correspondingly, the initial
value for (4.23) is given by C = diag(Ir×k, Ir×k), where Ir×k denotes the first k
columns of the identity matrix Ir. When r � n, the size of C is much smaller than
the size of A3, and thus the computational cost of (4.23) is significantly lower than
the original optimization problem (4.2).

Algorithm 3. Nonlinear programming.

Require: An empirical data ensemble {q(ti), p(ti)}Ni=1.
Ensure: A symplectic matrix A3 ∈ Sp(2k,R2n).
1: Construct a symplectic matrix A1 ∈ M1(2n, 2r) with r>k by the cotangent lift.
2: Solve (4.23) and obtain a coefficient matrix C ∈ Sp(2k,R2r).
3: Construct the symplectic matrix A3 = A1 · C.

So far, three different PSD algorithms have been proposed to construct a sym-
plectic basis matrix. Corresponding to three manifolds with the inclusion maps,

Vk(R
n) ↪−→ Vk(C

n)
A
↪−→ Sp(2k,R2n),

we propose the cotangent lift, complex SVD, and NLP. The cotangent lift and com-
plex SVD algorithms are faster and more easily implemented in offline computation;
their computational costs only involve the SVD. However, both algorithms search
optimal basis matrices in submanifolds of Sp(2k,R2n), rather than in Sp(2k,R2n)
itself. Therefore, they sacrifice certain accuracy to fit the empirical data in order to
reduce costs. By contrast, the NLP is more expensive in offline computation, since
it requires solving an optimization problem in Sp(2k,R2r) based on a prespecified
basis matrix constructed by another algorithm. However, the NLP can result in a
symplectic matrix to fit the empirical data with less projection error.

For the cotangent lift, we have a parameter γ in (4.7) to balance the truncation
error of q(t) and p(t). At first glance, the other two algorithms do not have a similar
weighting option. However, we can always construct a linear transformation from
x = [q; p] to xγ = [q; pγ ] by pγ = γp and then solve the rescaled Hamiltonian equation

based on H̃(q, pγ) := H(q, pγ/γ). The fully resolved rescaled Hamiltonian system
is equivalent to the original one; depending on the subspace on which the reduced
system lives, however, the reduced models for the original and rescaled systems are
not equivalent in general. A weighted data ensemble for the rescaled system can be
defined as

(4.24) Mxγ := [xγ(t1), . . . , xγ(tN )].

Then, a symplectic subspace can be constructed to fit Mxγ by any of the aforemen-
tioned PSD algorithms. Thus, the complex SVD and NLP can also flexibly balance
the truncation error of p(t) and q(t) by choosing a suitable value of γ.

5. Symplectic model reduction of nonlinear Hamiltonian systems. As
an approximation of the symplectic Galerkin projection, SDEIM is developed in this
section. The motivation of SDEIM is to reduce the computational complexity of a
nonlinear Hamiltonian system while simultaneously preserving the symplectic struc-
ture. Before introducing SDEIM, we will give a review of the classical DEIM.
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A15

5.1. Discrete empirical interpolation method. Let x ∈ Rn denote the state
variable in the original space and let f : Rn → Rn denote the discretized vector field.
The full-order dynamical system can be described by an initial value problem

(5.1) ẋ = f(x) = Lx+ fN(x); x(0) = x0,

where the original vector field f(x) is split into a linear part Lx with L ∈ Rn×n and
a nonlinear part fN (x) with fN : Rn → Rn.

Let Φ ∈ Rn×k denote a POD basis matrix. Then, the Galerkin projection can be
used to obtain a reduced system on the column space of Φ,

(5.2) ż = ΦT f(Φz) = L̃z +ΦT fN (Φz); z0 = ΦTx0,

where z(t) ∈ Rk is the reduced state, and L̃ = ΦTLΦ ∈ Rk×k is the reduced linear
operator.

According to some previous studies [9, 27], the POD-Galerkin approach can
achieve computational savings only when the analytical formula of the nonlinear vec-
tor term ΦT fN (Φz) can be simplified, especially if fN (x) is a low-order polynomial in
x. Otherwise, one usually needs to compute the state variable x := Φz in the original
coordinate system, evaluate the nonlinear vector field fN (x), and then project fN (x)
back to the column space of Φ. In this scenario, solving the POD reduced system can
be more expensive than solving the original full-order system.

