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Transporting microdroplets using electric fields can be accomplished with several
mechanisms, the primary methods being dielectrophoresis (DEP) for electrically in-
sulating liquids, and electrowetting on dielectric for conducting fluids. In both cases, an
electric field is applied near the leading edge of the droplet using patterned electrodes,
giving rise to an electrostatic pressure that induces droplet transport. This paper exam-
ines the nature of the force distribution for DEP-actuated droplets in several electrode
configurations, calculated using a numerical method designed for handling jump con-
ditions in the Poisson equation. The numerical method is described and verified by
comparison with known analytical results. The net force acting upon a DEP droplet
is investigated, with the effect of electrode configuration presented for several cases,
demonstrating some beneficial aspects for engineering applications.
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Introduction

Digital microfluidics is a rapidly growing
field, with many new and innovative appli-
cations currently being researched. Examples
include variable focus lenses, display technol-
ogy, fiber-optics, and lab-on-a-chip devices.1–7

In particular, efficient and cost-effective lab-on-
a-chip devices are in great demand, as they al-
low highly repetitive laboratory tasks to become
automated with the introduction of miniatur-
ized and integrated systems.8 In our group,
digital microfluidics has been employed for
active thermal management of compact elec-
tronic devices,9–11 design of a zero-leakage mi-
crovalve,12 investigation of droplet morphol-
ogy under electrowetting on dielectric (EWOD)
actuation,13 and design of an electrowetting
microlens.14

Two of the most promising actuation
methods of droplets for application in digi-
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tal microfluidics are EWOD for conductive
droplets15–17 and dielectrophoresis (DEP) for
electrically insulating droplets.18–22 Both these
methods work in a similar way: an electric field
is applied near the edge of the droplet giving rise
to an electrostatic pressure that induces trans-
port. The electric field is swept down the chan-
nel, allowing for highly controlled movement
of the drop.

The primary difference between an EWOD-
and DEP-actuated droplet is the nature of the
fluid and its effect on the electric field penetra-
tion into the media. For EWOD, an electrically
conducting droplet is placed in a dielectric-
coated channel lined with electrodes. A given
electrode is then activated, creating an electric
field that induces a charge accumulation on
the surface of the fluid. This charge accumula-
tion allows the creation of a net force upon
the droplet, drawing the droplet toward the
actuated electrode. DEP differs from this ac-
tion in that the liquid is insulating, charge does
not accumulate on the surface, and the electric
field penetrates into the liquid. It is well known
that a dielectric material is drawn into the gap
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between the parallel plate of a charged capaci-
tor.23 This is a result of the nonuniform fringing
field located at the edge of the capacitor, pro-
viding a force pointing toward its center.23,24

As opposed to EWOD, the dielectrophoretic
force can act over the droplet’s front face or
within the bulk of the fluid itself. Jones et al.20,21

have explored the close relationship between
DEP and EWOD, but for direct simulation of
EWOD and DEP flows including electrostatic
effects, a clear description of the force distribu-
tion is required. The case considered here is for
a perfect insulator (DEP), but many fluids exist
that exhibit properties of both a conductor and
dielectric, namely leaky dielectrics.25

Direct numerical simulation26 and numer-
ical simulations using approximations of the
electrostatic effect13,27 in droplet morphology
and dynamics under EWOD and DEP have
been investigated previously. Investigations into
the nature of forcing in EWOD 28 and into the
forcing nature of DEP have also been accom-
plished.29 The focus of this paper is to extend
the work of Ref. 29 using a different numerical
technique, as well as presenting several differ-
ent electrode configurations for application in
DEP droplet transport.

Governing Equations

The equations governing the flow of a
droplet under electric effects are the mass, mo-
mentum, and electrostatic equations. Electro-
static forces can arise from free charge inter-
actions as well as from polarization effects. In
the problems considered in this investigation,
the focus is droplet flow resulting from electri-
cal forces. In most microfluidic applications the
dynamic currents are so small that the mag-
netic field can be ignored. In this situation the
governing equations for the electrical field are
the electrostatic laws. For the electrostatic ap-
proximation to apply, the characteristic time
scale for electric phenomena, τ = ε/σ, must be
small. Note that τ is the ratio of dielectric per-
meability to conductivity of the medium. For

the microfluidic applications considered here,
this condition will usually be valid.

