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A B S T R A C T

A multi-vehicle flocking and guidance control scheme is proposed for small autonomous underwater vehicles in
the presence of strong ocean flows that exceed vehicles’ actuation capabilities. The flocking problem and flock
guidance problem are simultaneously addressed by enduing fluid properties to the vehicle swarm. This control
scheme generates cohesive flocking behavior with inherent inter-vehicle collision avoidance and velocity
consensus. The vehicle flock is guided along a fuel-optimal trajectory calculated for an individual vehicle based
on background flow predictions, allowing us to compute a single optimal trajectory while still achieving robust
flocking performance and near optimality for all vehicles. Resultant vehicle trajectories are nearly fuel-optimal
when the spatial variation of background flow velocities across the flock is small. Dimensional analysis uncovers
two important independent parameters dictating the balance between swarm compressibility and the degree of
velocity consensus. The efficiency of the presented method is demonstrated in simulations with two synthetic
background flow fields resembling realistic ocean flow patterns, and a flow field reconstructed based on ocean
model data. A quantitative comparison with a generic artificial potential based control scheme shows that,
owing to the inherent velocity consensus effect, the proposed method results in better flocking behavior and less
actuation energy consumption.

1. Introduction

The emergent behaviors of schooling, swarming, and flocking, often
observed as the collective behavior of swarms of biological organisms
including schooling fish (Cullen et al., 1965; Morrow, 1948) or flocking
birds (Major and Dill, 1978), have long been a topic of research. A
considerable amount of effort has been made on identifying rules
governing swarm behavior (Reynolds, 1987), analyzing the stability
and convergence of resultant flocking motion (Gazi and Passino, 2003;
Toner and Tu, 1998), and applying such findings to control problems in
robotics (Kelley and Ouellette, 2013; Rubenstein et al., 2014; Shang
and Bouffanais, 2014).

At the most fundamental level, flocking requires three key ele-
ments: separation, cohesion, and alignment (Reynolds, 1987). The
first element, separation, involves maintaining a necessary spacing
between adjacent agents to avoid inter-agent collisions. The second
element, cohesion, involves agents staying in some neighborhood of
each other, or, alternatively, staying close to the centroid of the flock.
The final element, alignment, involves the agents matching the
velocities of their neighbors to give rise to directional flock movements.

These qualitative flocking rules can be satisfied by a variety of
approaches, and many additional considerations can be added includ-
ing individual agent motion and vision constraints. Specific implemen-
tations of flocking algorithms have also been analyzed to show
convergence and stability of the resulting flocks (Jadbabaie et al.,
2003; Olfati-Saber, 2006).

Robot flock guidance is of great importance to many multi-robot
applications such as vehicle fleet transportation (Çelikkanat and Şahin,
2010). Compared with the single-robot counterpart, multi-robot gui-
dance adds more complexity, which is mainly due to the potential
interactions among robots, as well as between robots and the working
environment. The situation is even worse when there exist dominating
environmental forces that exceed robots’ actuation capabilities.

Autonomous robots, especially micro/miniature aerial vehicles
(MAVs) and small-scale autonomous underwater vehicles (AUVs), are
usually small in size and weight with limited on-board actuation,
power, memory, communication, and processing capabilities, in order
to achieve low costs and fast turnaround. These platforms are therefore
susceptible to strong gusts or ocean currents, respectively, and they are
not capable enough to move against the background flow in order to
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follow arbitrarily designated trajectories. There are even situations
where certain regions of the domain may not be accessible due to high-
speed background flows. Conventionally, for large aircraft or marine
vessels, the impact of background flows on vehicle motion is simply
considered as small disturbances, and the vehicles of interest are
assumed to have sufficient actuation capabilities to “fight” against the
flows (Fossen and Sagatun, 1991). However, when the velocity
magnitudes of the background flows are comparable to or larger than
vehicles’ maximum speeds, it is essential that the path planning
method exploits background flow knowledge whenever possible.

For a single vehicle, such an optimization problem may be
approximately solved relatively easily. Assuming that a good forecast
of the background velocity field is available, many techniques exist that
are capable of generating an optimal trajectory between two points
(Inanc et al., 2005; Kim and Ura, 2003; Kruger et al., 2007; Petres
et al., 2007; Rhoads et al., 2010; Witt and Dunbabin, 2008). However,
as the number of vehicles increases, it becomes computationally
impractical to calculate the optimal trajectories for all vehicles and
avoid inter-vehicle collisions at the same time. In addition, when multi-
vehicle flocking is considered, the problem quickly becomes intractable
due to potential interactions among vehicles and the constraints
required to maintain safe inter-vehicle spacings to avoid collisions.
Multiple existing techniques have been presented for flock control
related problems, the most popular of which include flocking, forma-
tion control, and hierarchical cooperation control (Barca and
Sekercioglu, 2013; Brambilla et al., 2013; Ren et al., 2005). With few
exceptions (DeVries and Paley, 2012; Lipinski and Mohseni, 2011),
these techniques do not account for large background flow fields.
Therefore, an ideal multi-vehicle flocking and flock guidance algorithm
should allow us to compute just a single optimal trajectory while still
achieving robust flocking performance and near optimality for all
vehicles.

In this paper, a multi-vehicle control method is proposed that
combines both vehicle flocking control and flock guidance. We focus on
the realization of multi-AUV collaborative control and guidance in the
presence of strong ocean currents, during which the swarm cohesion is
maintained. The flock guidance algorithm guarantees that actuation
fuel consumption of the entire flock is nearly optimal, which is critical
for AUV applications. This is achieved through utilizing knowledge of
the ocean current velocity field, which may be estimated by ocean
general circulation models (OGCMs) such as HYbrid Coordinate Ocean
Model (HYCOM) (Chassignet et al., 2009) and Regional Ocean
Modeling System (ROMS) (Shchepetkin and McWilliams, 2005). This
distributed flock control algorithm requires solely local measurement
and communication in a confined neighborhood of each agent to
achieve fluid-like flocking motion. As a result, requirements for
cohesion, inter-vehicle collision avoidance, and alignment are naturally
satisfied.

In our proposed technique, a fuel-optimal trajectory is computed
for a single vehicle within a domain with strong and spatiotemporally
changing background flows. Given such a trajectory, a swarm of
vehicles may be guided along the trajectory with the center of the
swarm approximately following the truly optimal trajectory. Multi-
vehicle path following in changing background flow fields requires
special treatment due to the dependency of swarm dynamics on ocean
flow dynamics. This is addressed by making the vehicle swarm move
and deform like a fluid. It provides us with an analogy that guides our
control and understanding of the vehicle flock behavior based on our
physical intuition:

– fluid compressibility ⇔ flock compressibility;
– fluid viscosity ⇔ velocity consensus.

This vehicle flock control and guidance method results in nearly fuel-
optimal trajectories for each vehicle in the swarm given that the background
flow velocity gradients experienced by the swarm are small.

We present detailed methodologies and theories for the fluid-based,
multi-vehicle control and guidance scheme (Lipinski and Mohseni,
2013). The maximum and average energy usage per vehicle are
analyzed through extensive simulations to verify the feasibility of the
proposed method in real-world applications. We also derive relation-
ships for how the total fuel cost scales with the flock size and provide
guidelines for parameter selection given certain desired performance.
Dimensional analysis over the multi-vehicle control law discovers two
important independent variables that dictate the resultant flocking
behavior. To demonstrate the importance of swarm viscosity to the
flocking performance, the proposed control scheme is compared
quantitatively with an artificial potential based control scheme.
Owing to the inherent velocity consensus effect, our multi-vehicle
cooperation and guidance method performs better in terms of both
flocking performance and energy consumption.

The rest of this paper is organized as follows. In Section 2, we discuss
some related works on multi-vehicle control and the recent progress in
underwater vehicle studies in strong currents. Section 3 formulates the
problem and briefly includes the fundamental preliminaries on multi-
vehicle control using fluid properties. The stability of this control scheme is
then discussed, followed by a dimensional analysis of our control algorithm.
The optimal trajectory generating method is outlined in Section 4 with a
theoretical analysis of the sub-optimality of vehicles’ actuation costs.
Section 5 presents validation results of the proposed control scheme in
both artificial background flow fields resembling real ocean flows and a
simulated flow field of the Gulf of Mexico reconstructed from ocean current
model data sets. A quantitative comparison between our approach and the
generic, potential function based approach is presented in Section 6.
Finally, we conclude the paper in Section 7.

2. Related works

Compared with the vast majority of swarm robotic applications,
underwater robot flocking is a relatively new research topic.
Collaboration among multiple AUVs has proven beneficial for improv-
ing task efficiency as well as sensing coverage. Unlike most ground
robot flocking applications, the unique nature of the chaotic under-
water environment imposes numerous constraints on the development
of flocking strategies for underwater platforms. The presence of
turbulence in ocean flows requires extra care while analyzing vehicle
dynamics such that these environmental impacts are properly con-
sidered (Fossen, 2011; Thomasson and Woolsey, 2013).

