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Statistical equilibrium theory for axisymmetric flows: Kelvin’s variational
principle and an explanation for the vortex ring pinch-off process
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Thermodynamics of vorticity density fields~v/r! in axisymmetric flows are considered, and the
statistical equilibrium theories of Miller, Weichman, and Cross@Phys. Rev. A45, 2328 ~1992!#,
Robert and Sommeria@J. Fluid Mech.229, 291~1991!#, and Turkington@Comm. Pure Appl. Math.
52, 781 ~1999!# for the two-dimensional flows in Cartesian coordinates are extended to
axisymmetric flows. It is shown that the statistical equilibrium of an axisymmetric flow is the state
that maximizes an entropy functional with some constraints on the invariants of motion. A
consequence of this argument is that only the linear functionals of vorticity density, e.g., energy and
total circulation, are conserved during the evolution of an axisymmetric inviscid flow to the
statistical equilibrium. Furthermore, it is shown that the final equilibrium state satisfies Kelvin’s
variational principle; the mean field profiles maximize the energy compatible with the resulting
dressed vorticity density. Finally, the vortex ring pinch-off process is explained through statistical
equilibrium theories. It appears that only a few invariants of motion~the kinetic energy, total
circulation, and impulse! are important in the pinch-off process, and the higher enstrophy densities
do not play a significant role in this process. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1368850#
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I. INTRODUCTION

It is well known that the evolution of two-dimensiona
~2D! plane turbulence is dominated by the formation of c
herent vortices, see, e.g., Refs. 1 and 2. The formation
coherent structures in freely decaying 2D flows eventua
results in a quasisteady state; the velocity field becomes
creasingly dominated by the larger spatial scales as t
progresses, and the like-signed vortex regions merge
increasingly larger vortices.2 Many numerical and experi
mental studies suggest that the formation of large scale s
tures is mainly an inviscid process, and that the viscosity
dissipation only affect the fine scale motion. These stud
lead to the idea of using statistical mechanics to unders
these long-lasting structures in 2D incompressible flows.

The first insight into the equilibrium properties of 2
flows as a Hamiltonian system, was provided by Onsag
statistical theory of point vortices,3 which were later ex-
tended by Joyce and Montgomery.4 For high enough Rey-
nolds numbers, the enstrophy can decay significantly w
the energy is decaying by a negligible amount. Onsager
dicted the formation of large scale vortices~regions of vor-
tices of the same sign! in 2D Euler equations. For vortices i
a confined region, Onsager noticed that contrary to statis
thermodynamics, the temperature could be either negativ
positive. Therefore, for the negative temperatures the st
tical probability of observing high energy states is high
than for low energy states. The high energy states norm
correspond to clustering vortices with the same sign, dub

a!Electronic mail: mohseni@cds.caltech.edu
1921070-6631/2001/13(7)/1924/8/$18.00
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as coherent structures. There are some criticisms of p
vortex models: The infinite conservation laws of moments
vorticity are not respected, the quantitative prediction d
pends on the representation of a continuous vorticity field
terms of point vortices~which is not unique!, and the maxi-
mum vorticity is not bounded by its initial maximum, as
should be for 2D flows.

In a recent work, Lim5,6 derived a long range spherica
model for Kirchoff–Helmholtz vortex gas,7 and subse-
quently the 2D Euler equations. He showed that a cer
spin-lattice Hamiltonian removes the nonuniqueness amb
ity from the mean field theory of Onsager3 and Joyce and
Montgomery.4 He exactly solved the statistical equilibrium
theory of energy–enstrophy for the barotropic vorticity equ
tion in the sense that an explicitly non-Gaussian configu
tion integral was calculated in a closed form.

To remove some of the limitations of theories based
point vortices, Miller, Weichman, and Cross8,9 ~MWC! and
independently Robert and Sommeria~RS!10 developed a
mean field theory. Their resulting equilibrium state is calc
lated by maximizing a mixing entropy constrained by t
invariants of motion, which are the energy, impulse, and
global probability distribution of the vorticity fluctuations. A
main criterion for the validity of their approach in predictin
the long term behavior of high Reynolds number flows
that the relaxation time for the system be shorter than
viscous time scale. When this condition is satisfied the s
tem relaxes to an almost equilibrium state, before the visc
effects alter the integrals of higher moments of vortici
This raises the speculation that only a finite number of c
straints might be sufficient for a useful equilibrium theory
4 © 2001 American Institute of Physics

AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2D flows, e.g., see Chorin11 and Chavanis and Sommeria.12

It has been noted that the statistical equilibrium theory
MWC–RS works remarkably well in the case of vorte
merging and for large scale initial vorticity fields where t
relaxation is relatively violent and take place in a few ed
turnover times. On the other hand, when the initial condit
has significant small scale contributions the relaxation
equilibrium takes much longer time and viscosity may al
the invariants of motion.13–15 Hence, strong discrepancie
can be observed when a prediction from the initial vortic
field is made. However, it was pointed out that if the co
stants of motion are calculated from the vorticity field at la
times the agreement between the entropy maximization
the quasistationary state of a weakly viscous dynam
improves.13 To address Chorin’s speculation,11 Turkington16

and Boucheret al.17 recently developed a statistical theo
with a few constraints, where they replaced the equality c
straints on the general vorticity integrals in the MWC–R
theory with inequality constraints. Some indications on
validity of their idea in the vortex ring formation was con
sidered in Sec. IV of this study.

In this paper we are concerned with axisymmetric flow
one of the simplest three-dimensional flows. Although a
symmetricity is a limitation, a wide range of challengin
problems reside in this category, including jet flows, vort
rings, drops, and pipe flows. The severe difference betw
the 2D and 3D turbulence is usually contributed to the v
ishing of the vortex stretching term in 2D flows. While th
general vortex stretching term in the vorticity equation
missing in the axisymmetric flows as well, the existence o
geometrical stretching term makes it more interesting t
2D Cartesian flows.

Our main motivation for the study of long time behavi
of axisymmetric flows comes from our interest in unde
standing the universal formation number of vortex ri
pinch-off processes observed in experiments by Gh
et al.,18 theoretical modeling by Mohseni and Gharib,19 and
the numerical simulations of Navier–Stokes equations
Mohseniet al.20 In the laboratory, vortex rings can be ge
erated by the motion of a piston pushing a column of flu
through an orifice or nozzle. The boundary layer at the e
of the orifice or nozzle will separate and roll up into a vort
ring. We think that since the formation of vortex rings i
volves strong mixing of the generated shear layer with
ambient fluid, the ergodicity requirement of statistical eq
librium theory has a chance to be satisfied. The experim
of Gharib et al.18 have shown that for large piston strok
versus diameter ratios (L/D), the generated flow field con
sists of a leading vortex ring followed by a trailing jet. Th
vorticity field of the formed leading vortex ring is discon
nected from that of the trailing jet at a critical value ofL/D
~dubbed the ‘‘formation number’’!, at which time the vortex
ring attains a maximum circulation. The formation numb
was in the range of 3.6–4.5 for a variety of exit diamete
exit plane geometries, and nonimpulsive piston velocit
An explanation for this phenomenon was given based
Kelvin’s variational principle. It was both experimentally18

and analytically19 observed that the limiting strokeL/D oc-
curs when the generating apparatus is no longer able to
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liver energy, circulation, and impulse at a rate compara
with the requirement that a steadily translating vortex ri
has maximum energy with respect to kinematically allowa
perturbations. As demonstrated in Sec. IV, Kelvin’s var
tional principle ~energy extremization! has a close connec
tion with the entropy maximization in statistical equilibrium
theory. Numerical evidence for a relaxation process to
equilibrium state has already been provided by Mohs
et al.20 in a direct numerical simulation of the pinch-off pro
cess in vortex ring formation.

An interesting observation in this paper is the cons
tency between Kelvin’s variational principle, dressed vort
ity density corollary, Turkington’s approach, and the expe
mental and numerical observations that the first f
invariants of motion, namely the energy, impulse, and cir
lation, play the most significant role in the vortex ring pinc
off process. To this end, our results support Chorin’s11 and
Turkington’s16 idea of a mean field theory with a few con
straints. In this paper we take the first step in explaining
vortex ring pinch-off process through a statistical equil
rium theory. The theoretical foundation has been laid ou
this paper and the details of the numerical experimenta
on the mean field equations will be postponed to a fut
publication.