DEIM focuses on approximating fN(x) so that a certain coefficient matrix can be
precomputed and, as a result, the complexity in evaluating fN (x) becomes propor-
tional to the small number of selected spatial indices [9]. Let β = [β1; . . . ;βm] ∈ Rm

be an index vector, and let βi ∈ {1, . . . , n} be an index. Define an n×m matrix

(5.3) P := [eβ1 , . . . , eβm ],

where eβi is the βith column of the identity matrix I2n. Then, left multiplication of
fN (x) with PT projects fN (x) onto m elements corresponding to the index vector β.
Now suppose fN (x) resides approximately on the range of an n×m matrix Ψ; then
there exists a corresponding coefficient vector τ ∈ Rm such that fN (x) ≈ Ψτ . The
coefficient vector τ can be determined by matching the fN (x) at selected m spatial
indices, i.e., PT fN(x) = PTΨτ . Suppose PT fN(x) is nonsingular. Then, we have

τ = (PTΨ)−1PT fN (x). Thus, the approximation f̂N(x) of the nonlinear vector term
fN (x) becomes

(5.4) f̂N (x) = Ψτ = Ψ(PTΨ)−1PT fN (x),

and the reduced system (5.2) can be approximated as

(5.5) ż = L̃z +Wg(z),

where W = ΦTΨ(PTΨ)−1 and g(z) = PT fN(Φz). Notice that W is calculated only
once at the offline stage. At the online stage, g(z) is evaluated on m spatial indices
of fN(Φz). Therefore, the complexity of the DEIM-reduced system (5.5) can be
independent of the dimension of the original system.

In order to construct (5.5), the SVD can be applied to construct a POD basis
matrix Φ based on an empirical data ensemble [x(t1), . . . , x(tN )] and the collateral
POD basis matrix Ψ based on another data ensemble [fN (x(t1)), . . . , fN (x(tN ))] for
the nonlinear vector term. Moreover, a greedy algorithm can be applied to construct
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A16 LIQIAN PENG AND KAMRAN MOHSENI

Algorithm 4. Greedy algorithm to construct an index vector β.

Require: A basis matrix Ψ = [ψ1, . . . , ψm] ∈ Rn×m.
Ensure: An index vector β = [β1; . . . ;βm] ∈ Rm.
1: Select the first interpolation index [ρ, β1] = max{|ψ1|}.
2: Initialize U = [ψ1], β = β1.
for i = 2 to m do
3: Solve the coefficient vector τ to match ψi, U(β, :)τ = ψi(β).
4: Calculate the residual r = ψi − Uτ .
5: Select the interpolation index corresponding to the largest magnitude of the
residual r, [ρ, βi] = max{|r|}.
6: Update U = [U, ψi], β = [β;βi].

end for

the index vector β [9], as listed in Algorithm 4.3 Initially, we select the first inter-
polation index β1 ∈ {1, . . . , n} corresponding to the first basis function ψ1 with the
largest magnitude. The remaining interpolation indices, βi for i = 2, . . . ,m, respec-
tively correspond to the largest magnitude of the residual r, where r is the residual
between the input basis ψi and its projection onto the column space of U . In step 5,
[ρ, βi] = max{|r|} means ρ = |r(βi)| = maxj=1,...,n|r(j)|. In step 6, we add a column
vector ψi (and an element βi) to a matrix U (and a vector β). It has been proven
that ρ �= 0 implies that PTA is nonsingular [9]. Thus, the DEIM approximation of

the nonlinear vector term f̂N (x) in (5.4) is well-defined.

5.2. Symplectic discrete empirical interpolation method. In this section,
we present a method that combines the idea of symplectic Galerkin projection with
the use of DEIM. Similar to (5.1), the original Hamiltonian can also be split into a
linear part and a nonlinear part, i.e., H(x) = H1(x)+H2(x), such that ∇xH1(x) = Lx
for a real symmetric matrix L, and ∇xH2(x) = fN (x) for a nonlinear function fN .
Thus, the original Hamiltonian system is given by

(5.6) ẋ = J2n∇xH(x) = Kx+ J2nfN (x),

where K = J2nL ∈ sp(R2n). Analogous to (5.2), the symplectic Galerkin projection
yields the following reduced Hamiltonian system:

(5.7) ż = A+J2n∇xH(Az) = K̃z + J2kA
T fN(Az),

where A ∈ Sp(2k,R2n), L̃ = ATLA, and K̃ = A+KA = J2kL̃. Thus, unless
AT fN(Az) can be analytically simplified, the computational complexity of (5.7) still
depends on 2n. In order to save the computational cost, one can use the DEIM ap-
proximation (5.4) to approximate the nonlinear vector term fN (x). Let Ψ ∈ R2n×m

denote the collateral POD basis for fN (x), and let P ∈ R2n×m denote the projection
matrix with the form (5.3). Then, (5.7) can be approximated as

(5.8) ż = K̃z + J2kWg(z),

where W = ATΨ(PTΨ)−1 and g(z) = PT fN(Az).