To this end, some endeavors have been made to address a wide
range of practical problems using collaborating underwater robots
(Paley et al., 2008; Zhang et al., 2007). For instance, Leonard et al.
(2007) investigated the path-planning problem for an underwater
glider fleet in the presence of ocean currents. Optimal sampling
performance was achieved by navigating along paths minimizing the
model estimation error of the sampled field. As another example, Paley
(2007) discussed the cooperative control of an underwater vehicle fleet
under the influence of a steady, uniform flow. A feedback control law
was designed to maintain proper spacings between two gliders on a
circular track. Caruso et al. (2008) analyzed the impact of ocean flows
on the mobility of an underwater sensor swarm in terms of connectiv-
ity, localization performance, and coverage. It was shown that, in a
meandering jet, a multiple-deployment process improves the connec-
tivity lifetime of the sensor network. More recently, Mallory et al.
(2013) studied the allocation of a swarm of homogeneous mobile
sensors in gyre flows through tracking the Lagrangian coherent
structure (LCS). Based on the knowledge of the LCS map, segmented
by maximum finite-time Lyapunov exponent (FTLE) ridges, agent-level
control laws were designed to determine whether a given agent should
stay or leave the current segment in an auction-actuation fashion.

On-board power constraint is a major limitation of AUVs in long-term
applications such as ocean monitoring and data collection. Therefore, it is
crucial that the significance of ocean currents is properly recognized and
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utilized instead of being treated as small disturbances. To this end, several
vehicle guidance algorithms have been proposed to remedy these environ-
mental impacts on the motions of small-scale AUVs (Lermusiaux et al.,
2016; Lipinski and Mohseni, 2011). Inanc et al. (2005) proposed an
optimal trajectory generation strategy for underwater gliders in ocean flows.
They utilized ocean flow forecasts in the context of LCS to optimize the fleet
travel time. Lolla et al. (2012) also proposed a time-optimal path planning
strategy using level set methods that evolve a waterfront, formed by a set of
particles representing multiple realizations of a vehicle, from the starting
point to the goal location. The optimal path was obtained through
backtracking the particle arriving at the target location. Each vehicle's path
was computed individually. In Lipinski and Mohseni (2011), an optimal
guidance algorithm was proposed for a vehicle fleet in order to minimize
the actuation energy through utilizing the background flow whenever
possible.

Meanwhile, the past few decades have witnessed tremendous advance
in the field of swarm robotics and the collective motion of autonomous
robots. Multiple recent reviews can be found on several related topics such
as the collective motion observed in nature and the corresponding robotic
realizations (Vicsek and Zafeiris, 2012), methodologies and theories in
swarm robotics (Barca and Sekercioglu, 2013; Brambilla et al., 2013),
distributed multi-robot collaboration and decision making (Cao et al., 2013;
Sabattini et al., 2013), etc. Among the existing swarm control methods, we
are particularly interested in those that encode fundamental physical laws.
Such methods usually introduce extra controllability to the flock. As well,
our physical intuition can help us in understanding the resultant flocking
behavior. Hsieh and Kumar (2006) presented a pattern generation strategy
through controlling a swarm of ground robots with a virtual interacting
force law and a potential function that determines the final shape of the
swarm. Inspired by their work, Pimenta et al. (2008) proposed a swarm
control strategy using smoothed particle hydrodynamics (SPH) instead.
They conducted a series of experiments with seven ground robots in an
environment with static obstacles. This work was then extended to address
moving obstacles (Pimenta et al., 2013). Shaw and Mohseni (2011) also
presented an SPH-based, cooperative control method for multiple un-
manned aerial vehicles (UAVs). The proposed algorithm was tested in a
series of experiments using low-cost, Delta-wing UAVs to help with the
wireless communication characterization.

Unlike ground robot applications, underwater vehicles’ flockingmotions
are closely coupled with the background flow dynamics. Instead of merely
considering interactions among flock agents using abstraction methods, we
endow generic fluid properties to the AUV flock. To the best of the authors’
knowledge, modeling and controlling swarms of underwater vehicles as
fluids interacting with a background flow are novel to the field. The
resulting motions of the vehicle swarms share similar characteristics with
the surrounding fluid flows, making our approach more natural than other
abstraction-based, multi-vehicle control schemes in dealing with swarm
movements in a fluid background. When handling the realization of the
cooperative control in this study, we focus on the fundamental physical
interpretations of the resultant flocking properties. We emphasize the
importance of the macroscopic, fluid-like characteristics of an emergent
vehicle flock. These characteristics are determined by two non-dimensional
numbers widely used in fluid characterizations: the Mach number M and
the Reynolds number Re, which are less recognized in the robotics
community. To elaborate their significance to a broader audience, we
explain the physical intuitions behind both of the non-dimensional
numbers, and relate them to corresponding emergent properties of a
vehicle flock. In addition, a non-dimensionalized formulation of the
cooperative control law is presented for the first time to guide the
parameter selection in the design of a multi-vehicle control algorithm that
leads to a balance between flock morphology1 and velocity consensus.

3. Multi-vehicle control and flock guidance

Multi-agent flocking control using physical abstraction is commonly
achieved through applying artificial potential functions between ad-
jacent agents to mimic interactions between atoms or molecules. The
Lennard-Jones potential and the gravitational potential are usually
adopted due to their simple mathematical representations and satis-
factory performance in many applications (Spears et al., 2005; Spears
and Spears, 2012), most of which are ground robot applications. When
large environmental forces affect agents’ motions, a more sophisticated
strategy is desired to increase flocking robustness.

Our multi-vehicle cooperation and flock guidance algorithm is built
upon the SPH framework. The SPH method is a Lagrangian, mesh-free
discretization of the Navier-Stokes equations that govern fluid motions.
It was originally introduced for modeling astrophysical phenomena,
and then extended to continuous solid and fluid mechanics (Gingold
and Monaghan, 1977; Lucy, 1977). In a cooperative vehicle control
context, each vehicle can be treated as an individual fluid particle with
imaginary physical properties such as size, mass, and viscosity. Vehicle
interactions were handled in a low-level scheme where imaginary inter-
vehicle forces are considered. A high-level control scheme dictates the
general swarm behavior through adjusting the emergent, macroscopic
fluid properties.

To the best of our knowledge, the first implementation of SPH in
robotic swarm control was reported by Perkinson and Shafai (2005),
who studied a sensor coverage problem with obstacle avoidance using
SPH to generate local control for a robot swarm. Later, Pac et al. (2007)
developed a two-level robot swarm control scheme using SPH to
accomplish missions including robot swarm deployment, dispatching,
and flocking. Many other previous works have also used SPH in a
cooperative control context for different applications with generally
good results (Huhn and Mohseni, 2009; Lipinski and Mohseni, 2010;
Pimenta et al., 2008, 2013; Shaw and Mohseni, 2011; Zhao et al.,
2011). In many ways, SPH control is similar to control using artificial
potential fields. However, since SPH provides a complete description of
fluid dynamics, it includes more properties that are beneficial to multi-
vehicle control problems. For instance, SPH includes viscous forces
that provide velocity consensus effect, which would need to be added to
other artificial potential based control schemes. Additionally, with
similar force-distance potentials, the density variable in the SPH-based
control scheme provides more consistent inter-vehicle spacing control
than artificial potential based control schemes.

We favor the abstraction method based on SPH mainly due to three
reasons. Firstly, SPH is a complete description of a continuous fluid,
the same medium that vehicles operate in. It inherently comprises both
inter-agent attraction and repulsion as the Lennard-Jones potential
and the gravitational potential. In addition, SPH introduces the viscous
effect in a fluid into vehicle flocking, which results in desirable inter-
vehicle velocity consensus. Most importantly, as a successful method
for computational fluid dynamics, SPH can be used to compute the
evolution of the background flow. Applying the same method in multi-
vehicle control is beneficial to future studies on the coupling between
flow dynamics and vehicle flock dynamics.

In this section, we include some SPH preliminaries for the
convenience of the reader. The selection of appropriate parameters
based on the scales of the problem is also discussed. The stability of the
resultant vehicle control law is analyzed using Lyapunov stability
theory. Dimensional analysis is performed to uncover the fundamental
relationship between flock performance and two key independent
variables, providing a convenient parameter selection guideline.

The basic concept of this approach is to have the vehicle swarm
behave like a continuous fluid. Fluid properties are applied through
particle discretization using a smoothing kernel, which governs the
interactions among adjacent agents. The equations of agents’ motion
are determined by conservation laws of mass and momentum. These
conservation laws act to prevent collisions between agents since two

1 By morphology, we mean that the shape of the flock and the topology of inter-agent
communication are subject to changes.
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fluid particles cannot occupy the same location in space at the same
time. Obstacle avoidance is also naturally embedded relying on the fact
that fluids cannot penetrate solid obstacles. However, we only focus on
inter-vehicle collision avoidance in this paper since collisions with
obstacles are much less likely than inter-vehicle collisions in long-
distance vehicle swarm guidance in open ocean. Interested readers are
referred to Shaw and Mohseni (2011) and Pimenta et al. (2013) for
obstacle avoidance using SPH-based approaches. When a compactly
supported kernel function is chosen, the range of agent interactions is
limited such that the resultant control scheme can be implemented as a
distributed computation that requires little processing power. From a
flock control perspective, this enables a distributed control scheme
where only local sensing and communication are required, which is
critical to underwater applications where sensing and communication
are usually constrained.

It is helpful to first give a high-level overview of the basic SPH
equations of fluid motion and discuss how they can be applied to
cooperative control problems. For additional details, the reader is
referred to Liu and Liu (2003) or Monaghan (1992, 2005, 2012) and
the references therein.