Our objectives in this study are several. Following Sz
and Holmes21 ~also see Mohseni22!, in Sec. II we derive an
explicit expression for a canonical Poisson bracket of a
symmetric flows which is similar to the Poisson bracket
the 2D plane case. This Poisson bracket satisfies the Ja
identity ~among other properties!, and therefore makes th
space of functions of vorticity density fields onV ~the vol-
ume occupied by the fluid! into a Lie algebra. In Sec. III our
goal is to ask whether we can predict and explain the lo
time evolution of flows, such as those mentioned abo
without explicitly using dynamics. Costly dynamical simul
tions and significant errors at long times make such a the
attractive for investigating problems where the transient
namics are not of primary interest. In Sec. IV we show th
Kelvin’s energy variational result can be deduced from
statistical equilibrium equations. An explanation of the vo
tex ring pinch-off process as a relaxation of an axisymme
vortical system to its final equilibrium state, predicted by t
statistical equilibrium theory, is also considered in this s
tion. Finally, the concluding remarks are presented in Sec

II. GOVERNING EQUATIONS AND POISSON
BRACKET

In this section we study the Hamiltonian structure
axisymmetric flows. It is not obvious how to develop a s
tistical mechanics theory without a Hamiltonian. Once t
Hamiltonian is given, very few choices in the developme
of the theory remain.

Consider an axisymmetric, inviscid, homogeneous, a
incompressible flow in a 3D axisymmetric regionV. The
velocity u(ur ,0,ux) of this flow is governed by the vorticity
evolution equation

]v

]t
1ux

]v

]x
1ur

]v

]r
5

urv

r
, ~1!
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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v5~D3u!f5
]ur

]x
2

]ux

]r
. ~2!

The scalarv is the azimuthal component of vorticity. Th
urv/r term on the right-hand side of the vorticity equatio
~1! is the geometrical vortex stretching. This term is abs
in the 2D vorticity equation in Cartesian coordinates.

The governing system consists of a transport equa
~1! coupled with the elliptic system~2! and the continuity
equation¹•u50. We would like to use a formulation in
terms of the ‘‘vorticity density’’j defined asj5v/r . At any
instant, the velocity field can be described by the Sto
stream functionc defined by

ux5
1

r

]c

]r
; ur52

1

r

]c

]x
.

Using the transformationy5r 2/2, one may recast the fina
set of equations as

Dj

Dt
ª

]j

]t
1

]c

]y

]j

]x
2

]c

]x

]j

]y
50, ~3!

and

L~c!ª
]2c

]y2 1
1

2y

]2c

]x2 52j. ~4!

A suitable phase space for this system is the space ofj ’s
defined on the physical space occupied by the fluid. T
natural choice for the Hamiltonian is the kinetic energy~with
unity density! given by

H5
1

2 ER3
u2 dV, ~5!

wheredV5r dr dx du represents the volume element. In t
case of axisymmetric flows without swirl, one can write

H5pE
Vr

~ux
21ur

2!r dx dr

5pE
Vr

S ux

]c

]r
2ur

]c

]x Ddx dr

5pE
Vr

S vc1
]~uxc!

]r
2

]~urc!

]x Ddx dr

5pH E
Vr

vcdx dr2 R c~uxdx1ur dr !J
5pH E

Vy

jcdx dy2 R c~ux dx1ur dr !J , ~6!

whereV r is the half spacer>0, andVy is the half space
y>0. By appropriate assumptions on the behavior of
flow field near the boundaries we can ignore the second t
on the right-hand side of Eq.~6!. Therefore, we can write the
kinetic energy~also called the excess kinetic energy23! as

H5pE
Vy

jcdm5pE E M~xux8!j~x!j~x8!dm dm8,

~7!
Downloaded 18 Jun 2001 to 131.215.142.151. Redistribution subject to 
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wherex5xix1yiy , dm5dx dy is the area element inVy ,
and the kernelM(xux8) is defined by24

M~xux8!5
Ayy8

2p
E

0

2p cosu du

A~x2x8!212y12y824Ayy8 cosu
.

~8!

Clearly the kinetic energy is conserved by the flow. Now,
define the Lie–Poisson bracket

$F,G%5E j~x!H dF

dj
,
dG

dj J
xy

dm, ~9!

where

$ f ,g%5
] f

]x

]g

]y
2

]g

]x

] f

]y

is the canonical~x,y! Poisson bracket. One may use~9! to
show that

j t5$j,H%, ~10!

which is another form of the vorticity density evolutio
equation. It is not known whether there exists a pair of
nonical coordinates~functionals ofj! which diagonalize the
bracket~9!. However, what is required in statistical equilib
rium theory is an invariant measure on the phase sp
which will be provided by Liouville’s theorem. Therefore
neither the existence of the canonical coordinate nor the
istence of the Lie–Poisson bracket~9! is required in the sta-
tistical equilibrium theory. The dynamics of the Euler equ
tions preserves phase space volumes, i.e., the flow in
phase space is incompressible. The ergodic hypothesis
cribes weights in proportion to phase space volume. The
fore, the phase space flow preserves relative probabilitie
the chosen variables. It also follows that the new radial va
able y is necessary to compensate for the geometrical
crease in the volume element of thex–r space;dx dy
5rdx dr. Finally, we would like to note that similar result
have been obtained by Szeri and Holmes21 in considering the
nonlinear stability of axisymmetric swirling flows.