3The MATLAB notations B(β, :) and ai(β) are used here to represent the operation of selecting
rows out of a matrix (or a vector).
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A17

Theorem 5.1. Let z(t) be the solution of (5.8) with z(0) = z0. Let E(t) =
H̃(z(t)) be the corresponding system energy. Then, the time derivative of E(t) equals

(5.9) Ė(t) = (∇zH̃(z))TJ2kA
T (f̂N (Az)− fN (Az)),

where f̂N is given by (5.4). Moreover, an upper bound to Ė(t) is given by

(5.10) ‖Ė(t)‖ ≤ C‖∇zH̃(z)‖ · ‖(I −ΨΨT )fN (Az)‖,
where C = ‖(PTΨ)−1‖ is a constant.

Proof. Taking the time derivative of E(t) and using the chain rule gives Ė(t) =
(∇zH̃(z))T ż. Replacing ż by (5.8) yields

Ė(t) = (∇zH̃(z))TJ2k(L̃z +Wg(z)).

Because J2k is skew-symmetric, we have (∇zH̃(z))TJ2k∇zH̃(z) = 0. It follows that

Ė(t) = (∇zH̃(z))TJ2k(L̃z +Wg(z)−∇zH̃(z)).

Thus, (5.9) can be obtained by inserting Wg(z) = AT f̂N (Az) and ∇zH̃(z) = L̃z +
AT fN(Az) into the above equation.

Equation (5.9) yields

(5.11) ‖Ė(t)‖ ≤ ‖(∇zH̃(z))T ‖ · ‖J2k‖ · ‖AT ‖ · ‖f̂N (Az)− fN (Az)‖.
By Lemma 3.2 in [9], there exists a constant C = ‖(PTΨ)−1‖ such that the DEIM
approximation error for fN is bounded by

(5.12) ‖f̂N − fN‖ ≤ C‖(I −ΨΨT )fN‖,
where P is the DEIM projection matrix given by (5.3), and Ψ is the collateral POD
basis matrix for fN . Inequalities (5.11) and (5.12) yield

(5.13) ‖Ė(t)‖ ≤ ‖(∇zH̃(z))T ‖ · ‖J2k‖ · ‖AT ‖ · C‖(I −ΨΨT )fN‖.
Since A ∈ Sp(R2n, 2k), we have ‖A‖ = 1. Plugging ‖AT ‖ = 1, ‖J2k‖ = 1, and
‖(∇zH̃(z))T ‖ = ‖∇zH̃(z)‖ into (5.13), (5.10) follows.

Strictly speaking, (5.8) is not necessarily Hamiltonian. However, when ‖(I −
ΨΨT )fN (Az)‖ → 0, Theorem 5.1 implies that ‖Ė(t)‖ → 0. In contrast, since the
classical DEIM method is devolved to approximate a POD reduced system, the cor-
responding energy can quickly blow up. Thus, we define SDEIM to be the method
that applies DEIM to approximate the symplectic Galerkin projection. In particular,
for a nonlinear Hamiltonian system ẋ = J2n∇xH(x) or ẋ = Kx + J2nfN (x), with
x(0) = x0, the SDEIM reduced system is given by (5.8), where the initial condition
of the reduced system is given by z0 = A+x0.

Both the cotangent lift (in section 4.1) and the complex SVD (in section 4.2) can
be used to construct a symplectic matrix A ∈ M2(2n, 2k) based on an empirical data
ensemble. Moreover, (4.16) implies that M2(2n, 2k) ⊂ V2k(R

2n). Thus, if we choose
Ψ such that

(5.14) A = Ψ ∈ M2(2n, 2k),

then ATΨ = I2n. It follows that W = (PTA)−1. Since x(t) ∈ V and ∇xH2(x) =
fN (x), [x(t); fN (x(t))] is a trajectory in T ∗V ∼= V×V∗. By assuming A = Ψ in (5.14),
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A18 LIQIAN PENG AND KAMRAN MOHSENI

Table 1

The POD-Galerkin approach versus the symplectic model reduction approach.