Consider a two-dimensional computational
domain � and define the lower dimensional
droplet interface as �, which divides � into two
disjoint regions, �− representing the droplet
and �+ representing the exterior fluid. To cal-
culate the net force acting upon the droplet, the
electric potential V (x) must be found by solving
the Poisson equation

∇ · (ε(x)∇V (x)) = 0, (1)

where x = (x, y) are the spatial coordinates,

∇ = ( ∂
∂x

, ∂
∂y

), is the gradient operator, and ε(x)
is the electrical permitivity of the fluid in
each region. Hence, ε (x) is constant on �+

and �− but experiences a jump discontinuity
along �. This jump condition can be specified
as

[εVn ]� = 0, x ∈ �,

where

[εVn ]� = ε+(x)V +
n (x) − ε−(x)V −

n (x). (2)

The superscripts + and – refer to the associated
variables in the regions �±, and Vn = ∇V · N
is the normal derivative of V with N the unit
normal to the interface.

Once the electric potential has been calcu-
lated, the electric field E can be found using the
relationship E = − ∇V . The net effect of an
applied electrical field on a given fluid is repre-
sented by an extra body force on the right hand
side of the Navier–Stokes equations. The body
force density fb in a fluid resulting from the
influence of an electric field can be written as

fb = ρf E − 1
2

E 2∇ε + ∇
(

1
2

E · E
∂ε

∂ρ

)
, (3)

where ρ is the density of the fluid, ρf is the

free electric charge density, and E is the electric
field. This is the Korteweg–Helmholtz electric
force density formulation.30–32 The last term in
this equation, the electrostriction force density
term, can be ignored for incompressible flows
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and so the body force density considered here
is given by

fb = ρf E − 1
2

E 2∇ε. (4)

This force density provides a coupling between
the droplet hydrodynamics and electric field.
The first term of Eq. (4) is attributed to free
charge in the system, while the second term is
the contribution from the polarization of the
medium.

Throughout this paper, DEP forces are con-
sidered only to arise from polarization effects,
and so no free charge is present. There is some
discrepancy in how to represent the DEP force,
but with care consistency can be achieved.33

In contrast to the Korteweg–Helmholtz force
density, the Kelvin force density is given by34

fb = (P · ∇)E = ((ε − ε0)E · ∇)E

= ε∇
(

1
2

E 2
)

− ∇
(

ε0

2
E 2

)
. (5)

Using the vector identity ∇ (φ ψ) = φ ∇ ψ +
ψ ∇ φ, we can write the Korteweg–Helmholtz
force density as

fb = ε∇
(

1
2

E 2
)

− ∇
(

ε

2
E 2

)
. (6)

For an incompressible fluid, the scalar pressure
only appears in the Navier–Stokes equations
in terms of a gradient. The role of pressure is
to ensure that continuity of the vector field is
satisfied, and the pressure takes on whatever
value is needed to guarantee this condition is
always fulfilled. Therefore, any other term that
appears in the Navier–Stokes equations as the
gradient of a scalar can be absorbed into the
pressure.34 This is true of the last term in Eqs.
(5) and (6), and so the effective body force den-
sity is

fb = ε∇
(

1
2

E 2
)

. (7)

For the numerical force calculations in this pa-
per, Eq. (7) is used to determine the force acting
upon the droplet.

Lumped Force Calculations

The total force, per unit area, experienced
by a DEP droplet can be directly derived from
capacitive energy considerations.23,24 Differen-
tiation of the system energy U gives the net
force F in the horizontal direction, per unit
area,

F = dU

dx
.

This allows for the derivation of the net force
acting upon a droplet in certain configurations.
However, to calculate force distributions, numer-
ical methods must be utilized, and this is pre-
sented in the next section.