Equation~3! implies that there are an infinite number
conserved vorticity density integrals,*h(t) f (j)dm, for any
pathh(t) moving with the fluid wheref is an arbitrary func-
tion. Therefore, one can define an infinite number of co
served quantities for the Euler equation~3! which can be
characterized by

I n5E
Vy

jndm. ~11!

Following the form of the Lie–Poisson bracket~9! it follows
that these conserved quantities are Casimirs. Finally, one
verify that the linear momentum

P5
1

2 E ~x3v!xû dV52pE
Vy

jy dm ~12!

is also an invariant of motion.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The Poisson bracket~9! that we have derived for axi
symmetric ideal flows is similar to the canonical Poiss
bracket of the 2D plane flows.25 It satisfies the Jacobi iden
tity ~inherited from that for$,%xy , as is generally the case fo
Lie–Poisson brackets!, among other properties. Therefor
Vy is a Lie algebra. One might expect to obtain the sa
results by a reduction process25,26 from the 3D Euler equa-
tions with axial symmetry.

The Hamiltonian structure of axisymmetric vortex fil
ments has been known for more than a century, see,
Shariff et al.27 and references therein. The Hamiltonian fo
malism of vortex filaments can be considered as a spe
case of the field Hamiltonian formalism of this section. W
refer to the Appendix~see also Mohseni28! for a derivation of
the Hamiltonian formalism of axisymmetric vortex filamen
from the field Hamiltonian. Now that the Hamiltonian fo
malism for axisymmetric flows is established, we can p
ceed with our development of statistical mechanics of v
ticity density fields.

III. STATISTICAL EQUILIBRIUM THEORY

In this section we will extend the statistical equilibriu
theories of MWC–RS and Turkington for 2D plane flows
axisymmetric flows. In doing so we assume ergodicity, i
that the dynamics of the flow samples all the phase sp
consistent with the conservation laws. The treatment we
scribe is to cast the problem as a variational problem w
constraints. The maximization of an entropy functional w
then result in the equations for statistical equilibrium of t
flow. The derivation technique is basically the same for b
MWC–RS and Turkington’s theories. Therefore, we first e
tend MWC–RS theory to axisymmetric flows. By relaxin
the equality constraints on the generalized vorticity den
to inequalities, we can then obtain the maximization probl
for Turkington’s method.

The governing equations are given by~3! and ~4!, and
the conserved quantities of the axisymmetric Euler equat
are H, P, and the infinite seriesI n . The conservation ofP
results from the absence of global pressure forces in thx
direction. Note thatH and I n are conserved in the gener
case for any domainV. By contrast the conservation of th
physical momentumP is specific to a given geometry.

In the axisymmetric Euler equation~3!, the vorticity
densityj is a material property. This implies that the tot
area fraction occupied by each vorticity density levels is
conserved. We call this quantity the global probability dist
bution of vorticity densityg~s!. The distribution function
n0(x,s) is defined as the local~but coarse-grained! probabil-
ity of finding the vorticity level s in a x neighborhood.
Therefore,n0(x,s) may be considered as the local density
the vorticity density with strengths. This distribution func-
tion satisfies the normalization condition~incompressibility!

E n0~x,s!ds51. ~13!

Subsequently,~11! may be recast as the conservation
g(s)5*n0(x,s)dm5*d(s2j(x))dm. Physically, g~s!
measures the fractional area covered by the vorticity leves.
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Now the coarse-grained~macroscopic! equilibrium vorticity
densityj̄(x) is defined asj̄(x)5*n0(x,s)sds. The coarse-
grained equilibrium stream functionc̄ is related toj̄ through
Eq. ~4!. Note that the macrostates have fluctuations in v
ticity density, but asc̄ is obtained by an integration of vor
ticity density, there are no fluctuations in the stream functi
For a system with very small viscosity, we expect that the
fluctuations will be smoothed out, so that the resulting ste
flow becomes the actual final state of the system. Finally,
entropy is defined by

S52E n0~x,s!ln n0~x,s!ds dm. ~14!