POD-Galerkin Symplectic model reduction

Original system ẋ = f(x) with x ∈ Rn ẋ = J2n∇xH(x) with x ∈ R2n

Reduced state
Orthogonal projection:
z = ΦTx ∈ Rk

Symplectic projection:
z = A+x ∈ R2k

Reduced system
Galerkin projection:
ż = ΦT f(Φz)

Symplectic Galerkin projection:
ż = J2k∇zH(Az)

Properties of
reduced system

No stability guarantee
Energy preservation
Stability preservation

Basis matrix Orthonormal: ΦTΦ = Ik Symplectic: AT J2nA = J2k
Domain of
basis matrix

Stiefel manifold Vk(R
n)

Symplectic Stiefel manifold
Sp(2k,R2n)

Constructing
basis matrix

POD

PSD
(a) Cotangent lift
(b) Complex SVD
(c) NLP

Simplifying
nonlinear terms

DEIM: equation (5.5) SDEIM: equation (5.8)

we actually construct a cotangent lift mapping from T ∗W to T ∗V via a 4n×4k matrix,
diag(A,A). Using a similar idea from section 4.1, A can be constructed by an extended
data ensemble,

(5.15) M3 := [x(t1), . . . , x(tN ), fN (x(t1)), . . . , fN (x(tN ))],

that contains both the state x(ti) and the nonlinear term fN(x(ti)).
Regarding the computational complexity of SDEIM, K̃ andW are calculated only

once at the beginning. For each step in the online stage, the nonlinear vector term
g(z) is evaluated only on selected 2k spatial indices of fN(Az). Thus, the complexity
of the SDEIM reduced system (5.8) is also O(1) when k and m′ are fixed. Here m′

denotes the number of elements of Az that are required to compute the 2k spatial
indices of PT fN (Az).

Table 1 compares the POD-Galerkin approach with the proposed symplectic
model reduction approach; it serves as a short summary of sections 3–5.

6. Numerical examples. In this section, the performance of symplectic model
reduction is illustrated in numerical simulation of wave equations. After deriving the
Hamiltonian form of general wave equations, we first study a linear wave equation
to demonstrate that PSD can deliver stability-preserving reduced systems. Then
we study the nonlinear sine-Gordon equation to demonstrate that SDEIM can yield
stability-preserving reduced systems with significant speedups.

6.1. Hamiltonian formulation for wave equations. Let u = u(t, x). Con-
sider the one-dimensional semilinear wave equation with constant moving speed c and
a nonlinear vector term g(u),

(6.1) utt = c2uxx − g(u),

on space x ∈ [0, l]. With the generalized coordinates q = u and the generalized
momenta p = ut, the Hamiltonian PDE associated with (6.1) is given by

(6.2) q̇ =
δH

δp
, ṗ = −δH

δq
,
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SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A19

where the Hamiltonian is defined as

(6.3) H(q, p) =

∫ l

0

dx

[
1

2
p2+

1

2
c2q2x +G(q)

]
, G′(q) = g(q).

A fully resolved model of (6.2) can be constructed by a structure-preserving finite
difference discretization [5]. With n equally spaced grid points, the spatial discretized
Hamiltonian is given by

(6.4) Hd(y) =

n∑
i=1

Δx

[
1

2
p2i +

c2(qi+1 − qi)
2

4Δx2
+
c2(qi − qi−1)

2

4Δx2
+G(qi)

]
,

where qi := u(t, xi), pi := ut(t, xi), y := [q1; . . . ; qn; p1; . . . ; pn], and xi = iΔx. In
the limit Δx → 0 and nΔx = l, (6.4) converges to (6.3). Now, the full model is
represented by a Hamiltonian ODE system,

(6.5)
dy

dt
= Jd∇yHd, Jd =

J2n
Δx

.

Let Dxx ∈ Rn×n denote the three-point central difference approximation for the
spatial derivative ∂xx. We define a Hamiltonian matrix by

(6.6) K =

[
0n In

c2Dxx 0n

]
.

Then, (6.5) can be written in the form

(6.7) ẏ = Ky + J2nfN (y),

where the nonlinear vector term fN (y) is a vector in R
2n with zeros in the last n

elements. Time discretization of (6.7) can be achieved by using the implicit symplectic
integrator scheme (2.3).

6.2. Linear wave equation. For our numerical experiments, we first study a
linear system with G(u) = g(u) = 0 and with periodic boundary conditions. Let
s(x) = 10× |x− 1

2 |, and let h(s) be a cubic spline function:

h(s) =

⎧⎨
⎩

1− 3
2s

2 + 3
4s

3 if 0 ≤ s ≤ 1,
1
4 (2− s)3 if 1 < s ≤ 2,

0 if s > 2.