3.1. Preliminaries on fluid dynamics and its discretization

The SPH discretization relies on a smoothing kernel, through which
the fluid properties are applied. The kernel should be normalized and,
ideally, compactly supported for computational efficiency. Therefore,
the states of each particle only depend on information in the close
vicinity. This motivates us to choose spline-based kernel functions over
others, including Gaussian kernel functions that do not have compact
support, and will encumber the scalability of the control algorithm. The
following two different kernels are used in this study:

⎧⎨⎩W r h C
h

s s s
s

( , ) = − 4 + 4 if ≤ 2
0 if > 2ij ij

ij
d1

→ 1 2

(1)

and

⎧
⎨⎪
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W r h C
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s s s
s s
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d2

→ 2
2 3

3

(2)

Here index i and j denote particle identities, d is the dimension of the
problem, and hij is the smoothing width, taken here to be h hmax( , )i j if
two particles have different smoothing widths. The function variable s
is defined as s r h= ∥ → ∥/ij ij with r r r→ = → − →

ij i j being the relative position
vector from particle i to particle j. Coefficients C1 and C2 are normal-
ization constants such that ∫ ∫W dx W dx→ = → = 11 2 . In a two-dimen-
sional case (d = 2), these values can be calculated as C π= 3/(8 )1 and
C π= 5/(14 )2 . In the case with only a single group of vehicles, all
vehicles can be assigned with the same h value for simplification. And
the value of h depends on actual sensor and communication ranges. We
will discuss the usage of virtual particles for flock guidance, which
typically have a larger smoothing length. The kernel functions are
plotted in Fig. 1. Since both kernels are compactly supported, the
ranges of agent interactions are limited. This enhances computational
efficiency (O n( ) for n particles) and implementation simplicity.

Both W1 and W2 are kernel functions with compact support. The
major difference between them is that W2 has a zero gradient at the
origin. Kernel W1 is a second-order spline kernel function that is
suitable for vehicle-vehicle interactions. It creates large repelling forces
between agents that are too close to each other to provide robust inter-
vehicle collision avoidance. Kernel W2, on the other hand, is a cubic
spline kernel function that will be used for flock guidance. It has zero
gradient at the origin, making it suitable for a virtual attracting vehicle.
Since the guidance forces are proportional to the kernel gradient, this
kernel prevents large guidance oscillations for nearby vehicles.

A complete description of fluid dynamics includes the conservation

of mass, momentum, and energy, as well as an equation of state that
relates density, temperature, and pressure. SPH discretizes continuous
fluid properties into individual particles through aforementioned
kernel functions. Such an approximation scheme is known to have
second-order accuracy or h2 accuracy (Liu and Liu, 2003; Monaghan,
1992). Under such a discretization scheme, the particle density
equation and the conservation of momentum equation can be derived
from the Navier-Stokes equations as

∑ρ W r h m= (→, ) ,i
j

ij j
(3)
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i j
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for density ρ, mass m, pressure P, and viscosity coefficient μ. The
velocity vector is the time derivative of the position vector, v r→ = →̇

i i .
Operator ∇i represents the gradient with respect to the coordinates of
particle i, and the relative velocity between two different particles is
v v v→ = → − →
ij i j . It is worth mentioning that the conservation of energy is
typically also required for a complete fluid system description. We did
not include it here since it can be decoupled from the conservation of
momentum and does not play a role in our flock control scheme where
heat conduction is not considered. Interested readers are referred to
Monaghan (1992) or Liu and Liu (2003) for a complete derivation.

The first term on the right-hand side of (4) represents the pressure
force per unit mass resulting from the pressure and density gradients.
It acts as an attractive or repulsive force between interacting agents.
The second term is the artificial viscosity that represents the shear
stress in flows. Unlike the artificial viscosity adopted by Pimenta et al.
(2013), which was from Monaghan (1992) and first introduced by Benz
(1990) to permit the modeling of strong shocks, we employ a more
realistic form used by Morris et al. (1997). This form has proven more
accurate and appropriate for low flow velocities that are considered in
this work.

By applying a kernel approximation scheme, the discretized pres-
sure Pi is computed through an equation of state suggested by
Monaghan (1994)

⎡
⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥P B

ρ
ρ= − 1 ,i

i
γ

0 (5)

where B is the bulk modulus representing the compressibility of the
fluid, and γ is a constant depending on the type of fluid being simulated
(usually γ = 7 for water). The bulk modulus is defined as
B VdP dV:= − / with V being the volume. ρ0 is the reference density
that can be arbitrarily chosen to control the desired natural particle
spacing. In practice, B can be calculated through B c ρ= 2

0, where c is
the speed of sound in the fluid of interest. When the maximum agent
speed (flow speed) v∥ → ∥max is known, the Mach number M can be
calculated through M v c= ∥ → ∥ /max . As we will show later, M is a very
important non-dimensional number dictating the compressibility of
the fluid. For simulating quasi-incompressible fluids, M can be set to a
small number (usually 0.1–0.01) to make the swarm behave as
incompressible flows. In this case, further simplification can be
achieved by setting γ = 1 without noticeable changes in performance.

Fig. 1. The SPH smoothing kernels used in this study for h = 1. Kernel W1 is used for
vehicle-vehicle interactions and kernel W2 is used for flock guidance.
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The behavior of the multi-vehicle cooperative control system also
relies on the selection of μ and mi. In a cooperative control context,
these parameters should be determined based on the capabilities of the
agents and the desired flock behavior. We will present a guideline for
selecting these parameters in the following paragraphs.

We start by specifying that agent-agent interactions should use
kernel W1. Since magnitudes of W1 and W▽ 1 increase monotonically as

r∥ → ∥ → 0ij , the repulsive pressure force between agents will increase
monotonically as agents approach each other, which leads to good
inter-agent collision avoidance performance. Note that the pressure
force terms in (4) act in line with W▽ to generate purely attracting or
repelling forces between particles depending on the sign of P.

We then determine an appropriate value for mi. Note that when
ρ ρ<i 0, the pressure Pi is negative, which leads to attracting forces
between agents. As two particles approach each other, their densities
increase according to (3). So in isolation, two agents will experience

only repulsive forces if m ρ W h≥ / ( 0→, )i ij0 and only attracting forces

(meaning they will likely collide) if m ρ W h≤ /(2 ( 0→, ))i ij0 . To create a
long-range attraction and a short-range repulsion, we set

m
ρ

W h
= 2

3 ( 0→, )
.i

ij

0

(6)

The resulting pressure forces between vehicles are shown in Fig. 2 for
h = 1 and c = 1. A long-range attractive force region and a short-range
repulsive force region are created with a stable equilibrium at

r h r∥ → ∥/ = * ≈ 0.5858.
To determine the appropriate values for μ and c, we analyze the

interactions between two agents with v v∥ → ∥ =ij max, where vmax is the
maximum agent speed and r h r∥ → ∥ = *ij ij . In this case, each of the
vehicles will have the same density and pressure values of

⎛
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leading to a pressure force (per unit mass) of
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(9)

and a viscous force (per unit mass) of

F μ mv
ρ r

dW r h
d r
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.μ
ij

ij ij

ij

max
2→

1
→

→
(10)

The viscous force acts in opposition to the velocity difference between
agents and therefore behaves as a consensus or velocity matching term.
The relative strength of the pressure and the viscous forces dictates the
trade-off between collision avoidance and velocity consensus in the
SPH control scheme. This can be quantified with a ratio Φ of two non-

dimensional parameters, Reynolds number Re and Mach number M , as

Φ Re
M

F
F= = ∥ ∥

∥ ∥ ,P

μ
2

(11)

with Re and M being important independent parameters characterizing
fluid properties and regimes, which will be discussed in detail later in
Section 3.3. This relationship provides an intuitive guidance for the
performance of the vehicle swarm during the design of a control
algorithm.

The motion of autonomous vehicles, especially underwater vehicles,
is usually subject to multiple realistic constraints. Vehicles designed by
our group are equipped with novel, bio-inspired vortex ring actuators
such that control surfaces are not needed, and improved maneuver-
ability can be achieved (Krieg and Mohseni, 2010). These thrusters
generate trusts by expelling finite jets of water periodically, mimicking
the local motion of jellyfish, squid, octopus, and other cephalopods, to
provide maneuvering forces (Krieg and Mohseni, 2015). They have
demonstrated faster time-response compared to propeller thrusters in
reaching their peak thrust output, which is crucial in minimizing the
actuation delay during the implementation of a cooperative control
algorithm on underwater vehicles (Krieg et al., 2011; Song et al., 2016).
Unlike most conventional underwater vehicles, this design provides
low-drag vehicle profile and high maneuverability in all degrees of
freedom except for roll. In a more general case with 2D planar motion,
constraints on the minimum turning radius and the maximum forward
speed need to be considered, giving a way to set the values of c and μ. If
the minimum turning radius of the agents is Rmin, the associated
centripetal acceleration is a v R= /max

2
min. To set the total force magni-

tude to an appropriate scale, we let

v
R F= ∥ ∥.P

max
2

min (12)

Thus, choosing a desired force ratio Φ and knowing the agents’
maximum speed vmax and minimum turning radius Rmin allow us to
determine c and μ using (11) and (12).