Now the standard methods of statistical mechanics can
used. We started from a Hamiltonian system which gives
dynamics of a great number of particles and which is
microscopic level of description of the system. Then, a
macroscopic level, we consider some relevant means, w
we call macroscopic observable. To these two levels of
scription we associate an entropy functional using Bo
mann’s formulaS5k logW, whereW is the volume occu-
pied in the phase space~endowed with the invarian
Liouville measure! by the set of all the microstates giving th
same macrostate. Maximizing the entropy functional th
gives the equilibrium states. The entropy functional in E
~14! represents the logarithm of the number of possible v
ticity configurations associated with a final macrostate.

The equilibrium state is obtained by maximizing th
mixing entropy,~14! subjected to the constraints of motio
~11!–~12! and the normalization condition~13!. We write
these constraints in terms of the locally averaged vortic
densityj̄ and the associated stream functionc̄. The resulting
constrained variational problem can be treated by introd
ing the Lagrange multipliers such that the first variatio
satisfy

dS2bdH2bE a~s!dg~s!ds

2E z~x!dS E n0 ds Ddm2bUdP50, ~15!

whereb is the inverse of the temperature,a~s! is the chemi-
cal potential of speciess, andU is the translation velocity. In
general, energy or temperature may be considered as a
dicator of how closely the vorticity is packed~we will come
back to this point later!. The final state can be considere
either as a critical point of the entropy for any admissib
perturbations~that satisfies the invariants of motion! or
equivalently, as a critical point of the free energyF29

F5S2bH2bE a~s!g~s!ds

2E E z~x!n0dsdm2bUP. ~16!

The resulting distribution function is a Gibbs state of t
form
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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n0~x,s!5e2b@2ps~c̄1yU!1a~s!#212z. ~17!

Using the normalization constraint~13! we can remove the
Lagrange multiplierz to obtain the resulting distribution
function

n0~x,s!5
e2b@2ps~c̄1yU!1a~s!#

*e2b@2ps~c̄1yU!1a~s!#ds
. ~18!

A differential equation forc̄ may be obtained by multiplying
both sides of~18! by s and integrating

L~ c̄ !ª
]2c̄

]y2
1

1

2y

]2c̄

]x2
5

1

2pb

d

dc̄
lnZ, ~19!

where the partition functionZ is given by

Z~ c̄ !5E e2b@2ps~c̄1yU!1a~s!#ds. ~20!

The partition function relates the properties of the mic
scopic system, and it provides all the statistical parameter
a macroscopic system. The Lagrange multipliersb, U, and
functions a~s! are determined by the initial conditions
namely

g~s!5E e2b@2ps~c̄1yU!1a~s!#

Z~ c̄~x!!
dm,

E52pE c̄L~ c̄ !dm, ~21!

P522pE yL~ c̄ !dm,

the global conservation of vorticity densityg~s!, energyE,
and the linear momentumP, respectively. The equilibrium
states are not steady in general but translate uniformly w
velocity U. In the case of nonvanishing circulation, we c
change the frame of reference to the one moving with
center of vorticity density, whereP50. The stream function
in this case is obviouslyc1yU. Knowing the invariants of
motion and the Lagrange multipliers,Z will be only a func-
tion of c̄, and therefore, Eq.~19! will be of the formL(c̄)
5 f (c̄).

Chorin11 recently indicated that a few constraints mig
be sufficient for a reasonable theory of statistical equi
rium. Subsequently, Turkingtonet al.16,17 presented a statis
tical equilibrium theory for the 2D Euler equations based
a few constraints, where they criticized the implicit assum
tion in the MWC–RS theory that the microstate vorticity o
the lattice satisfies the same constraints as the vorticity s
tions to the Euler equations in the physical domain. Con
quently, in Turkington’s model the family of enstrophy co
straints relaxes to inequalities. The diverging point betwe
the MWC–RS technique and Turkington’s method is the c
culation of the mean vorticity distribution from the genera
ized enstrophy density and the prior choice of the probab
measure.
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Turkington’s method can be easily extended to the a
symmetric flows of this study by some modifications of t
theory developed in this section. It can be easily shown t
unlike H, the generalized enstrophy densityI n depends on
the smallest vorticity fluctuations. In our extension of t
MWC–RS theory to axisymmetric flows the generalized e
strophy densities were treated the same as the total kin
energyH. However, in extending the Turkingtonet al.16,17

model to axisymmetric flows the equality constraints on
generalized enstrophy density in the axisymmetric maxim
entropy principle is relaxed to a family of convex inequali
constraints. This approach is compatible with the experim
tal observations and numerical simulations of the vortex r
pinch-off process discussed in Sec. IV.