Let ε− and ε+ be the dielectric constant of
the droplet and the external fluid, respectively.
Consider the system in Figure 1, and let x be
the distance the droplet has extended under
the charged electrode. The energy stored in the
region under the charged electrode where the
droplet is present is given by 1

2 c −V 2, where
c − = ε−

H
x is the capacitance, per unit area, of

this region. The energy stored in the region
under the charged electrode where the droplet
is not present is given by 1

2 c +V 2, where c + =
ε+
H

(L e − x ) is the capacitance, per unit area, of
this second region. Then the net force, per unit
area, is given by

F = dU

dx
= d

dx

(
1
2

c −V 2 + 1
2

c +V 2
)

= 1
2

ε− − ε+

H
V 2. (8)

This force is seen to be the difference in capac-
itive energy between a dielectric-filled channel
and an empty channel. This model is only valid
when the droplet interfaces are well removed
from any fringing fields, where the energy ar-
gument is valid. Note that the droplet height,
H , appears directly in this expression for F ;
this factor gives DEP a different scaling than
EWOD.35,36 The velocity of an EWOD droplet
depends on H/L, where L is the length of the
droplet. In contrast, the velocity of a dielec-
tric droplet depends only on 1/L, making DEP
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Figure 1. Geometry of the computational domain used in the numerical calculations. (In
color in Annals online.)

Figure 2. Domain used in the solution to the one-dimensional Poisson equation.

increasingly effective for very small channel
sizes.

Numerical Method

The numerical method used is a special case
of the method in Ref. 37.

Poisson Equation in One Dimension

Consider the one-dimensional version of
Eq. (1), (εVx)x = 0, where x ∈ [a,b] for sim-
plicity. Dirichlet conditions are specified at
the end points. The interface location is de-
fined by the zero of a level set function (a
signed distance function is used), φ (x). φ

< 0 represents the region �−, and φ > 0
defines �+.

The domain is discretized by a distance �x,
see Figure 2. The solution is computed at the in-
teger node locations. The half integer node lo-
cations are used to define the appropriate value
of ε(x), determined from the average value of
φ at the neighboring integer node locations. In

other words if 1
2 (φi+1 + φi ) ≤ 0, then εi+1/2 =

ε− and vise versa.
Away from the interface, the standard

second-order centered difference can by used,[
εi+1/2

(
Vi+1 − Vi

�x

)

− εi−1/2

(
Vi − Vi+1

�x

)]
1/�x = 0. (9)

Special attention is required for points neigh-
boring the interface. Define

θ = |φi |
|φi+1| + |φi | ,

and let V � represent a fictitious point on the
boundary. Discretizing Eq. (2) at the boundary
condition at V � gives

ε+ Vi+1 − V�

(1 − θ)�x
− ε− V� − Vi

θ�x
= 0. (10)

Solving for V � using Eq. (10) yields

V� = θε+Vi+1 + (1 − θ)ε−Vi

θε+ + (1 − θ)ε− . (11)
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The derivative to the left of the interface can
now be approximated using Eq. (11),

ε
∂V

∂x
≈ ε− V� − Vi

θ�x
= ε̂

Vi+1 − Vi

�x
,

where

ε̂ = ε−ε+

θε+ + (1 − θ)ε− .

The finite difference formula for Vi bordering
the interface to the left can therefore be written
as [

ε̂i

(
Vi+1 − Vi

�x

)

− εi−1/2

(
Vi − Vi−1

�x

)]
1/�x = 0. (12)

Analogously, the finite difference formula for
V i+1 bordering the interface to the right is given
by [

εi+3/2

(
Vi+2 − Vi+1

�x

)

− ε̂

(
Vi+1 − Vi

�x

)]
1/�x = 0. (13)

Poisson Equation in Two Dimensions

Now consider Poisson’s equation given by
Eq. (1) in two dimensions with Dirichlet bound-
ary conditions on the boundary and with in-
terfacial boundary conditions given by Eq. (2).
The treatment of the interface is very similar to
that of the one-dimensional case, but with the
added complexity of a condition on the normal
derivative. Recall that the normal derivative is
given by

Vn = ∇V · N = Vx n 1 + Vy n 2, (14)

and that the tangential derivative is

Vt = ∇V · T = Vx n 2 − Vy n 1, (15)

where N = (n1, n2) and T = (n2, − n1) are the
unit normal and tangent, respectively. Applying
Eqs. (14) and (15) to Eq. (2) gives

[εVn ]� = [εVx ]�n 1 + [εVy ]�n 2 (16)

[εVt ]� = [εVx ]�n 2 − [εVy ]�n 1, (17)

which translates to

[εVx ]� = [εVn ]�n 1 + [εVt ]�n 2

[εVy ]� = [εVn ]�n 2 − [εVt ]�n 1.