The initial condition is provided by

(6.8) q(0) = [h(s(x1)); . . . ;h(s(xn))], p(0) = 0n×1,

which gives rise to a periodic system with wave propagating in both directions of x
in a periodic domain. The full model (reference benchmark solver) is computed using
the following parameter set:

Space interval l = 1
Number of grid points n = 500

Space discretization step Δx = l/n = 0.002
Time interval T = 50

Time discretization step δt = 0.01
Speed of the wave c = 0.1
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Regarding reduced systems, we compare all the proposed PSD algorithms (the
cotangent lift, complex SVD, and NLP with r = 100) with the tangent lift in [18],
as well as with POD. Both the Hamiltonian approach (PSD algorithms) and the
Lagrangian approach (the tangent lift) are geometric algorithms, as they preserve
the Hamiltonian or Lagrangian structures. The criterion for the comparison is the
L2 error between the generalized coordinate q(t) of the benchmark solution and its
approximations computed by reduced systems. For the Hamiltonian approach, PSD
algorithms are used to construct symplectic matrices to fit the weighted data ensemble
(4.24) with γ = δt. For the Lagrangian approach, the basis matrix is constructed from
a data ensemble of q(t) in the configuration space. Thus, PSD reduced systems and
the reduced system constructed by tangent lift reside on different subspaces of R2n.
Nevertheless, because q̇(t) = p(t) holds for the wave equation, symplectic integrators
of [q(t); p(t)] can also be used for the time integration of [q(t); q̇(t)] for the fully
resolved Lagrangian system. Moreover, the reduced Lagrangian system constructed
by the tangent lift also has the form (6.7) if we let y(t) = [q(t); q̇(t)].

Figure 1(a) shows the solution profile at t = 0, t = 2.5, and t = 5. The empiri-
cal data ensemble takes 101 snapshots from the benchmark solution trajectory with
uniform interval (Δt = 0.5). We first compare POD with the cotangent lift. When
t = 2.5, both approaches can obtain good results by taking the first 20 modes; but
when t = 5, the POD reduced system significantly deviates from the full model.

In Figure 1(b), the blue line represents the singular values of the snapshot matrix
Mxγ for POD. Suppose {λ1, . . . , λk} denote the singular values of the snapshot matrix
M1 (orM2) of the cotangent lift (or complex SVD). The red (or black) line represents
the singular values {λ1, λ1, . . . , λk, λk} corresponding to the symplectic basis matrix
A1 = diag(Φ,Φ) (or A2 = [Φ,Ψ;−Ψ,Φ]). A fast decay of singular values indicates
that a few modes can fit the data with good accuracy. This is a necessary (but not
sufficient) condition for a low-dimensional reduced model to approximate the original
system with good accuracy. Moreover, we notice that an arbitrary subspace of R2n

can be represented by an orthonormal basis matrix. However, unless this subspace
is also symplectic, we cannot represent it by a symplectic basis matrix. Since PSD
algorithms can only construct subspaces with the symplectic constraint, both the
cotangent lift and complex SVD cannot fit the empirical data as well as POD for the
same subspace dimension.

Using more modes, one may expect that both POD and PSD can produce more
accurate solutions. However, as Figure 2(a) indicates, the POD reduced system blows
up when it has 20 or 40 modes. In addition, the POD reduced system with 40
modes blows up faster than the system with 20 modes. This result verifies that the
POD-Galerkin approach can yield unstable reduced systems, even though the original
system is stable. By contrast, errors in PSD reduced systems grow slowly in time.
Figure 2(b) demonstrates that all the geometric algorithms preserve the system energy
E, while the energy of POD reduced systems quickly grows to infinity. Here, E equals
the discretized Hamiltonian Hd(y). Let q0 = qn; (6.4) yields

(6.9) Hd(y) =
Δx

2

n∑
i=1

p2i +
c2

2Δx

n∑
i=1

(qi − qi−1)
2.