IV. KELVIN’S VARIATIONAL RESULT AND VORTEX
RING PINCH-OFF PROCESS

Kelvin’s variational principle was recently applied in ex
plaining the vortex ring pinch-off process.18 In this section
we investigate the relation between Kelvin’s variational pr
ciple and the statistical equilibrium theories of Sec. III. Th
will offer another explanation of the vortex ring pinch-o
process based on the statistical equilibrium theory.

A general variational principle due to Kelvin30 charac-
terizes steady flows in a 2D ideal fluid as the stationary v
ues of the kinetic energy for given circulation and hydrod
namic impulses, with respect to kinematically allowab
perturbations. Kelvin states the principle without proof
being obvious to him~see Secs. 4 and 18 of Kelvin30!. The
conceptual basis of this theory has been furnished
Benjamin,31 whose work is especially noteworthy because
connects the abstract variational principles with concr
model problems in ideal fluid dynamics. Conceptually, th
variational result leads to a formulation of the general ma
ematical problem entirely in terms of the natural physic
invariants associated with the equations governing vortex
namics: energy, impulse, and circulation. A one-parame
family of such solutions was presented by Norbury.32 Wan33

studied the maximization property of a limiting case in No
bury families, namely Hill’s spherical vortex. Both Kelvin’
approach and the statistical equilibrium theory are of va
tional types concerning the equilibrium states of Euler eq
tions. While Kelvin prefers extremization of an energy fun
tional, in statistical equilibrium theory it is the maximizatio
of a mixing entropy that determines the final equilibriu
state. Consequently, one might expect that a close rela
exists between the final equilibrium states predicted by th
two approaches. In this section we show that the equilibri
solution predicted from the statistical equilibrium theory~en-
tropy maximization! satisfies an energy extremization simil
to Kelvin’s approach with a few explicit constraints.

An input to the statistical theories of the previous sect
is the initial vorticity density distributionj(x), or equiva-
lently the invariants of motion in the form of Casimirs. How
ever, in most practical applications~e.g., the Red Spot o
Jupiter and vortex ring pinch-off process19,20! our informa-
tion on the initial condition is very limited. What is usuall
measurable is the finite resolution vorticity distributionj̄(x).
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Therefore, the only measurable distribution function is
dressed distribution function~as defined for the 2D case i
Ref. 9!

gd~s!5E d~s2 j̄ !dm. ~22!

Here, g ~s! is the initial distribution function andgd(s) is
the distribution function observed on any finite length sca
Note thatj̄(x) is a smooth function except forb→6` and
that in general the vorticity distribution functiongd (s) de-
rived from the mean field profilej̄ is not the same asg ~s!.
In the process of statistical equilibrium, when going from t
microscopic description to the macroscopic description, i
natural that a major part of the information about the det
of the small scales is lost. Therefore, the vorticity dens
conservation laws~11!, except for the total circulationI 1 ,
are all violated on the macroscopic scale. No other mom
of the vorticity density is necessarily the same for bothg and
gd . In this process only the energy, circulation, and impu
are conserved both on the fine scales and on the co
scales. In general, when using the final vorticity distributi
from the statistical equilibrium theory, only linear function
als of vorticity are conserved. Although it is impossible
experimentally inferg ~s! from the equilibrium state alone
one can make partial predictions by knowinggd(s). This is,
in fact, consistent with the observations in 2D Euler or hi
Reynolds number Navier–Stokes equations, where it is w
known that there is an inverse cascade of energy to la
scales and a forward cascade of enstrophy~second integral of
vorticity I 2! to smaller scales. Therefore, by measuremen
finite resolution one might expect to recover almost all of
initial kinetic energy of the system, while the conservation
enstrophy will be violated.

Following Miller et al.,9 a dressed vorticity density cor

ollary is in order:j̄(x), the averaged vorticity density field
is the maximum energy solution~corresponding toT→02 or
b→2`! of the statistical equilibrium equations with con
straint functiongd(s) ~note that the negative temperatur
correspond to the clustering of vortices with the same sig!.
For the maximum energy solution,gd(s)5g(s). The proof
is analogous to the proof for a similar corollary in 2D turb
lence in the plane9 and it is not repeated here. Althoughgd is
in general different fromg, a consequence of the above a
gument is that at a given energy,gd results in the same
equilibrium solution asg. Furthermore, the given energ
turns out to be precisely the maximum energy compat
with gd .