Flock guidance is handled through the use of reduced-density,
virtual particles. Based on (5), low-density (and therefore low-pres-
sure) particles experience attracting forces. This is analogous to
pressure gradients in fluid flows that drive fluid to low pressure
regions. We use the second smoothing kernel W2 for these virtual
particles. Having large forces near the virtual attracting particle, as
produced by W1, can lead to rapid oscillations. Kernel W2 generates zero

force in close proximity to virtual particles since W h∇ ( 0→, ) = 0ij2 ,
helping to limit oscillations. For additional simplification without loss
of generality, we apply the zero-density limit and eliminate viscosity for
these virtual attracting particles, since commonly only one virtual
particle is required for each vehicle flock. This results in an attracting
force (per unit mass) on the agents of

F c
W h

W r h∥ ∥ =
( 0→, )

∇ (→, ) .i
a

ij
i ij ij

2

2
2

(13)

This force is always toward the virtual particle and its plot is presented
in Fig. 3. The speed of sound ca for the virtual attracting particles is
determined such that the acceleration caused by the attracting particles
is half of the maximum vehicle acceleration based on the minimum
turning radius, which leaves agents enough remaining actuation
authorities for flocking activities. This means that the virtual attracting
particles have

c
h v

R= 6 .a
ij max

2

min (14)

With all relevant parameters for the proposed control equations
determined, the cooperative control algorithm computes the desired

Fig. 2. The SPH pressure force between two isolated vehicles using m ρ W h= 2 /(3 ( 0→, ))ij0 ,

h = 1, and c = 1. It consists of a long-range attractive region and a short-range repulsive
region with a stable equilibrium spacing of r h r∥ → ∥/ = * ≈ 0.5858.
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acceleration for each agent. For a given vehicle, the interactions with all
neighbors ( r h∥ → ∥ < 2ij ij) are considered, and a small artificial drag force
is added such that the vehicle will eventually come to rest in the
absence of external interactions. The complete dynamics for an
individual vehicle i in a fleet consisting of a total number of N vehicles
can be described as

d r
dt v
→

= →,i
i (15)

∑dρ
dt m v v W r h= (→ − →)∇ (→, ),i

j

N

j i j i ij
=1 (16)

⎛
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⎞
⎠
⎟⎟∑ ∑dv

dt m P
ρ

P
ρ

W r h m μ
ρρ

v
r

dW
d r

εv
→

= − + ∇ (→, ) + 2 →

∥ → ∥ ∥ → ∥
− →,i

j

N

j
i

i

j

j
i ij

j

N

j
i j

ij

ij ij
i

=1
2 2

=1

(17)

where ε is the artificial drag coefficient, and we use ε = 0.05 in this
paper. It should be noted that, although the summation is over all N
agents, only adjacent neighbors in the smoothing length will actually be
involved in the calculation of the control decisions for each vehicle.
This makes our flock control and guidance method distributed and
scalable. Additionally, a constraint function is applied that limits the
velocity and acceleration to achievable levels. The evolution equation
for the agents is therefore

⎛
⎝⎜⎜

⎞
⎠⎟⎟x dv

dt
→̈ = constrain

→
.i

i

(18)

It is worth mentioning that the agent dynamics described by (15)–
(17) treat each mobile agent as a point mass and they do not explicitly
address the low-level, background flow-agent interactions during the
implementation of this control law on actual vehicles. Low-level vehicle
control under potential impacts from the background flow is beyond
the scope of this work. Interested readers are referred to Xu and
Mohseni (2014) on a nonlinear trajectory-following strategy for
autonomous underwater vehicles using feed-forward signal from a
bio-inspired lateral-line sensory system.

3.2. Stability analysis

The stability of a multi-vehicle cooperative control system is crucial
to the implementation of the designed control policies. For an unstable
system, unpredicted motions of individual agents may lead to control
failures of the entire fleet. In an underwater vehicle cooperation
context, instability usually causes extra cost in control energy and
travel time.

Proposition 1. Given a multi-agent system of which the agent
dynamics can be described by (15)–(17) and the agents stay
connected, there exist system equilibrium states that satisfy
ρ ρ v( = , → = 0)i i0 ∀ i N= 1, …, .

Proof. When the system is at the equilibrium states, for each agent in
the system, there are d r dt→/ = 0i , dρ dt/ = 0i , and dv dt→/ = 0i . The
condition dρ dt/ = 0i is trivially satisfied when d r dt→/ = 0i ∀

i N= 1, …, . In (17), a necessary condition for dv dt→/ = 0i is

P
ρ

P
ρ

+ = 0,i

i

j

j
2 2

to which there exists a solution ρ ρ ρ= =i j 0 based on the equation of
state (5). □

To investigate the stability of this system equilibrium trajectory, we
analyze the positive definite Lyapunov candidate function

∑ ∑V v v e= 1
2

→ → + ,
i

i i
i

i
T

(19)

where e∑i i is the system energy due to conservative forces, and its time
derivative for a single agent can be expressed as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑e m P

ρ
P
ρ

v W r h˙ = 1
2 + → ∇ (→, ).i

i

i

i

j

j
ij i ij2 2
T

(20)

It is worth mentioning that, although the conservation of energy is not
used to determine the control parameters, it is naturally satisfied along
with other conservation laws. This stability analysis is inspired by
Pimenta et al. (2013) and Hsieh and Kumar (2006). Our problem here
can be considered as a special case of Pimenta et al. (2013), in which an
extra term was included in the Lyapunov function as a performance
measurement that characterizes the discrepancy between the resultant
swarm formation and the desired shape. Another minor difference is
that, in this work, the artificial viscosity term in (17) is slightly different
from Pimenta et al. (2013) for better accuracy under low flow velocity
conditions.

It can be shown that the time derivative of the Lyapunov candidate
function is

∑ ∑ ∑V ε v v m μ
ρρ

v
r

dW
d r

˙ = − → → +
→

∥ → ∥ ∥ → ∥
≤ 0,

i
i i

i j i j

ij

ij

ij

ij

T

(21)

where W W r h= (→, )ij ij . Based on LaSalle's invariance theorem, the
system equilibrium states ρ ρ v( = , → = 0)i i0 ∀ i N= 1, …, are asympto-
tically stable. Interested readers are referred to Pimenta et al. (2013)
for more details.

3.3. Dimensional analysis

The proposed multi-vehicle cooperative control leads to vehicle
movements that possess physical interpretations and analogies. To gain
insight into these properties, it is advantageous to non-dimensionalize
the control system equations. This non-dimensionalization procedure
simplifies the control dynamics and discovers important independent
parameters characterizing different fluid regimes. By choosing the
characteristic variables and parameters ρ0, V0, c0, L, and μ, we obtain
the following non-dimensionalized variables and parameters

m m
L ρ

ρ ρ ρ v v V

x x L h h L t t
L V

W L W Π Π
V μ ρ

c c c

* = , * = / , →* = →/ ,

→* = →/ , * = / , * = / ,

* = , ⎯→⎯ * =
⎯→⎯

/
, * = / .

d

d

0
0 0

0

0 0
2 0

Substituting them into (4) yields the non-dimensionalized density

∑ρ m W* = * *,i
j

j ij
(22)

and the non-dimensional momentum equation
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(23)

Fig. 3. The SPH attracting force from a reduced density virtual particle using h = 1,
c = 1, and kernel W2.
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where the non-dimensional viscous stress is

Π
ρ ρ

v v⎯→⎯ * = 2
* *(→* − →*).ij
i j

j i
(24)

The non-dimensional pressure can be found as

P c ρ ρ* = * *( * − 1).i i i
2

(25)

This non-dimensionalization reveals two independent parameters
in the momentum equation: Reynolds number Re and Mach number
M . In a cooperative control problem, it is natural to define a maximal
vehicle velocity and a desired inter-vehicle spacing for collision
avoidance. These choices provide parameters V0 and L in the non-
dimensionalized control system equations. This leaves the choice of
parameters hi, mi, ρ0, μ, Re, and M in the SPH equations. The Mach
number M should be chosen to reflect the desired amount of
compressibility in practice, with M < 0.1 being largely incompressible,
but also allowing less vehicle interactions and limiting the effectiveness
of the velocity consensus term. This can be done through adjusting c
since the maximum vehicle speed is usually known in practice.

The relative importance of the pressure forces and the viscous
forces is given by the ratio Φ Re M= / 2. The choice of this ratio affects
the control behavior in the same way that fluid flows at different
Reynolds numbers behave differently. A low Φ results in rapid velocity
diffusion between vehicles and a swarm with relatively uniform
velocities, which creates a very stable swarm with slow deformation.
On the other hand, high Φ causes vehicles to experience primarily
pressure forces between each other with little velocity diffusion. The
resulting swarm is much less cohesive, but is able to deform much
more readily, which may become advantageous in domains crowded by
obstacles.

4. Optimal trajectory generation

Before guiding the agents along an optimal trajectory, we first
define and approximately solve the relevant fuel optimization problem.
Since our focus in the present study is not on the development of new
optimization routines, we apply established techniques (Latombe,
1991; LaValle, 2006) to approximate a single optimal trajectory, and
then concentrate on the effectiveness of guiding a flock of vehicles
along this trajectory. It is assumed that overcoming the drag force is the
dominant energy cost for vehicle actuation. We attempt to minimize
the total energy required to travel from an initial location x→0 to a final

destination x→f . Denoting the agent's velocity x→̇ and the background

flow velocity U x t→(→, ), the normalized power usage is given by

P t x U
v

( ) =
→̇ − →

,2
3

max
3 (26)

and the total normalized energy, or equivalently, fuel cost can be
calculated through

∫E v
x x

P t dt=
∥ → − → ∥

( ) .
f t

tmax

0

f

0 (27)

Here, P and E are both dimensionless and have been normalized to
eliminate the inclusion of unknown drag coefficients. A value of
P t( ) = 1 corresponds to the maximum power usage, and E = 1 is
equivalent to the energy required to move the vehicle along a straight
line from x→0 to x→f at a speed of vmax with U→ = 0. The optimization
problem is to find

Earg min ,
t t x t, , ( )f0

⎯→⎯
(28)

subject to the boundary conditions

x t x x t x→( ) = → , →( ) = →,f f0 0

and constraints

x v t t t t∥ →̇ ∥ ≤ , ≤ < ≤ .fmax min 0 max

Many existing techniques are available to solve this optimization
problem. Again, with the optimization procedure not being a focus of
this paper, existing tools are adopted to generate an energy optimal
trajectory in the background flow field. The optimization problem is
solved using OPTRAGEN (Bhattacharya, 2006), SNOPT (Gill et al.,
2005), and FMINCON toolboxes. Given a background flow velocity
field, which may be OGCM prediction outputs in practice, OPTRAGEN
parameterizes the trajectory using splines and translates the minimiza-
tion problem to a nonlinear programming problem that may be solved
by SNOPT. Although this method is quite sensitive to the initial guess
and the selected spline parameters, it generates sufficiently accurate
solutions for our purposes.