Figure 3 indicates that the L2 norm of the total error of a POD reduced system
is bounded in the interested time domain [0, 50] only when the subspace dimension
k is 10 for the cases tested with 10, 20, . . . , 80. While reduced systems constructed
by geometric algorithms show some numerical error, this error can be systematically

D
ow

nl
oa

de
d 

01
/0

7/
16

 to
 1

28
.2

27
.1

65
.1

81
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A21

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

 

 
initial condition (t=0)
full model (t=2.5)
POD (t=2.5)
symplectic (t=2.5)
full model (t=5)
POD (t=5)
symplectic (t=5)

0 20 40 60 80
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Order of modes

S
in

gu
la

r 
va

lu
es

 

 

POD
cotangent lift
complex SVD

(a) (b)

Fig. 1. (Color online.) (a) The solution u(t, x) at t = 0, t = 2.5, and t = 5 of the linear wave
equation. We plot the results from the full model, POD, and cotangent lift. (b) The first 80 singular
values corresponding to the first 80 POD (or PSD) modes that are used in different reduced systems.
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Fig. 2. (Color online.) (a) The evolution of instant L2 error, ‖e(t)‖ := ‖û(t) − u(t)‖, between
the benchmark solution u(t) and approximating solutions û(t) of the linear wave equation. (b) The
evolution of the energy E(t) of different reduced systems.
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Fig. 3. (Color online.) The L2 norm of the total error ‖e‖2 :=
√∫ T

0 ‖e(t)‖2dt of different

reduced systems for the linear wave equation. For the POD reduced system, we only compute ‖e‖2
with 10 modes; when the subspace dimension k is greater than 20, the reduced system blows up in
the interested time domain [0, 50] and ‖e‖2 becomes infinite.
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reduced by using more modes. In terms of numerical accuracy, the cotangent lift and
NLP are slightly better than the tangent lift of [18], while the complex SVD is slightly
worse than the tangent lift. NLP yields the most accurate results, but for each k,
we observe only a maximum of 0.028% improvement compared with cotangent lift in
terms of the relative percentage error.

Stability preservation of symplectic model reduction. To explain our observations
mentioned above, we study the stability of the linear wave equation. According to
[19], the eigenvalues βi (i = 1, . . . , n) of the discretized spatial derivative Dxx with
periodic boundary conditions are given by

βi = − 2

Δx2

[
1− cos

(
2πi

n

)]
,

and the corresponding eigenvectors are given by

wi =
1√
n

[
e−2πιi/n, . . . , e−2πιi(n−1)/n, 1

]
.

It follows that the eigenvalues of the Hamiltonian matrix K in (6.6) are given by
2n pure imaginary numbers ±{ιγi}ni=1, where γi = c

√−βi, and the corresponding
eigenvectors are given by

ξi :=
1√

1 + γ2i

[
wi

ιγiwi

]
; ζi :=

1√
1 + γ2i

[
wi

−ιγiwi

]
.

Since ξn = ζn = 1√
n
[1n×1; 0n×1] by the above definition, we can redefine ζn to be ζn =

1√
n
[0n×1; 1n×1]. Thus, we can construct an nonsingular matrix Q := [ξ1, ζ1, . . . , ξn, ζn]

such that K is transformed to a Jordan form,

Q−1KQ = diag

{
ιγ1,−ιγ1, . . . , ιγn−1,−ιγn−1,

[
0 1
0 0

]}
.

Although K contains an unstable mode ζn, the projection coefficient of initial condi-
tion (6.8) onto this mode vanishes, i.e., ζTn y0 = 0. Thus, the original system evolves
on a stable subspace of R2n.

Next, we consider the reduced system constructed by the symplectic projection.
By (6.9), we have Hd(y) ≥ 0, and the equality holds if and only if y is parallel to
ξn. If ξn /∈ Range(A), the origin of R2n is the only solution that satisfies Hd(y) = 0
for all y ∈ Range(A). As a consequence, the original is the strict minimum of Hd in
Range(A). In our numerical simulations, we do observe that A+ξn �= 0, where A is
constructed by the cotangent lift, complex SVD, or NLP. Then, Theorem 3.10 implies
that the origin is a stable equilibrium for the reduced Hamiltonian system.

Instability of POD-Galerkin. Since POD does not preserve the system energy,
there are no mechanisms similar to the Hamiltonian and Lagrangian approaches that
limit the solution trajectory in a bounded region. As a result, the reduced system may
blow up with time evolution. To corroborate this claim, let λ∗ denote the eigenvalue
of ΦTKΦ with the maximal real part and let ξ∗ denote the corresponding eigenvector
with unit length. Then, a∗ = ξT∗ y0 gives the projection coefficient of y0 onto ξ∗.
Table 2 indicates that for each subspace dimension k, a POD reduced system has
Re(λ∗) > 0 and a∗ �= 0. Since the solution of a linear system has an exponential term
a∗ exp(λ∗t)ξ∗, the POD reduced system is always unstable for long-time integration.