Note that aside from the total kinetic energy and hyd
dynamic impulse the total circulationI 1 is also preserved
during the equilibrium process, i.e.,

E sg~s!ds5E sgd~s!ds. ~23!

However, in general the conservation of any other gene
ized enstrophy density integralsI n would be violated. Now
the connection between Kelvin’s variational principle a
the dressed vorticity density corollary is clear: for a syst
with fixed circulation and impulse the statistical equilibriu
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state is the one that maximizes the energy consistent with
gd(s), i.e., its isovortical perturbations. Note that the high
enstrophy densities are not explicitly specified in Kelvin
variational principle~in contrast to Arnold’s approach34!.
Since the energy, circulation, and impulse of the system
conserved during the equilibrium process, the final solut
of the statistical equilibrium theory~or equivalently dressed
vorticity density corollary! satisfies the requirements o
Kelvin’s variational principle. It is interesting to note that th
conservation of energy, circulation, and impulse have a c
sequential effect on the dressed vorticity density corolla
Kelvin’s variational principle, and Turkington’s mode
while the higher generalized enstrophy densities seem to
insignificant in the final state of the system. The connect
between the equilibrium states predicted by the statist
equilibrium theories and the steady state solutions of the
ler equations is clear in this argument.

An implication of the dressed vorticity corollary is tha
for a fluid in statistical equilibrium, coarse-grained quantiti
suffice to determine the equilibrium. Chavanis a
Sommeria12 showed that in the limit of strong mixing th
higher enstrophy densities do not have a significant effec
the final equilibrium state predicted in the theory of MWC
RS. This observation is also consistent with Turkington
theory.16 Therefore, it is expected that our equilibria mig
persist in the presence of a viscosity acting to smear
small scales. An equivalent way of stating this result is t
the long-time dynamics of an inviscid fluid will evolve to
configuration which is a global extremum of the energy, su
ject to satisfying the long-time~dressed! vorticity distribu-
tion.

Our motivation for studying axisymmetric flows come
from our interest in the formation of coherent vortical stru
tures in jets and at the exit of nozzles. An interesting pro
lem, in this context, is the pinch-off process in vortex rin
formation at the exit of a nozzle in cylinder–piston mech
nism; see, e.g., Gharibet al.18 for experimental observations
Mohseni and Gharib19 for modeling, and Mohseniet al.20 for
computational results. For large piston stroke versus dia
eter ratios (L/D), the generated flow field consists of a lea
ing vortex ring followed by a trailing jet. At a critical value
of L/D ~dubbed the ‘‘formation number’’!, at which time the
vortex ring attains a maximum circulation, the vorticity fie
of the formed leading vortex ring is disconnected from th
of the trailing jet. An explanation for this phenomenon w
given based on Kelvin’s variational principle. It was bo
experimentally18 and analytically19 observed that the limiting
stroke L/D occurs when the generating apparatus is
longer able to deliver energy, circulation and impulse a
rate comparable with the requirement that a steadily trans
ing vortex ring has maximum energy with respect to kin
matically allowable perturbations. The formation numb
was observed18 to be in the range 3.6–4.5 for a variety o
exit diameters, exit plane geometries, and nonimpulsive
ton velocities.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Inspired by these observations we offer a relaxatio
~statistical approach to the pinch-off process.19,20 This is an
alternative explanation of the vortex ring pinch-off proce
based on a mixing entropy maximization, besides the ene
extremization approach in Kelvin’s variational principl
From this point of view, any vortex ring generator can
viewed as a tool for initializing an axisymmetric flow with
particular rate of the generation of invariants of motion. Ea
vortex ring generator has a specific rate for feeding the fl
with the kinetic energy, impulse, circulation, etc. In this p
ture, at small strokes~smallL/D! one will find that all of the
initial vorticity density will coalesce into a steadily transla
ing vortex ring. As the stroke increases the size, strength,
the translational velocity of the resulting vortex ring i
crease. This process persists until a critical formation num
is reached, when the vortex generator is not able to prov
invariants of motion compatible with a single translating vo
tex ring. Equivalently, beyond the critical formation numb
a single vortex ring at equilibrium~steadily translating! that
maximizes the mixing entropy for given energy, impuls
and circulation is not possible. In this case the leading vor
ring will pinch-off from the trailing jet and will relax to a
translating vortex ring with the translational velocityU dic-
tated in the maximum entropy principle. For very lar
strokes ~greater than twice the critical formation numbe!
successive vortex rings will pinch-off from the the trailin
jet. This scenario was verified in the numerical simulatio
of the vortex ring pinch-off process in Mohseniet al.20 The
general observation in these simulations was that the m
invariants of motion in the pinch-off process are the kine
energy, circulation, and impulse. The higher enstrophy d
sitiesdid not play a significant role as long as the Reynol
number was relatively high. These observations confi
Chorin’s11 and Turkington’s argument16 that a statistical
equilibrium theory with a few constraints might be enou
for an accurate prediction of the equilibrium states.