If it is assumed that

[εVx ]� = [εVn ]�n 1 (18)

[εVy ]� = [εVn ]�n 2, (19)

then Eq. (16) is satisfied exactly, while Eq. (17)
gives [εVt]� = 0, which is the appropriate con-
dition on the tangential derivative in electro-
statics. Hence, the one-dimensional case can
easily be extended to two dimensions, since
Eqs. (18) and (19) allow the boundary condition
given by Eq. (2) to be written as two separate
conditions, [εVx]� = [εVy]� = 0. Essentially,
each dimension can be considered independent
of the other, allowing for simple discretization
of the problem.

Test Cases

The one-dimensional Poisson equation with
jumps in ε at the interface can be solved ana-
lytically. Consider the problem

(εVx )x = 0, V (0) = 0, V (1) = 1,

ε =

⎧⎪⎨
⎪⎩

3 if x ≤ 1
2

1 if x >
1
2

,

ε− ∂V

∂x
= ε+ ∂V

∂x
at x = 1

2
.

The exact solution is given by

V (x ) =

⎧⎪⎨
⎪⎩

1
2

x , x ≤ 1
2

3
2

x − 1
2
, x >

1
2
.

The method captures the interfacial jump con-
dition to machine precision as seen in Figure 3.
Furthermore, there is no smearing of the jump
in coefficients; it transitions precisely. In con-
trast, if we simply discretize over the interface
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Figure 3. One-dimensional test case with the nu-
merical and exact solutions plotted. (In color in An-
nals online.)

Figure 4. One-dimensional test case with the nu-
merical and exact solutions plotted using a naive
discretization. (In color in Annals online.)

as we would in the rest of the domain, the so-
lution is incorrect, as seen in Figure 4.

A ubiquitous problem in electrostatics is that
of a sphere of dielectric material placed in an
otherwise uniform electric field. It is well known
that the potential inside the dielectric mate-
rial varies linearly with the direction of the
electric field. In Figure 5, a square domain is
used with Dirichlet boundary conditions ap-
plied such that a uniform field exists where
there is no dielectric material present. A nu-

Figure 5. Domain used in the solution to the
two-dimensional Poisson’s equation test problem.
The given Dirichlet conditions are specified at the
boundary.

merical calculation of this setup can be see in
Figure 6.

In Figure 7, the solution to Eq. (1) with
ε− = 2 and ε+ = 1 has been computed using
the boundary conditions specified in Figure 5.
Clearly, the potential field varies linearly inside
the dielectric material, as theory predicts.

Applications

The use of DEP in microfluidics usually in-
volves a droplet placed upon a substrate. Un-
derlying electrodes are then activated in se-
ries giving rise to electric forces that transport
the droplet to the desired location. Figure 1
shows the computational domain used to sim-
ulate DEP. The values used, unless otherwise
specified, are ε− = 3, ε+ = 1, H = 1, Lc = 10,
L = 2, Le = 2, and l = 0.05.

Using this basic setup, the net force acting
upon the droplet can be calculated by finding
the electric potential and the associated electric
field, and then integrating Eq. (7) along the
entire channel (including the external fluid, as it
also experiences electric forces). This basic DEP
setup has been explored in detail previously by
the authors.29
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Figure 6. Example electric potential calculation with the electrodes only on the top of the
channel. (In color in Annals online.)

Figure 7. Two-dimensional test case with the nu-
merical and exact solutions shown. (In color in Annals
online.)

An alternative setup for DEP would be hav-
ing patterned electrodes on both sides of the
channel. Figure 8 shows an example of an elec-
tric potential calculation in such a setup, and
Figure 9 compares such a setup to that of a sin-
gle electrode. The net force peak experienced
by the droplet is roughly twice that of a single
electrode. However, the net force of the droplet
in the double electrode setup when the droplet
is straddled underneath the electrode, and with
the droplet edges well away from the electrode

Figure 8. Example electric potential calculation with the electrodes on both the top and
bottom of the channel. (In color in Annals online.)

Figure 9. Net force experienced by a droplet
with electrodes on both sides of the channel. (In color
in Annals online.)

edges, tends to zero. Such a setup may be useful
if a strong forcing impulse is desired.