D
ow

nl
oa

de
d 

01
/0

7/
16

 to
 1

28
.2

27
.1

65
.1

81
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYMPLECTIC MODEL REDUCTION OF HAMILTONIAN SYSTEMS A23

Table 2

The eigenvalue λ∗ and coefficient a∗ of a POD unstable mode a∗ exp(λ∗t)ξ∗ for different sub-
space dimension k.

k 10 20 30 40 50 60 70 80
λ∗ 0.0338 0.659 13.74 14.39 14.50 5.33 10.42 13.05 + 5.09 ι
a∗ 0.929 0.0184 0.0263 0.0498 -0.0200 0.0718 7.55e-3 -0.0068 - 0.0142ι

Assume that Φk1 and Φk2 respectively contain the first k1 and k2 dominant modes.
If k1 < k2, then ΦT

k1
KΦk1 is a submatrix of ΦT

k2
KΦk2 , and ‖ΦT

k1
KΦk1‖ ≤ ‖ΦT

k2
KΦk2‖

holds. As Re(λ∗) ≤ |λ∗| ≤ ‖ΦTKΦ‖, the matrix norm of ΦTKΦ provides an upper
bound to Re(λ∗). Thus, the upper bound to Re(λ∗) is a monotonically increasing
function of the subspace dimension k. Table 2 also shows that Re(λ∗) with 40 modes
is much larger than Re(λ∗) with 20 modes, which explains why the POD reduced
system with 40 modes blows up faster than the system with 20 modes in Figure 2.
Although for k = 10, the POD reduced system can produce accurate solution for a
short time domain [0, 2.5], we can still observe that this system blows up for a large
enough integration time, say, t > 10.

6.3. Sine-Gordon equation. Next, we consider a special nonlinear wave equa-
tion with G(u) = 1 − cos(u), g(u) = sin(u), and c = 1, which corresponds to the
sine-Gordon equation. This equation, which was first studied in the 1970s, appears in
a number of physical applications, including relativistic field theory, Josephson junc-
tions, and mechanical transmission lines [31]. One can show that the sine-Gordon
equation admits a localized solitary wave solution,

(6.10) u(t, x) = 4 arctan
[
exp

(
±x−x0−vt√

1−v2

)]
,

which travels with the speed |v| < 1. The ± signs correspond to localized solutions
which are called kink and antikink, respectively [31].

In our simulations, the full model is solved for the kink case with Dirichlet bound-
ary conditions (u(t, 0) = 0, u(t, 1) = 2π) using the following parameter set:

Space interval l = 50
Number of grid points n = 2000

Space discretization step Δx = l/n = 0.025
Time interval T = 150

Time discretization step δt = 0.0125
Speed of the wave v = 0.2

The L2 error for the state variable y(t) is studied for the full model and reduced
models constructed by POD, cotangent lift, complex SVD, DEIM, and SDEIM. All the
basis matrices are constructed to fit the data ensemble (4.24) with γ = 1. For SDEIM,
the cotangent lift is used to construct a symplectic basis matrix A1 = Ψ = diag(Φ,Φ)
to fit both the state variable y(t) and the nonlinear vector fN (y(t)), where Φ is a POD
basis matrix for the extended snapshot matrix that contains q(t), p(t), and fN (q(t))
in its column vectors.

Figure 4(a) shows the kink solution profile at t = 0, t = 25, and t = 75. The
data ensemble takes 1201 snapshots from the solution trajectory, solved by the full
model with uniform interval (Δt = 0.125). We first compare POD with the cotangent
lift. For short-time integration, both approaches can obtain very accurate results by
taking the first 60 modes. In Figure 4(b), we study the singular values corresponding
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Fig. 4. (Color online.) (a) The solution u(t, x) at t = 0, t = 25, and t = 75 of the sine-
Gordon equation. We plot the results from the full model, POD, and cotangent lift. (b) The first
200 singular values corresponding to the first 200 POD (or DEIM, PSD, SDEIM) modes that are
used in different reduced systems.
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Fig. 5. (Color online.) (a) The evolution of instant L2 error, ‖e(t)‖ := ‖ŷ(t) − y(t)‖, between
the analytic solution y(t) in the phase space and approximating solutions ŷ(t) of the sine-Gordon
equation for t ∈ [0, 150]. (b) The instant L2 error ‖e(t)‖ for t ∈ [0, 5].

to the POD basis matrix, the PSD basis matrices constructed by the cotangent lift
and complex SVD, the nonlinear term basis matrix for DEIM, and the symplectic
matrix for SDEIM. This figure demonstrates that POD is better to fit empirical
state variables than the cotangent lift and complex SVD, while DEIM is better to fit
empirical nonlinear vectors than SDEIM.

