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ABSTRACT

The hydrodynamic model of electron transport in
semiconductors is analyzed and in analogy to fluid me-
chanics the transport equation for the electron vorticity,
∇×v, is derived. Aside from the classical hydrodynamic
sources of vorticity, collision terms in the continuity and
momentum equations may also generate electron vortic-
ity. A scale analysis of the electron vorticity equation is
performed and the relative order of magnitude of each
source of vorticity is found. These analysis predict con-
ditions for the observation of electron vortices in semi-
conductor devices.
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1 Introduction

As feature sizes in electronic devices get smaller and
their speed increases we are entering in new regimes
of electron transport in which traditional drift-diffusion
models ( cf. [1–4]) are not valid. While the drift-diffusion
model provides a simple approach for large systems it
fails to captures some of the important features of the
electron transport in submicron systems. There has
been extensive research to include quantum mechanical
effects where wave nature of electrons plays an impor-
tant role in the device operation. There has also been
significant research on Monte Carlo methods [5, 6] to
study the solutions of the Boltzmann transport equation
and to consider effects such as velocity overshoot [7] and
improved modeling of heat generation in the device [8,9].
While Monte Carlo simulations provide a direct numer-
ical solution to the Boltzmann equation, costly compu-
tations make their practical usage limited. Another ap-
proach is to derive conservation laws for carrier density,
momentum and energy by taking the moments of the
Boltzmann equations, the so-called hydrodynamic mod-
els (e.g., see Blotekjaer [10] and Rudan and Odeh [11]
and references therein). Apart from cheaper compu-
tational cost of these models (cf. [12]), their similarity
to flow of compressible fluids provide almost an unlim-

ited supply of theoretical and computational tools. The
existence of shock fronts within the electron flow has
been predicted by Gardner [13] using the hydrodynamic
models. His simulations with a 1-V bias across the chan-
nel predicts fully developed shock waves at 300 K for a
0.1−µm channel length and at 77 K for a 1.0−µm chan-
nel length. de Jong and Molenkamp [14]have observed
hydrodynamic Knudsen and Poiseuille flow of electrons
in 4µm wide wires at a temperature of 1.5K

In this paper we will analyze the problem of elec-
tron transport in ultra small devices from a hydrody-
namic point of view. In the next section we consider
the governing equations for electron transport in sub-
micron devices. We systematically derive the electron
vorticity transport equation in section 3, where similar-
ities and differences with vorticity equation in fluids are
clarified. In section 4 we perform a scale and order of
magnitude analysis on the electron vorticity equation
to obtain the relative importance of each source term
in various transport regimes. Concluding remarks are
given in section 5.

2 Governing equations

The Boltzmann transport equation for electrons mov-
ing with the group velocity u in an electric field E can
be represented as

∂f

∂t
+ u · ∇xf −

e

m
E · ∇uf = C, (1)

where e is the electron charge, m is the effective electron
mass, C is the Collision term, f(x,u, t) is the distribu-
tion function for the electrons, x is the space variable,
and t is time.

The first five moments in the velocity space are the
balance equations for the flux of electron, momentum,



and energy. These equations are represented as follows:
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∂p

∂t
+ v(∇ · p) + (p · ∇)v = −enE−∇ ·P+Cp, (3)
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∇ · (vP) = −env ·E−∇ · q+ CW . (4)

Here, n is the electron concentration, v is the transla-
tional velocity, p is the momentum density mnv, P is
the pressure tensor, q is the heat flux, eI is the inter-
nal energy, and Cn,Cp, and CW represent moments of
C. These equations are supplemented by the Poisson
equation for the electric potential φ

E = −∇φ, (5)

∇ · (ε∇φ) = −
∑
eini − k1, (6)

where k1 := doping and ε := dielectric.

3 Electron vorticity transport equation

Here we follow the approach used in the fluid dy-
namic community (e.g., see Batchelor [15]) to derive an
equation for electron vorticity transport. Using the elec-
tron conservation equation (2) one can get the identity

∂p

∂t
+ v(∇ · p) + (p · ∇)v :=

Dp

∂t
+ p∇ · v = mn

Dv

Dt
+mCnv, (7)

where

D

Dt
:=
∂

∂t
+ v · ∇, (8)

is the total derivative. Therefore the momentum equa-
tion (3) can be written as

Dv

Dt
= −

e

m
E−

1

mn
∇ ·P+

1

mn
(Cp −mCnv) . (9)

To obtain the vorticity equation we need to take the
curl of the momentum equation (9). In doing so we need
to calculate the curl of the acceleration term Dv/Dt.
Using the vector identity

(v · ∇)v =
1

2
∇(v · v) − v× (∇× v).

where ∇× v is the vorticity vector �ω we can write

∇×
Dv

Dt
=
∂�ω

∂t
−∇× (v × �ω). (10)

Using the vector identity

∇× (v × �ω) = −(v · ∇)�ω + v(∇ · �ω)−

�ω(∇ · v) + (�ω · ∇)v,

the fact that the vorticity is a solenoidal vector field,
and substituting ∇ · v from the electron conservation
equation (2) we obtain

∇× (v× �ω) = −(v · ∇)�ω −(
Cn −

Dn

Dt

)
�ω

n
+ (�ω · ∇)v. (11)

Substituting equation (11) in equation (10) to get
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�ω − (�ω · ∇)v. (12)

This is in fact the modified Beltrami vorticity equation
[16] that includes sources of mass. Noting that ∇ ×
E = 0, we can can calculate the curl of the momentum
equation (9) to obtain
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The collision terms are modeled as

Cn = −R, (14)