In a practical device, a droplet needs to be
transported farther than one electrode width.
This is done by activating electrodes in series as
the droplet moves along the channel. Figure 10
shows the net force experienced by a droplet in
such a configuration. As the droplet moves near
the edge of a new electrode, that electrode is ac-
tivated. To increase the net force experienced
by a droplet while it is moving, thinner elec-
trodes would need to be used to ensure that
the next electrode was active while the droplet
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Figure 10. Net force experienced by a droplet from electrodes activated in series as the
droplet moves through the channel. (In color in Annals online.)

was still under the influence of the peak in net
force.

Conclusions

In this paper, DEP, a method for droplet
transport in digital microfluidics for an insulat-
ing fluid has been investigated. Droplet trans-
port is achieved by sweeping a voltage along a
microchannel ahead of the droplet. A review
of the Korteweg–Helmholtz and Kelvin force
density formulations has been given as well as
how these force densities apply to DEP.

Investigation of the force distribution in DEP
shows how the force density is spread through-
out the bulk. A numerical method was demon-
strated for numerically calculating the force dis-
tribution for DEP. When a droplet is under
DEP actuation, small electrode sizes in com-
parison to droplet length are preferable, as they
keep the net force pointing in the same di-
rection as the droplet moves under the elec-
trode, avoiding any possible stalling of the
droplet in the channel. Several electrode con-
figurations were investigated for application
purposes. Using pattern electrodes on both
sides of the channel can lead to a greater peak
in force, but with the caveat that net force tends
to zero when the droplet interface is not near
the electrode edges. The continuous transport
of a droplet using pattern electrodes has also
been demonstrated.

Acknowledgments

The authors would like to acknowledge fund-
ing from the Air Force Office of Scientific
Research (AFOSR) and the National Science

Foundation (NSF). The authors benefited from
discussions with Mr. E. Baird.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Pollack, M., R. Fair & A. Shenderov. 2000.
Electrowetting-based actuation of liquid droplets for
microfluidic applications. Appl. Phys. Lett. 77: 1725–
1726.

2. Pollack, M., A. Shenderov & R. Fair. 2002.
Electrowetting-based actuation of droplets for inte-
grated microfluidics. Lab Chip 2: 96–101.

3. Cooney, C., C.-Y. Chen, A. Nadim & J. Sterling.
2006. Electrowetting droplet microfluidics on a single
planar surface. Microfluid Nanofluid 2: 435–446.

4. Cho, S., H. Moon & C. Kim. 2003. Creating, trans-
porting, cutting, and merging liquid droplets by
electrowetting-based actuation for digital microflu-
idic circuits. IEEE J. MEMS 12: 70–80.

5. Lee, J., H. Moon, J. Fowler, et al. 2001. Addressable
micro liquid handling by electric control of surface
tension. In Proc. IEEE Int. Conf. MEMS, pp. 499–502.

6. Wang, K. & T. Jones. 2005. Electrowetting dynamics
of microfluidic actuation. Langmuir 21: 4211–4217.

7. Shapiro, B., H. Moon, R. Garrell & C. Kim. 2003.
Equilibrium behavior of sessile drops under surface
tension, applied external fields, and material varia-
tions. J. Appl. Phys. 93: 5794–5811.

8. Charkrabarty, K. & J. Zeng. 2006. Design Automa-

tion Methods and Tools for Microfluidics-Based Biochips.
Springer. Dordrecht, the Netherlands.

9. Mohseni, K. 2005. Effective cooling of integrated
circuits using liquid alloy electrowetting. In Proceedings

of the Semiconductor Thermal Measurement, Modeling, and

Management Symposium (SEMI-Therm), IEEE.
10. Mohseni, K. & E. Baird. 2007. Digitized heat transfer

using electrowetting on dielectric. Nanoscale Microscale

Thermophys. Eng. 11: 99–108.



Young & Mohseni: Force Characterization of DEP 471

11. Baird, E. & K. Mohseni. 2007. Digitized heat trans-
fer: a new paradigm for thermal management of com-
pact micro-systems. IEEE Transactions on Compo-
nents and Packaging Technologies.

12. Mohseni, K. & A. Dolatabadi. 2006. An electrowet-
ting microvalve: numerical simulation. Ann. N. Y. Acad.

Sci. 1077: 415–425.
13. Dolatabadi, A., K. Mohseni & A. Arzpeyma. 2006.

Behaviour of a moving droplet under electrowetting
actuation: Numerical simulation. Can. J. Chem. Eng.