V. CONCLUSIONS

The equations derived in this investigation give relax
end-states of the axisymmetric Euler equations and are
lieved to be closely related to the forced and slightly damp
turbulent dynamics of Navier–Stokes equations.7 Costly dy-
namical simulations based on the Euler or Navier–Sto
equations and significant errors at long times make suc
theory attractive for investigating problems where the tr
sient dynamics are not of primary interest. The resulting
lutions of these statistical equilibrium theories are in fact
equilibrium solutions to the axisymmetric Euler equation
constrained by the invariants of motion. We observed t
while the infinite number of Casimirs~enstrophy densities!
were important in the development of the theory, integrals
the nonlinear powers of vorticity density measured on a
physical scale will not be the same as in the initial state
can be relaxed as was suggested by Turkingtonet al.,16,17

Chorin,11 and Chavanis and Sommeria.12 The only apparent
conserved quantities are the energy, impulse, and total c
lation. In fact, these conserved quantities are explicitly sp
fied in Kelvin’s variational result. Through a dressed vort
Downloaded 18 Jun 2001 to 131.215.142.151. Redistribution subject to 
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ity density corollary the connection between the statisti
equilibrium state and Kelvin’s variational principle was in
vestigated. The maximum entropy state predicted by the
tistical equilibrium theories satisfies Kelvin’s variation
principle ~energy extremization!.

Statistical relaxation of axisymmetric flows offers an e
planation for the vortex ring pinch-off process:18–20 the sys-
tem relaxes to an equilibrium state from its initial configur
tion dictated by the stroke ratioL/D in the cylinder–piston
mechanism of vortex ring generation or more generally
TU/h for a general vortex ring generator. HereT is the pe-
riod of vortex shedding,U is the translational velocity, andh
is the toroidal radius of the resulting vortex ring. It was su
gested that the final state of the problem is governed by
first few invariants of motion, namely the energy, impuls
and circulation. Note that any vorticity generation mech
nism has its own specific rate for the generation of th
invariants of motion. For a cylinder piston mechanism the
rates are given in Mohseni and Gharib.19 The physical expla-
nation is that for short strokes the system relaxes to a sm
steadily translating vortex ring. Increasing the stroke res
in a larger vortex ring. For high enough strokes~above the
formation number! the traditional cylinder piston mechanism
is not able to provide energy compatible with an equilibriu
state at the same circulation and impulse that maximizes
mixing entropy in the statistical equilibrium theory. This
an alternative explanation, besides the energy extremiza
in Kelvin’s variational principle, for the vortex ring pinch-of
process.
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APPENDIX: HAMILTONIAN FORMALISM OF
AXISYMMETRIC VORTEX FILAMENTS

We assume that the vorticity density distribution can
approximated by a combination of discrete axisymme
vortex filaments as

j~x!5(
i 51

N

cid~x2xi !.

Substituting this equation into the Hamiltonian~7! we obtain

H5p (
i 51

N

(
j 51

N

cicjM~xi uxj !,

whereM(xi uxj ) is given by~8!. One can use the symmetr
of the kernel functionM(xi uxj ) to simplify the double sum
in this relation. It can be easily shown that

]H

]xi
5ci

]

]x

]H

]j U
xi

and
]H

]yi
5ci

]

]y

dH

dj U
xi

. ~A1!

Hence using~A1! and j(x) the Poisson bracket ofj andH
can be represented by
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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$j,H%5(
i 51

N
1

ci
S ]j

]xi

]H

]yi
2

]j

]yi

]H

]xi
D .

Sincej obtains itst dependence throughxi we can substitute
j and $,% in Eq. ~10! to yield

ci

dxi

dt
5

]H

]yi
and ci

dyi

dt
52

]H

]xi
.

Note that these equations are similar to Hamilton equati
for point vortices in plane.
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