Cp = −
p

τp
, (15)

CW = −
W −W0
τw

, (16)

where R is the recombination rate and τp and τw are the
momentum and energy relaxation times, respectively.
Therefore
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Now we need a constitutional law (moment closure)
for the pressure tensor P. For simplicity, we consider
an inviscid model, where we assume that the pressure
tensor can be represented in terms of the effective carrier
temperature T by an ideal gas law relationship

P = nkT I, (18)

Here I is the identity tensor and k is the Boltzmann
constant. Therefore the vorticity equation (17) can be



written as
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This is the electron vorticity transport equation. Note
that since this is an inviscid model there is no vorticity
redistribution due to diffusion. The main advantage of
this equation over the classical hydrodynamic models of
electron transport is that the electric field does not ap-
pear explicitly in the electron transport equation. This
is due to the fact that electric fields are curl free.

There are seven terms involved in the vorticity equa-
tion (19). This equation shows that the ratio of the elec-
tron vorticity to the electron concentration can change
with time due to the terms on the right-hand side of
equation (19). The two terms on the left hand side
form the total derivative of the vorticity density. The
third term represents the vortex stretching essential for
turbulence. The fourth term is similar to the baroclinic
generation of vorticity in classical fluid mechanics and is
due to the interaction of the principal part of the pres-
sure tensor P and the density field n. The last three
terms in equation (19) are due to vorticity generation
through the collision terms in the continuity and mo-
mentum equations.

It is clear that in various regimes of electron trans-
port, different terms in the electron vorticity equation
are dominant. In large systems and under normal field
conditions the vorticity sink term due to the interac-
tion of vortices with the lattice damps out most of the
electron vorticity generation. In the next section we per-
form an order of magnitude analysis to predict transport
regimes in which electron vorticity dynamics play an im-
portant role.

4 Scaling and order of magnitude
analysis

Since size and strength of the electric field applied
to the device can vary significantly, it is interesting to
compare the order of each term in the vorticity equation.
We assume that the characteristic scales of the problem
ie, velocity, length, electron concentration, temperature
and electric field are given by U,L, n0, T0, E0, respec-
tively. Note that the time scale is given by τ = L/U
(for transport equations that includes source terms this
scaling must be checked later). We can now introduce
non-dimensional variables (assuming that the scaling is

the same in each direction)
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x

L
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v

U
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L
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n

n0
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Therefore, using the new variables, the vorticity equa-
tion will become
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In this equation one needs to find the appropriate scaling
for T0 and E0. The scaling for E0 can be easily obtained
from (5)

E0 =
φ0

Ld
, (23)

where φ0 is the scaling for the electric potential applied
to the device. The scaling for T0 may be obtained from
the energy equation (4). In doing so we assume that the
order of the main driving term env ·E is the same as the
convective derivative on the left hand side. Of course
after such assumption one should check its validity at
the end of the calculations. Hence

T0 =
eφ0

k
(24)

It is important to note that even though the electric
field does not enter directly in the vorticity equation, it
sets the scaling for electron temperature in the device.
Now we can write again the nondimensional vorticity
equation with the appropriate scalings
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The three nondimensional numbers that appear on the
right hand side of equation (25) are of fundamental im-
portance in our analysis. The nondimensional number
eφ0/mU

2 of the baroclinic term is the ratio of the ab-
sorbed energy of a free electron from the external poten-
tial φ0 to the average thermal energy of electrons. The
nondimensional number L/Uτp = τ/τp in front of the
momentum relaxation source term is in fact the ratio
of the transit time to the momentum relaxation time.
Note that the recombination rate can be represented



as R ≈ n0/τr. Therefore, the nondimensional number
RL/Un0 = L/Uτr = τ/τr in front of the recombination
term in equation (25) can be interpreted as the ratio
of the transit time in the device by the recombination
relaxation time.

Since the momentum relaxation term acts as a sink
of electron vorticity, we expect to be able to observe
transport of electron vortices in regimes in which this
term is smaller than the other source terms.

5 Conclusions

We analyzed the hydrodynamic model of electron
transport in semiconductors and in analogy to fluid me-
chanics the transport equation for the electron vorticity,
�ω = ∇× v, is derived. We find that in addition to the
conventional stretching term and baroclinic generation
of vorticity (e.g., see [15]), other sources of vorticity are
the generation of electron vortices due to the recombi-
nation term and decay of vortices due to the momen-
tum relaxation. To simplify our analysis, the diffusion
term in the modeling of pressure tensor is neglected.
This assumption is valid for high Reynolds numbers and
away from the boundaries. For regions close to non-
conductive boundaries a diffusion term is needed in the
right hand side of the vorticity transport equation to
provide a means for the diffusion of the electron vor-
ticity, created at the boundary, into the conductive re-
gion. This can be achieved through electron-electron
interaction and non-diagonal term in the pressure ten-
sor (viscosity). The rate of vorticity generation at the
boundary is set by the boundary conditions. Note that
since the electric field is curl free, it does not explicitly
appear in the vorticity equation. This is one of the main
advantages of this equation. To obtain a complete set
of equations of electron transport in semiconductors one
needs to supplement the vorticity equation (17) or (19)
by an equation for electron dilatation, ∇ · v. This is
the topic of a future publication. A scale analysis of the
electron vorticity equation is performed and the relative
order of magnitude of each source of vorticity is found.

In order to observe electron vortices experimentally,
electron transit time in the device should be of the same
order or smaller order as the electron momentum relax-
ation time. Our analysis predict the conditions for the
observation of electron vortices in high field transport
in submicron devices.
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