Once an optimal trajectory x t→*( ) has been found, a flock of vehicles
can be guided along this trajectory using the flock guidance scheme
discussed above. A virtual attracting particle is imagined to be
navigating along the truly optimal trajectory and the flock of agents
follows closely along due to the resulting attracting forces. As long as
the flock radius is properly chosen such that the background flow
velocity variation across the flock is small, and the flock remains close
to the attracting particle, the proposed control scheme results in nearly
optimal trajectories for each agent.

Theorem 1. For a non-rotating, rigid flock2 following the optimal
trajectory x t→*( ), the total actuation energy for each flock agent is
close to the optimal energy associated with x t→*( ) if

J δxmax(∥ → ∥)·∥ ⎯→⎯ ∥⪡1, with Jmax(∥ → ∥) being the maximum

background flow velocity gradient on the path and δx∥ ⎯→⎯ ∥ being a
bound on the flock radius.

Proof. Given an agent in this rigid flock that follows a trajectory
x t x t δx→( ) = →*( ) + ⎯→⎯

, where δx⎯→⎯
is the relative position vector of the agent

with respect to the virtual attractor, a Taylor series expansion gives the
background velocity experienced by this agent as

U x t t U x t t J ξ t δx→(→( ), ) = →(→*( ), ) + →(→, )⎯→⎯ , (29)

where J→ is the Jacobian of the background velocity field and ξ→ is a
point between x→ and x→*. The power usage is then given by

P t x U x t t J ξ t δx
v

( ) =
→̇ − (→(→*( ), ) + →(→, )⎯→⎯ ) .2

3

max
3 (30)

Let

P t x U x t
v

x U x t
v

*( ) = ∥ →̇* − →(→*, )∥ = ∥ →̇ − →(→*, )∥3

max
3

3

max
3 (31)

be the power usage of the optimal trajectory, then the actual power
usage of an agent in the rigid flock can be evaluated as

2 This condition will lead to a loose upper bound of the total actuation energy of each
flock agent. When the flock is allowed to rotate and deform, the total actuation energy of
each flock agent will be even closer to the optimal energy.
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Given this upper bound on the power usage, the total energy used is
bounded by
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where E* is the total actuation energy consumption for the optimal
trajectory. For a given flow region, (33) provides an upper bound for
the actuation energy cost of each agent. □

Given Jmax(∥ → ∥) known beforehand, the flock size and the neutral

density can be properly chosen such that J δxmax (∥ ∥)·∥ ∥⪡1
t

⎯→⎯⎯ ⎯ →⎯⎯⎯
and the

energy cost has a tighter bound close to the optimal energy cost. As
indicated by all the testing results we will be showing in Section 5, real
actuation cost, when the flock is allowed to rotate and deform, can be
expected to be further closer to the optimal energy cost. Note that the
integrals in (33) are determined solely based on the optimal trajectory,
and J∥ → ∥ is dependent on the properties of the background flow field.
The energy bound is equal to the optimal trajectory energy usage plus
three additional terms involving J δx∥ → ∥·∥ ⎯→⎯ ∥. Since J∥ → ∥ represents

the gradient of the background velocity field and δx∥ ⎯→⎯ ∥ is bounded by
the maximum flock radius, the trajectories are nearly-optimal for
velocity fields with spatial gradients that are small on the scale of the
swarm size. In other words, vehicle trajectories are guaranteed to be
nearly fuel optimal if J δx∥ → ∥·∥ ⎯→⎯ ∥⪡1. Additionally, we expect the
energy cost per agent to scale as

E E c R c R c R≈ * + + + ,1 2
2

3
3 (34)

where R is the radius of the flock that is dependent on the number of
agents through R N∝ , and c1, c2, and c3 are constants.

5. Simulation results in ocean flows

To demonstrate the feasibility of the proposed multi-vehicle
cooperative control and flock guidance scheme, we investigate tests
in two artificial flow fields that resemble common features observed in
real-world ocean flows: a time-dependent double-gyre (Shadden et al.,
2005) and a meandering jet (Samelson, 1992), as well as a practical
background flow field in the Gulf of Mexico reconstructed based on
ocean current model data. We consider two-dimensional vehicle
kinematics, r v V˙ = +i i i

rel flow, where vi
rel represents the velocity of vehicle

i with respect to the background flow, and Vi
flow represents the back-

ground flow velocity at the location of vehicle i. Constraints on vi
rel are

introduced in all following simulations such that the resulting surge

speed and turning rate do not exceed the actuation limits of a
nonholonomic vehicle. Neglecting the vehicle dynamics is approxi-
mately valid when the dominant flow scales are much larger than the
vehicle size, as is true for our problem of interest. Constraints on the
maximum vehicle velocity with respect to the background flow and the
minimum turning radius are considered. All vehicles are assumed to
have localization capabilities and be able to perform two-way commu-
nication in a confined range. The effects of localization errors caused by
acoustic communication is beyond the scope of this paper.

All three tests are performed in simulation, and flock sizes ranging
from N = 1 to N = 500 are considered. Based on the simulation results
with different numbers of vehicles, we analyze the scaling of the
average energy consumption per vehicle versus the flock size. This
scaling enables the predictability of the per-vehicle energy consump-
tion that one can expect when the proposed algorithm is applied to
potential applications with larger numbers of agents compared with
conventional underwater vehicle applications. These simulations were
performed with an SPH force ratio of ɸ = 5 (as discussed in Section 3),
a smoothing width h = 500 m for the vehicles, and a smoothing width
for the virtual attractor approximately equal to the flock radius.

5.1. Double-gyre flow

The double-gyre phenomena in large-scale ocean circulation is
typical of the northern mid-latitude ocean basins. It is quite dominant
and persistent in oceans and consists of a sub-polar and a sub-tropical
gyres. The time-dependent double-gyre is an oscillating perturbation to
two counter-rotating gyres. As a major type of ocean circulations,
several main features of the double-gyre phenomena have been
identified through analyzing the observational data and numerical
simulations (Jiang et al., 1995; Speich and Ghil, 1994; Speich et al.,
1995). A simplified double-gyre model has been used extensively in
many cases (Shadden et al., 2005). A snapshot of the velocity field is
shown in Fig. 4.

The velocity field for this flow is defined by the stream function

ψ x y t A πf x t πy( , , ) = sin( ( , ))sin( ), (35)

where the time-dependent parameters are

f x t a t x b t x
a t ε ωt
b t ε ωt

( , ) = ( ) + ( ) ,
( ) = sin( ),
( ) = 1 − 2 sin( ).

2

(36)

The velocity field can be calculated through

u ψ
y v ψ

x= − ∂
∂ , = ∂

∂ .
(37)

This velocity field is defined on the non-dimensional domain
[0, 2] × [0, 1]. To provide a more realistic scenario, the domain was
rescaled to 200 km × 100 km by simply evaluating
u v u x L y L t v x L y L t( , ) = ( ( / , / , ), ( / , / , )), where the length-scale was chosen
as L = 100 km. For reference, the Red Sea is approximately 200 km
wide. The flow parameters were selected such that the maximum flow

Fig. 4. The double-gyre velocity field at time t = T/4, maximum eastward (rightward)
perturbation, where T is the period of oscillation.
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speed is 1 m/s (A = 1/π), the maximum perturbation of the flow is
approximately 10 km (ε = 0.1), and the period of the time-dependent
oscillation is roughly 87 h (Ω = 2 × 10−5).

The optimal trajectory begins at x = (10 km, 10 km)⎯→⎯
0 and traverses

the domain to reach the final destination x = (150 km, 50 km)f
⎯→⎯

. It was
calculated as discussed in Section 4. The maximum forward speed and
the minimum turning radius of the vehicles are limited to realistic
values of 0.3 m/s and 1 m, respectively. The minimum distance
between any two vehicles in any of the swarms tested here was
104 m, approximately 1/5 of the smoothing length. Fig. 5 shows an
overview of one set of nearly optimal trajectories. Trajectories of 100
vehicles are shown in gray, along with their positions every 12 h (black
dots), the optimal trajectory (red curve), and the final destination
(red ×). A zoomed view of the final vehicle positions is shown such that
the structure of the flock can be visualized. The vehicles closely follow
the optimal trajectory with the flock rotating and deforming slightly
under the influence of the background flow. Swarms of other sizes
exhibit similar behavior.