84: 17–21.
14. Chang, Y.-J., K. Mohseni & V. Bright. 2007. Fabrica-

tion of tapered SU-8 structure and effect of sidewall
angle for a variable focus microlens using EWOD.
Sens. Actuat. A 136: 546–553.

15. Cho, S., S. Fan, H. Moon & C. Kim. 2002. To-
wards digital microfluidic circuits: creating, trans-
porting, cutting, and merging liquid droplets by
electrowetting-based actuation. In Technical Digest.

MEMS, Proc. 15th IEEE Int. Conf. MEMS, pp. 32–35.
16. Moon, H., S. Cho, R. Garrell & C. Kim. 2002. Low

voltage electrowetting-on-dielectric. J. Appl. Phys. 92:
4080–4087.

17. Fair, R., V. Srinivasan, H. Ren, et al. 2003.
Electrowetting-based on-chip sample processing for
integrated microfluidics. In IEEE Inter. electron devices

meeting (IEDM).
18. Gascoyne, P., J. Vykoukal, J. Schwartz, et al. 2004.

Dielectrophoresis-based programmable fluidic pro-
cessors. Lab Chip 4: 299–309.

19. Deval, J., P. Tabeling & C. Ho. 2002. A dielec-
trophoretic chaotic mixer. In Technical Digest (ISBN-0-

7803-7187-9), of the 15th IEEE International Conference

on MEMS (MEMS 2002), pp. 36–39.
20. Jones, T. 2002. On the relationship of dielectrophore-

sis and electrowetting. Langmuir 18: 4437–4443.
21. Jones, T., J. Fowler, Y. Chang & C. Kim. 2003.

Frequency-based relationship of electrowetting and
dielectrophoretic liquid microactuation. Langmuir 19:
7646–7651.

22. Jones, T. & K. Wang. 2004. Frequency-dependent
electromechanics of aqueous liquids: electrowetting
and dielectrophoresis. Langmuir 20: 2813–2818.

23. Jackson, J. 1998. Classical Electrodynamics. Wiley &
Sons. New York.

24. Landau, L., E. Lifshitz & L. Pitaevskii. 1984. Electro-

dynamics of Continuous Media,Vol. 8, 2nd ed. Pergamon
Press. New York.

25. Saville, D. 1997. Electrohydrodynamics: the Taylor-
Melcher leaky-dielectric model. Annu. Rev. Fluid Mech.

29: 27–64.
26. Singh, P. & N. Aubry. 2007. Transport and

deformation of droplets in a microdevice us-
ing dielectrophoresis. Electrophoresis 28: 644–
657.

27. Walker, S. & B. Shapiro. 2006. Modeling the fluid
dynamics of electrowetting on dielectric (EWOD).
IEEE J. MEMS 15: 986–1000.

28. Baird, E., P. Young & K. Mohseni. 2007. Electro-
static force calculation for an ewod-actuated droplet.
Microfluid Nanofluid 3: 635–644.

29. Young, P. & K. Mohseni. 2008. Calculation of DEP
and EWOD forces for application in digital microflu-
idics. ASME J. Fluids Eng. 130(8): 2008 (9 pp).

30. Stratton, J. 1941. Electromagnetic Theory. McGraw-Hill
Book Company. New York.

31. Penfield, P. & H. Haus. 1967. Electrodynamics of Moving

Media. MIT Press. Cambridge, MA.
32. Woodson, H. & J. Melcher. 1968. Electromechanical

Dynamics, Part I: Discrete Systems. John Wiley & Sons.
New York.

33. Bobbio, S. 2000. Electrodynamics of Materials: Forces,

Stresses, and Energies in Solids and Fluids. Academic Press
New York.

34. Melcher, J. 1981. Continuum Mechanics. MIT Press.
Cambridge, MA.

35. Baird, E., P. Young & K. Mohseni. 2007. Electro-
static force calculation for an ewod-actuated droplet.
Microfluid Nanofluid 3: 635–644.

36. Mohseni, K. & E. Baird. 2007. A unified velocity
model for digital microfluidics. Nanoscale Microscale

Thermophys. Eng. 11: 109–120.
37. Liu, X., R. Fedkiw & M. Kang. 2000. A bound-

ary condition capturing method for poisson’s equa-
tion on irregular domains. J. Comput. Phys. 160: 151–
178.


