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many people since then, including Chetayev and Merkin, although the name was
coined only recently (see [1]). However, the extension to the infinite dimensional
case is much more subtle and this is the main point of the poster. Besides detailed
analytical estimates for the PDE’s involved, the tools that were useful in carrying
this out for the baroclinic instability include Arnold’s nonlinear stability method
as well as the work of Yudovich on the linearized stability instability problem (see
also the extended abstract of Friedlander and Shvydkoy).
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Isotropic LANS-α Equations for Anisotropic Turbulent Flow

Simulations

Kamran Mohseni

Turbulent flows play an important role in many areas of atmospheric and oceanic
flows as well as engineering fluid mechanics. Accurate simulation of a turbu-
lent flow requires that the energetics of the large scale energy containing eddies,
dissipative small scales, and inter-scale interactions to be accounted for. While
the direct numerical simulation (DNS) of most geophysical flows seems unlikely



26 Oberwolfach Report 34/2005

in near future, turbulence modeling could provide qualitative and in some cases
quantitative measures for many applications. Large Eddy Simulations (LES) and
the Reynolds Averaged Navier-Stokes Equations (RANS) are among the numeri-
cal techniques to reduce the computational intensity of turbulent calculations. In
LES, the dynamics of the large turbulence length scales are simulated accurately
and the small scales are modeled. On the other hand, RANS models are obtained
by time averaging the Navier-Stokes equations. In this case most of the unsteadi-
ness is averaged out. Consequently, the time mean quantities are calculated while
the faster scale dynamics are modeled.

More recently, Holm, Marsden and their coworkers [4] introduced a Lagrangian
averaging technique for the mean motion of ideal incompressible flows. Unlike the
traditional averaging or filtering approach used for both RANS and LES, where the
Navier-Stokes equations are averaged or spatially filtered, the Lagrangian averag-
ing approach is based on averaging at the level of the variational principle. In the
isotropic Lagrangian Averaged Euler-α (LAE-α) equations, fluctuations smaller
than a specified scale α are averaged at the level of the flow maps. Mean fluid
dynamics are derived by applying an averaging procedure to the action principle
of the Euler equations. Both the Euler and the Navier-Stokes equations can be
derived in this manner. The usual Reynolds Averaged Navier-Stokes (RANS) or
LES equations are then obtained through the subsequent application of either a
temporal or spatial average. The critical difference with the Lagrangian averag-
ing procedure is that the Lagrangian (kinetic energy minus potential energy) is
averaged prior to the application of Hamilton principle and a closure assumption

is applied at this stage. This procedure results in either the Lagrangian averaged
Euler Equations (LAE-α) or the Lagrangian averaged Navier-Stokes Equations
(LANS-α), depending on whether or not a random walk component is added in
order to produce a true molecular diffusion term. Since the Hamilton principle is
applied after the Lagrangian averaging is performed, all the geometrical properties
(e.g., invariants) of the inviscid dynamics are retained even in the presence of the
model terms which arise from the closure assumption [4]. For instance, LAE equa-
tions posses a Kelvin circulation theorem. Thus it is potentially possible to model
the transfer of energy to the unresolved scales without an incorrect attenuation of
quantities such as resolved circulation. This is an important distinction for many
engineering and geophysical flows where the accurate prediction of circulation is
highly desirable.

However, most geophysical flows of interest are often anisotropic. For example,
due to rapid damping of turbulent fluctuations in the vicinity of a wall, the appli-
cation of the isotropic LANS-α equations with a constant α is not appropriate for
long term calculations. In order to capture the correct behavior in such systems
the parameter α must be spatially or/and temporally varied in the direction of
anisotropy [2], i.e., wall normal direction. There has been some attempt (with lim-
ited success) in order to remedy this problem. There are at least two approaches
to anisotropy in the LANS-α equations:



Dynamical System Methods in Fluid Dynamics 27

(i) To derive a set of anisotropic LANS-α equations. See alternative deriva-
tions in [3, 5].

(ii) Use the isotropic LANS-α equations, but with a variable α to compensate
for the anisotropy.

At this point much more work must be done on the anisotropic LANS-α equations
before they can be applied to practical problems. The second approach listed
above is what will be explored in this study.

In this talk a dynamic procedure for the Lagrangian Averaged Navier-Stokes-α
(LANS-α) equations is developed where the variation in the parameter α in the
direction of anisotropy is determined in a self-consistent way from data contained in
the simulation itself. The dynamic model is initially tested in forced and decaying
isotropic turbulent flows where α is constant in space but it is allowed to vary
in time. In order to evaluate the applicability of the dynamic LANS-α model in
anisotropic turbulence, a priori test of the dynamic LANS-α in channel flows is
performed at various Taylor Reynolds numbers between 180 and 550 based on the
wall friction velocity to find the variation of α in the wall-normal direction. It
is found that in the wall region the parameter α rapidly increases away from the
wall and saturates to an almost constant value in the outer region. An appropriate
scaling for α is also identified. As a result, the isotropic LANS-α equations can
now be easily used in anisotropic wall bounded flows with a universally damped
α. Current numerical experiments exhibit a promising application of the isotropic
LANS-α model for anisotropic flows in complex geometries. For more references
and details see Zhao and Mohseni [7, 6] and Bhat et.al., [1].

References

[1] H. S. Bhat, R. C. Fetecau, J. E. Marsden, K. Mohseni, and M. West. Lagrangian averaging
for compressible fluids. SIAM Journal on Multiscale Modeling and Simulation, 3(4):818–837,
2005.

[2] S.Y. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, and S. Wynne. Camassa-Holm equa-
tions as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett., 81:5338–5341,
1998.

[3] D.D. Holm. Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion.
Physica D, 133:215–269, 1999.

[4] D.D. Holm, J.E. Marsden, and T.S. Ratiu. Euler-Poincaré models of ideal fluids with non-
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