The normalized energy cost for the agents in each flock is plotted in
Fig. 6. Flocks of 1, 3, 5, 7, 10, 15, 20, 30, 50, 75, 100, 150, 200, 300,
and 500 vehicles were investigated. The maximum, minimum, and
mean normalized actuation energy costs versus the flock radius are
shown. These energy costs are expected to scale according to (34) so a
least squares best fit is performed for the maximum and mean energy
costs for the flocks of 10, 20, 50 and 100 vehicles, and plotted in the
same figure. These flocks have radii ranging from about 340 m to
1.35 km. This fit allows us to predict the fuel costs of larger flocks based
on the radius and results in errors of less than 1% for flocks of up to
150 agents. For larger flocks, the fitting error grows as does the energy
cost. This is expected since the velocity gradients in this flow are

vmax(∥∇→ ∥) ≈ 4 × 10−5 s−1. So for these larger flocks, v R∥∇ ∥ > 0.15⎯→⎯

m/s, and the trajectories far from the flock center are no longer
expected to be nearly optimal.

Additionally, the fitting error is due to over-estimation of actuation

energy costs. This can be explained given the fact that the flock is free
to rotate as it moves with the flow, which was not considered in the
analysis in Section 4. The rotation is caused by the influence of the
background flow. It decreases the velocity difference between the
agents and the background flow, reducing the true actuation energy
cost. This effect is more pronounced in larger flocks since the effective
torque on the agents is proportional to the flock radius.

5.2. Meandering jet

The meandering jet velocity field was introduced by Samelson
(1992) and was intended to be similar to jets that can appear in ocean
flows. It consists of a sinusoidal jet of higher velocity fluid through an
otherwise quiescent domain. The stream function for the flow is given
by

⎡

⎣
⎢⎢

⎛
⎝
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⎞
⎠
⎟⎟
⎤

⎦
⎥⎥Ψ Ψ y A k x ct

λ k A k x ct
= 1 − tanh − cos( ( − ))

1 + sin ( ( − ))
,0 2 2 2

(38)

and parameters A = 1, K = 0.5, c = 0.5, λ = 1.5, andΨ = 5.40 were used.
This creates a maximum flow speed of 3.6 m/s. Similar to the double-
gyre flow field, the domain was scaled by a factor of 10,000 for a more
realistic size, resulting in a jet width of approximately 40 km. The
optimal trajectory begins at x = (0 km, − 60 km)⎯→⎯

0 and ends at
x = (150 km, 60 km)f
⎯→⎯

. A maximum vehicle speed of 1.2 m/s was used.
A plot of the meandering jet flow and the trajectories of a 100-agent
flock are shown in Fig. 7.

Simulations were performed with the same flock sizes as used in the
double-gyre flow up to 300 agents, and the resulting actuation energy
costs are shown in Fig. 8 for flocks of up to 100 agents. Again, least
squares best fits were performed on the data for maximum and mean
energy costs. The fits considered only flocks of size 10, 20, 50, and 100
and the fitting results are also presented in Fig. 8. For all flocks of less
than 100 agents, error in the curves is less than 0.4%, providing a good
prediction of the energy costs for these flock sizes.

In the meandering jet, larger flocks of 150, 200, and 300 agents
were also tested. In this flow field, vmax(∥∇→ ∥) ≈ 1.9 × 10−5 s−1 such
that v R∥∇ ∥ > 0.07, 0.09, 0.11⎯→⎯

for the flocks of 150, 200, and 300
agents with R being flock radii. This does not satisfy the condition that
flow velocity spatial variation across the flock is small. As a result,
actual vehicle paths are no longer nearly fuel-optimal. In fact, the jet
flow is strong enough such that some of the agents in the 200 and 300
agent flocks become separated from the flock while traversing the jet
and are not able to rejoin the flock. This can be addressed by increasing
the neutral density such that the flock radius decreases.

It is worth mentioning that the SPH-based flock control scheme is a
fully distributed method that only requires local information within the
sensor range. In practice, the smoothing kernel can be chosen to be
compactly supported within the sensor range. Therefore, inter-agent

Fig. 5. An example of the nearly optimal vehicle trajectories in the double-gyre flow. The left figure plots the trajectories of a flock of 100 vehicles. Vehicle trajectories are plotted as gray
curves, vehicle positions are shown as black dots every 12 h, the optimal trajectory is shown as a red curve, and the final goal location is a red ×. The trajectories begin at the bottom left
and end at (150, 50). The zoomed figure at right shows the flock structure at the final location. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 6. The energy cost for flocks of size 1, 3, 5, 7, 10, 15, 20, 30, 50, 75, 100, 150, 200,
300, and 500 along with best-fit curves for the maximum and mean cost. The best-fit
curves are based only on flocks of 10, 20, 50, and 100 agents, but provide good results
when extrapolating to 150 vehicles.

Z. Song et al. Ocean Engineering 141 (2017) 388–404

396



communication can be achieved in a single-hop manner. In the context
of multi-vehicle cooperation where inter-vehicle communication is
originally required, the proposed flock guidance method does not
require further vehicle capabilities or generate extra communication
costs. For a homogeneous fleet, of which agents have the same virtual
mass and motion constraints, information transmitted through com-
munication only includes local virtual density, pressure, location, and
velocity. Moreover, communication frequency required for reasonably
good flock performance is usually very low. For instance, in the case
with the double-gyre flow field, the reported performance was achieved
with communication interval of approximately 0.7 h.

5.3. Ocean current model

In order to further demonstrate the robustness of the proposed
flock control and guidance scheme, simulation tests in a reconstructed
ocean flow field were performed. In this study, we use hourly surface
current model data provided by HYCOM Gulf of Mexico (Cummings
and Smedstad, 2013). The Gulf of Mexico nowcast/forecast system has
1/25° (≈3.5 km) equatorial resolution and 1/25° × cos(latitude) latitudi-
nal resolution (Naval Research Laboratory, 2015). Fig. 9(Left) shows
linearly-interpolated surface current velocity at 9 p.m. on June 10th,
2015. The maximum flow speed is approximately 2.3 m/s, which is
commensurate with, if does not exceed, typical underwater vehicle
velocities. In this simulation, we consider the more severe case where
vehicles’ maximum flow-relative velocities are mostly smaller than
typical ocean currents.

We selected the surface current data of the duration from 2015-06-
01 00:00:00 to 2015-06-14 00:00:00. In order to reconstruct the
background flow field using the ocean current data set with higher
accuracy, we interpolated the background flow field in both space and
time using tensor product B-splines. The general B-spline parame-

terizes the eastward velocity u t(lon, lat, ) and the northward velocity
v t(lon, lat, ) as

∑ ∑ ∑

∑ ∑ ∑

u t B B B t c
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where p, q, and r are numbers of coefficients of the corresponding B-
spline functions, c1,ijk and c2,ijk are the coefficients, and s-terms are
orders of splines. In this case, we focus on the domain
(89W, 86W) × (25.5N, 27.5N), where drastic current changes occur.
We chose the orders of splines to be 4, and let p = 76, q = 57, r = 252.

In this set of simulations, we apply the built-in optimal solver
fmincon in MATLAB to generate the fuel optimal trajectory since
analytical expressions of the background flow field, as required by
OPTRAGEN, are not easily available. A local optimal trajectory from
( − 88°, 27.1°) to ( − 87.2°, 25.9°) is shown in Fig. 9(Right). The
duration of the operation is about 10.5 days.

Simulations were performed with the same flock sizes as used
previously up to 500 agents. Major parameters used in this set of
simulations are: the maximum vehicle velocity relative to the ambient
water v = 0.3max m/s; the minimum turning radius R = 1min m; neutral
density ρ = 1 kgo /m; artificial drag coefficient ε = 0.05 s−1; the smooth-
ing length h = 500 m; SPH force ratio ɸ = 5; control frequency
f = 0.1 Hz. In the selected domain, the maximum current velocities
are 2.27 m/s in the eastward direction and 2.48 m/s in the northward
direction. These velocities are almost an order of magnitude higher
than the maximum vehicle flow-relative velocity. Fig. 10 shows the
trajectories of 100 vehicles.

The normalized energy cost for the agents in each flock is presented
in Fig. 11. Flocks of 1, 3, 5, 7, 10, 15, 20, 30, 50, 75, 100, 125, 200, 300,
and 500 vehicles were investigated. The maximum, minimum, and
mean normalized actuation energy costs versus the flock radius are
shown. The least squares best fits were performed on the data for
maximum and mean energy costs of flocks with sizes of 10, 20, 50, and
100.

For all flocks of less than 150 vehicles, energy costs scale according
to (34), and the fitting error is less than 1%. For larger flock sizes,
however, the fitting error grows along with the energy cost, especially
for average cost fitting. The radii of the flocks range from approxi-
mately 4.7 km to about 8.1 km for flocks of size 200, 300, and 500. In
fact, in this flow field, vmax(∥∇→ ∥) ≈ 2.1188 × 10−5 s−1 along the
optimal trajectory such that, for these large flocks, v R∥∇→ ∥ is larger
than 0.1, 0.13, and 0.17, respectively. The condition for vehicle energy
cost to be nearly optimal, v R∥∇→ ∥ ⪡1, ceased to be satisfied. In practice,
this can be remedied through properly increasing the reference density

Fig. 7. The meandering jet velocity field with the optimal trajectory plotted in red, the agent paths in gray, and 10 of the flock positions in black. This flock consists of 100 agents and
moves from bottom left to top right. A zoomed view of the flock configuration at the goal location is shown at right. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Energy cost for flocks to traverse the meandering jet domain. The maximum
energy cost for the last two flocks is off the scale. The dotted and dashed lines are fits to
the mean and maximum energy cost in the flocks. The best fit curves are based on only
the 10, 20, 50, and 100 agent flocks and provide excellent prediction for up this range.
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p0 or decreasing the smoothing length h in order to decrease the
resultant flock radii.