Figure 5 illustrates that all symplectic schemes (including the cotangent lift, com-
plex SVD, and SDEIM) yield low computational errors with appropriate subspace
dimension, while nonsymplectic schemes (including the POD and DEIM) can yield
unbounded numerical error with 140 modes. In Figure 6, all symplectic schemes can
effectively preserve the system energy E. By contrast, both POD and DEIM reduced
systems can achieve infinite energy with 140 modes. Here, E equals the discretized
Hamiltonian Hd(y). With G(u) = 1− cos(u) and Dirichlet boundary conditions, (6.4)
gives

(6.11) Hd(y) =
Δx
2

n∑
i=1

p2i +Δx
n∑

i=1

[1− cos(qi)] +
q21

4Δx + 1
2Δx

n∑
i=2

(qi − qi−1)
2 + (qn−2π)2

4Δx .

Figure 7(a) indicates that by using more modes, all symplectic reduced models
can obtain better accuracy and finally converge to the full model. By contrast, POD
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Fig. 6. (Color online.) (a) The evolution of the system energy E(t) of the sine-Gordon equation
for t ∈ [0, 150]. (b) The evolution of the system energy E(t) for t ∈ [0, 5].

40 80 120 160 200

10
−2

10
0

10
2

10
4

k

‖e
‖ 2

 

 

full model
POD
cotangent lift
complex SVD
DEIM
SDEIM

40 80 120 160 200
101

102

103

104

105

k

tim
e 

(s
)

full model
POD
cotangent lift
complex SVD
DEIM
SDEIM

(a) (b)

Fig. 7. (Color online.) (a) The L2 norm of the total error ‖e‖2 :=
√∫ T

0
‖e(t)‖2dt of the full

model and different reduced models for the sine-Gordon equation. For the POD and DEIM reduced
systems, we only compute ‖e‖2 for k = 40 and k = 60; when k ≥ 80, the reduced systems blow
up in the interested time domain [0, 150] and ‖e(t)‖2 becomes infinite. (b) The running time of
different model reduction techniques with different k. All the data come from the average value of
ten independent runs.

and DEIM can yield unbounded reduced systems in the interested time domain [0,
150] when the subspace dimension k is greater than 80 for the cases tested with
40, 60, . . . , 200. Furthermore, by the analysis in section 5, we know that a direct use
of POD or PSD is not able to obtain any speedups for the sine-Gordon equation, since
it contains a nonlinear vector term sin(u). Numerical results in Figure 7(b) also verify
this point. Especially, the running time for POD, the cotangent lift, and complex
SVD is even larger than the running time for the full model. On the contrary, both
the DEIM and SDEIM approximations can significantly improve the computational
efficiency and reduce the running time of POD or PSD by three orders of magnitude.

The boundedness of Hamiltonian systems can be derived by their energy conser-
vation property. If y(t) denotes the solution trajectory, we have Hd(y(t)) = E for a
constant E. Since each term on the right-hand side of (6.11) is nonnegative, we must
have |pi| ≤

√
2E/Δx, |q1| ≤ 2

√
EΔx, and |qi| ≤ |qi−1|+

√
2EΔx for i ≥ 2. In other

words, there exists a positive number M , for any state y ∈ R2n, as long as ‖y‖ =M ,
we have Hd(y) > E. Therefore, by Theorem 3.9 both the original system and reduced
systems constructed by the symplectic projection are bounded for all t.
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7. Conclusion. In this paper, we proposed a symplectic model reduction tech-
nique for the reduced-order modeling of large-scale Hamiltonian systems. We first
defined the symplectic projection, which can yield reduced systems that remain Hamil-
tonian. Several PSD algorithms, such as the cotangent lift, complex SVD, and NLP,
were developed to generate a symplectic matrix that spans a low-dimensional sym-
plectic subspace.

Because the symplectic model reduction preserves the symplectic structure, it
also preserves the system energy and stability. Thus, the proposed technique is very
suited for long-time integration, especially when the original systems are conservative
and do not have any natural dissipative mechanism to stabilize them. Since the
symplectic projection can only speed up linear and quadratic problems, the PSD was
also combined with DEIM, effectively reducing the complexity of the nonlinear vector
term. Because the complexity of the SDEIM does not depend on the dimension of
the original system, a significant speedup can be obtained for a general nonlinear
problem. We demonstrated the capability of the symplectic model reduction to solve
a large-scale system with high accuracy, good efficiency, and stability preservation via
linear and nonlinear wave equations.
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