Remark 1. (Energy optimality): Our focus in this paper is on the
optimization of vehicles’ actuation energy costs. Since vehicles navigate
along trajectories similar to the energy-optimal trajectory, the
difference in energy costs between an actual vehicle and the virtual
attractor mainly results from the differences in background flow
velocities along respective trajectories. As long as vehicles are close
to the optimal trajectory such that the velocity gradients in the flow
field are small, then their actuation energy costs are close to optimal.
This is because the only additional cost is to overcome the velocity
difference between the background flow at their location and the flow
along the optimal trajectory.

Remark 2. (Inter-vehicle spacing): The average inter-vehicle spacing
is problem-dependent, and easily adjustable through changing the
smoothing length h and the virtual mass m, based on the situation. In a
spatiotemporally changing flow field, the energy optimality of a vehicle
depends on its distance from the virtual attractor, and the differences
in background flow velocities experienced by the vehicle and the virtual
attractor. Therefore, smaller flock radii, hence small inter-vehicle
spacings, are desirable in highly turbulent background flows with

large spatial variations in flow velocities. Although smaller spacings
are always desirable from an energy optimality perspective, some
minimum spacing is required to provide a safety margin and avoid
inter-vehicle collisions.

Remark 3. (Implementation considerations): The proposed multi-
vehicle flocking and guidance scheme aims at generating local control

Fig. 9. Surface current velocity of Gulf of Mexico at 21:00:00 on June 10, 2015 (Left) based on data sets generated by HYCOM Gulf of Mexico. A local, fuel-optimal trajectory is shown
on the zoomed figure (Right) from the initial location ( − 88°, 27.1°) to the final location ( − 87.2°, 25.9°).

Fig. 10. Paths of 100 vehicles (solid gray) tracking the local, fuel-optimal trajectory (dash red) in an ocean flow field along with 10 flock positions (black). A zoomed view of the flock
configuration approaching the goal location is shown at right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Energy cost for flocks traveling in ocean flows reconstructed based on HYCOM
Gulf of Mexico surface current velocity data. The normalized energy cost for agent flocks
of size 1, 3, 5, 7, 10, 15, 20, 30, 50, 75, 100, 125, 200, 300, and 500 are shown along with
best-fit curves for the maximum and mean cost.
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polices in the forms of virtual interaction forces among vehicles,
without imposing any requirements in their implementations or any
specifications in vehicle dynamics. In all reported simulations,
holonomic vehicle kinematics were used with motion constraints on
the minimum turning radius and the maximum forward velocity
relative to the surrounding fluid to mimic a nonholonomic vehicle.
Therefore, our approach is readily applicable to most underwater
vehicle platforms including holonomic remotely operated vehicles
(ROVs) or nonholonomic AUVs with control surfaces. In long-
duration operations, underwater gliders are suitable alternatives to
AUVs. The proposed multi-vehicle control and guidance method can be
applied as well with minimum modifications to address their periodic,
vertical movements. However, similar to most vehicle control
algorithms, one should expect the best performance in applications
with holonomic underwater vehicles.

Remark 4. (Scalability): Our proposed approach is fully distributed
owing to the selection of kernel functions with compact support. The
computational complexity per vehicle is independent of the total
number of agents, and scales linearly as 6 N( + 1)a , with Na
representing the number of adjacent vehicles in the region defined by
the smoothing kernel function, and the “1” representing the
computation regarding to the virtual attractor. Since the optimal
trajectory only needs to be computed for the virtual attractor in an
offline fashion, the associated computational time is entirely
independent of the number of agents. In the case where the kernel
distance is smaller than the communication range, it is also necessary
to filter out vehicles that are in the communication range, but not
within the kernel distance. The overall computational complexity
becomes 6 N( + 1)c , where Nc denotes the number of neighboring
vehicles in the communication range and Nc ≥ Na.

Remark 5. (Communication constraints): Implementing a
cooperative control approach to an AUV swarm requires careful
deliberation in addressing the complication due to unreliable acoustic
communication channels, including the constraints on communication
range, network topology, bandwidth, and latency. In this regard, when
implementing the proposed cooperative control approach, the
smoothing length should be properly selected to reflect the limitation
on communication range. The number of neighbors each vehicle is
allowed to interact with can be adjusted implicitly by the reference
density p0. For the inter-vehicle separation and vehicle velocities
relevant to our application, the effect of communication delay on
vehicles’ energy consumption or flocking performance is considered
negligible. Rigorously addressing these communication constraints on
a theoretical level will be the topic of a future publication. Several
existing studies have tackled these issues to some extent for similar
applications including multi-agent target tracking (Sabatini et al.,
2014), formation control (Fax and Murray, 2004), and consensus
(Olfati-Saber and Murray, 2004; Moreau, 2005). Interested readers
are also referred to Shaw and Mohseni (2011) for a performance
evaluation of the SPH-based cooperative control method in an aerial
vehicle implementation in the presence of communication range
limitation, packet loss, and transmission error.

6. Importance of velocity consensus in multi-agent flocking

The SPH-based multi-vehicle control scheme not only addresses
swarming and collision avoidance gracefully, the inherent swarm
viscosity plays an essential role in the flocking performance. In
addition, our physical intuition enables us to better understand and
control the velocity consensus effect in flocking. In this section, we
show the importance of the velocity matching effect introduced by fluid
viscosity in flocking performance. To do so, we compare the flocking
performance of the fluid-based control scheme and a generic artificial
potential based control scheme, which only focuses on maintaining
proper inter-agent spacings, in terms of collision avoidance efficacy and

actuation energy consumption. We will show that the presence of
swarm viscosity results in more consistent inter-vehicle spacings and
lower energy usage in all the tested cases.

6.1. Generic artificial potential based multi-vehicle control scheme

The artificial potential based multi-vehicle control method origi-
nates from the physics-inspired techniques using potential fields
(Khatib, 1986). It has been widely adopted to achieve multi-vehicle
swarming and collision avoidance by mimicking the interactions
among adjacent molecules or atoms (Hsieh and Kumar, 2006;
Leonard and Fiorelli, 2001; Spears et al., 2005). The interested reader
is referred to Spears and Spears (2012) and the references therein for
more details about this approach. Under this multi-vehicle control
scheme, each vehicle is associated with a potential field, such as the
Lennard-Jones potential or the gravitational potential, and the inter-
vehicle forces are determined by the gradient of the total potential. To
properly demonstrate the importance of the swarm viscosity effect in
the fluid-based control scheme, the potential function was designed
such that non-moving, two-particle systems (i.e. two interacting
vehicles or a vehicle and a reduced density attractor) experience
identical forces under both control schemes.

Recall that the non-dimensional SPH formulation was discussed in
Section 3.3. Accordingly, a non-dimensional artificial potential control
scheme can be formulated. We assume unit mass for vehicle particles
such that the acceleration is given by

∑dv
dt m ϕ
→

= − 1 ∇ ,i

i j
i j

(40)

where ϕ is the artificial potential function to be decided. The potential
function ϕ is commonly designed such that vehicle i experiences a
repulsive force as it approaches neighboring vehicle j and an attractive
force as it moves away. For a direct comparison between these two
control schemes, the potential function is designed based on the
smoothing kernel function (1) so it has the form
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where s is defined in the same way as in (1) such that the potential
function has the same profile as the proposed fluid-based method. The
gradient of this potential function is
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the magnitude of which is proportional to the constant ĸj. It should be
noticed that ĸ is not a normalization constant here. Instead, it controls
the strength of the potential and may take either positive or negative
values.

The artificial potential based control scheme can be non-dimensio-
nalized using the dimensionless variables and parameters as follows

m m m κ L
m V

κ x x L

h h L v v V t t
L V ϕ ϕ

m V
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This leads to the dimensionless system dynamics given by
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(43)
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It is worth mentioning that the dimensionless parameters vanish,
leaving ĸ* as the only independent parameter to be determined for the
artificial potential scheme.

We restrict the analysis to the cases that all vehicles have the same
mass m*, kernel width h* = 1, and potential strength ĸ*. The virtual
attracting particle has a different kernel width h*A and a negative
potential strength κ* < 0A . The acceleration of a single vehicle i can be
calculated as
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where l = j for a neighboring vehicle j, and l = A for the virtual attractor.
The ratio κ m*/ *l is the only parameter to be adjusted.

6.2. Test results

For a direct comparison, we set m* = 1 and chose the parameters κ*j
and κ*A such that the work required to bring two vehicles together from
infinity is the same under both the artificial potential based scheme and
the fluid-based scheme. The same requirement was made for the virtual
attractors. This results in the relationships

κ
M h

κ
M h

* = 0.6136
* , * = − 1

* .A
A

2 2 (46)

The resulting non-dimensional control forces are shown in Fig. 12 for
parameters M = 1, Re = ∞ (inviscid), and V = 1o . The attracting
particles exert identical forces in both control schemes. The non-
viscous, inter-vehicle forces for the two control schemes are qualita-
tively similar. The SPH force weights more heavily towards small
vehicle separations. This is because the density increases as vehicles
approach each other, generating larger repelling forces than the
potential control scheme, where the force scaling is constant.

The most significant difference between the two control schemes is
the presence of the viscous forces in the fluid-based control scheme.
Recall that, in the non-dimensional SPH formulation, the viscous stress
(24) results in a viscous damping force acting in opposition to the
velocity difference between two vehicles. In this way, it acts as a
velocity consensus term for the vehicle swarm. The effect is that, as we
will show explicitly in the following simulations, low Reynolds number
fluid control schemes, corresponding to relatively large viscosity, result
in more coherent swarm motions compared to potential function

schemes.
To demonstrate the effect of viscous forces in the fluid-based

control scheme, we present the results of multiple tests for the two
algorithms in a domain without background flows. In all of the
following simulations, a total number of eleven vehicles were used.
These vehicles were assumed to have the minimum velocity
V = 0.3min m/s, the maximum velocityV = 1.0max m/s, and the minimum
turning radius of 5 m. A Mach number of M = 2 was chosen such that
the swarm is compressible and a Reynolds number of Re = 0.1 was
used, giving ɸ = 0.025 in the SPH simulation. Two scenarios that are
being considered are a stationary attractor that may represent a base
station or a hot spot of an event of interest, and a moving attractor
following a circular path in various speeds.

6.2.1. Stationary attractor
In the first test, a stationary attractor is fixed to the origin. The

vehicles are initially placed on a hexagonal grid around the origin with
inter-vehicle spacings of h1.5 and are given a random initial heading.
Due to the minimum velocity constraint on these vehicles, no static
equilibrium state is possible under either control scheme. However,
after around 100 s, the SPH-based control scheme results in a
coordinated swarm navigating in tight circles determined by the
minimum turning radius (5 m) and maintaining a relatively stable
formation (Fig. 13(Left)). Once established, this stable navigation state
persists indefinitely.

The lack of velocity consensus effect in the generic potential
function based control scheme results in a highly disordered system.
As shown in Fig. 13(Right), the vehicle group remains disordered,
exhibiting chaotic motion patterns, even after several minutes of
navigation. Under this control scheme, the control forces only act to
steer vehicles towards or away from each other; their motion directions
are not considered. Unfortunately, the constraints on turning radius
and the lack of velocity consensus effect lead to vehicle collisions in this
case. In Fig. 13(Right), several of the vehicles are either very close
together or are headed directly toward each other with collisions
imminent.

Moreover, the lack of velocity matching has an extra effect of
increasing the average vehicle speed, leading to increased fuel usage for
the potential function based control scheme in this example. To
quantify this effect, we assume that drag is the main force that must
be overcome by the vehicles and it is proportional to the magnitude of
velocity squared. Under these assumptions, the fuel usage E can be
evaluated as

∫E v dt∝ ∥ → ∥ .
t

t 2f

0 (47)

Even without knowing the appropriate drag coefficients, this allows us
to compute the relative fuel usage for the two control schemes. For the
stationary attractor case, vehicles consume 47.5% less fuel on average
under the SPH-based control scheme than the artificial potential based
control scheme.

6.2.2. Circular attractor path
The second test involves guiding the vehicle group along a circular

path with various attractor speeds. The radius of the circular path is set
to 50 m and the tested attractor speeds vary from 0.2 m/s to 1.5 m/s.
All other parameters are kept the same as the previous test. Fig. 14
shows the performance of both control schemes under different guiding
speeds.

For the case where the attractor moves slower than the minimum
vehicle speed, vehicles need to circle back every now and then until the
attractor catches up. The SPH-based control scheme maintains rela-
tively consistent vehicle movement across the flock while the potential
function based approach leads to disorganized vehicle motions due to
the lack of inter-vehicle velocity matching effect. In the opposite case,
when the attractor's speed exceeds the maximum vehicle speed,

Fig. 12. The control forces for the inviscid SPH and potential control algorithms.
Parameters used are M = 1, Re = ∞, and V = 1o . The attractor particles exert the same

force on the vehicles in both control schemes.
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vehicles tend to shorten the path in both approaches. However, the
potential function based control scheme fails to maintain a coherent
vehicle swarm while, on the other hand, the SPH-based method still
can achieve satisfactory flocking behavior.

The performance of the two control schemes in terms of fuel usage
and the minimum inter-vehicle spacing under various guidance speeds
can be evaluated based on the simulation results summarized in
Table 1. The relative fuel usage is calculated as

η = SPH fuel usage
Artificial potential fuel usage ,

(48)

and the minimum inter-vehicle spacing is denoted by dmin
SPH or dmin

Potential,
respectively. Similar to the stationary attractor case, when the attractor
speed is smaller than the minimum vehicle speed, the potential
function based approach results in slightly more energy consumption
due to the disordered motion, and the minimum inter-vehicle spacing
decreases significantly such that inter-vehicle collision is highly prob-
able. Although the SPH-based control scheme consumes moderately

more energy compared with the potential control scheme when the
attractor speed is similar to or larger than the maximum vehicle speed,
it is able to maintain preferable flocking behavior and consistently
moderate inter-vehicle spacings, which is highly desirable in many
multi-vehicle applications.

Fig. 13. The results of the SPH-based control algorithm (Left) and the potential function based control algorithm (Right) for a group of eleven vehicles and a stationary attractor
particle. The viscosity term in the SPH control scheme creates a velocity consensus effect among the vehicles and results in a highly ordered swarm with good inter-vehicle spacings.
Under the potential function based control scheme, the trajectories are disordered due to the lack of a consensus term, which results in inter-vehicle collisions.

Fig. 14. Paths of eleven vehicles guided by the attracting particle with various speeds under both the SPH-based control scheme and the artificial potential based control scheme. The
attractor speeds vary from 0.2 m/s, smaller than the minimum vehicle speed (0.3 m/s), to 1.5 m/s, exceeding the maximum vehicle speed (1.0 m/s).

Table 1
Performance comparison between the SPH-based control scheme and the artificial
potential based control scheme with various attractor speeds.

Vattract (m/s) η d h/min
SPH d h/min

Potential

0.2 0.995 0.71 0.27
0.4 0.963 0.96 1.61
1.0 1.120 1.02 1.66
1.5 1.165 1.27 1.69
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7. Conclusions

In this paper, we proposed and analyzed a method that simulta-
neously addresses the multi-vehicle flocking problem and the vehicle
flock guidance problem for an autonomous underwater vehicle (AUV)
fleet in the presence of strong ocean flows. This method relies on
computing an optimal trajectory from a starting location to a goal
location under the influence of background flows that may have higher
flow speeds than the agents’ maximum speeds. The background flow
velocity field is assumed to be predictable by ocean general circulation
models. Once the optimal trajectory has been computed, vehicles can
be guided approximately along this trajectory, and the vehicle fleet
exhibits desirable flocking behavior. As long as the gradient of back-
ground flow velocities is small on the scale of the flock radius, it was
shown that the actuation energy costs are nearly optimal for all vehicles
in the flock.

For multi-vehicle flocking control and flock guidance, we proposed
a control algorithm based on smoothed particle hydrodynamics (SPH)
that allows the vehicle flock to behave like a fluid. Each vehicle in the
flock is treated as a fluid particle, and its behavior is governed by
fundamental equations of fluid motions, ensuring flock cohesion and
collision avoidance through naturally obeying the underlying physics
principles. We have shown a systematic method for the selection of
important control parameters such that the resultant multi-vehicle
behavior satisfies the essential rules of flocking, including long-range
attraction, short-range repulsion, and efficient velocity matching.
Additionally, choices of these parameters are based on practical
constraints on vehicle dynamics such that desired vehicle velocities
and accelerations generated by the control algorithm are realistically
achievable. Dimensional analysis showed that the emergent flock
compressibility and the velocity consensus effect are weighted by two
independent parameters, the Reynolds number and the Mach number,
respectively, providing an intuitive way to design the flocking behavior.

This multi-vehicle cooperation and flock guidance scheme has been
tested in simulations with two different synthetic flow fields that
resemble real-world flows observed in the ocean: a time-dependent
double-gyre and a meandering jet, and a flow field reconstructed from
ocean current model data. Flocks of up to 500 vehicles were tested and
the minimum, mean, and maximum energy costs within each flock
were evaluated. A least squares best fit was performed on a restricted
portion of the data to verify that the energy cost scales approximately
as

E E c R c R c R≈ * + + + ,1 2
2

3
3

with E* being the optimal trajectory cost, R being the flock radius, and
ci being constant coefficients.

For relatively small flocks such that the spatial variation of the
ocean current velocity is small across the flock, the actuation energy
costs of all vehicles are nearly optimal. As the flock radius increases,
however, the actuation energy costs begin to grow rapidly. For very
large swarms where the background flow velocity gradients are order
one on the scale of the swarm radius, it is not possible to guarantee
near optimality and some agents may even become separated from the
swarm. This may be addressed by either decreasing the inter-vehicle
spacing to decrease the flock radius or by limiting the total number of
agents in a flock. The computational efficiency and the consistent
performance achieved for proper swarm sizes still proved the proposed
approach appealing in many practical applications.

The importance of swarm viscosity, inherently introduced by the
fluid-based control scheme, was demonstrated in a series of compar-
isons to a generic artificial potential based control scheme that only

focuses on maintaining proper inter-agent spacings. Owing to the
embedded velocity consensus effect, the proposed multi-vehicle co-
operation and guidance method performed better in terms of both
flocking performance and energy consumption with similar computa-
tional complexity and inter-vehicle communication requirements.

Despite the promising results, potential improvement over the
current method is worth further investigation. A deeper understanding
of the resultant fluid properties of the flock under the proposed flock
control scheme may help discovering the inherent coupling relation-
ship between the flock dynamics and the underlying ocean flow
dynamics. Concurrently solving the underwater vehicle flock control
problem and the background ocean flow dynamics is among our future
research interests.
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