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principle and an explanation for the vortex ring pinch-off process

Kamran Mohseni®
Division of Engineering and Applied Science, 107-81, California Institute of Technology, Pasadena,
California 91125

(Received 10 June 2000; accepted 12 March 2001

Thermodynamics of vorticity density fieldss/r) in axisymmetric flows are considered, and the
statistical equilibrium theories of Miller, Weichman, and Cr¢Béys. Rev. A45, 2328(1992],
Robert and Sommeria. Fluid Mech.229, 291(1991)], and Turkingtorf Comm. Pure Appl. Math.

52, 781 (1999] for the two-dimensional flows in Cartesian coordinates are extended to
axisymmetric flows. It is shown that the statistical equilibrium of an axisymmetric flow is the state
that maximizes an entropy functional with some constraints on the invariants of motion. A
consequence of this argument is that only the linear functionals of vorticity density, e.g., energy and
total circulation, are conserved during the evolution of an axisymmetric inviscid flow to the
statistical equilibrium. Furthermore, it is shown that the final equilibrium state satisfies Kelvin's
variational principle; the mean field profiles maximize the energy compatible with the resulting
dressed vorticity density. Finally, the vortex ring pinch-off process is explained through statistical
equilibrium theories. It appears that only a few invariants of mofithe kinetic energy, total
circulation, and impulseare important in the pinch-off process, and the higher enstrophy densities
do not play a significant role in this process. Z01 American Institute of Physics.

[DOI: 10.1063/1.1368850

I. INTRODUCTION as coherent structures. There are some criticisms of point
vortex models: The infinite conservation laws of moments of
It is well known that the evolution of two-dimensional vorticity are not respected, the quantitative prediction de-
(2D) plane turbulence is dominated by the formation of co-pends on the representation of a continuous vorticity field in
herent vortices, see, e.g., Refs. 1 and 2. The formation afrms of point vorticegwhich is not uniqug and the maxi-
coherent structures in freely decaying 2D flows eventuallymum vorticity is not bounded by its initial maximum, as it
results in a quasisteady state; the velocity field becomes inshould be for 2D flows.
creasingly dominated by the larger spatial scales as time |n a recent work, Lim® derived a long range spherical
progresses, and the like-signed vortex regions merge intthodel for Kirchoff—-Helmholtz vortex gas,and subse-
increasingly larger vortices.Many numerical and experi- quently the 2D Euler equations. He showed that a certain
mental studies suggest that the formation of large scale strugpin-lattice Hamiltonian removes the nonuniqueness ambigu-
tures is mainly an inviscid process, and that the viscosity angty from the mean field theory of Onsageand Joyce and
dissipation only affect the fine scale motion. These studiefontgomery* He exactly solved the statistical equilibrium
lead to the idea of USing statistical mechanics to Understanﬂijeory of energy_enstrophy for the barotropic Vorticity equa-
these long-lasting structures in 2D incompressible flows.  tjon in the sense that an explicitly non-Gaussian configura-
The first insight into the equilibrium properties of 2D tjgn integral was calculated in a closed form.
flows as a Hamiltonian system, was provided by Onsager's To remove some of the limitations of theories based on
statistical theory of point vorticeswhich were later ex- point vortices, Miller, Weichman, and Cr(§s(’s(MWC) and
tended by Joyce and Montgoméhor high enough Rey- independently Robert and SommeriRS) developed a
nolds numbers, the enstrophy can decay significantly whilgnean field theory. Their resulting equilibrium state is calcu-
the energy is decaying by a negligible amount. Onsager preated by maximizing a mixing entropy constrained by the
dicted the formation of large scale vorticgegions of vor-  inyariants of motion, which are the energy, impulse, and the
tices of the same sigrin 2D Euler equations. For vortices in giohal probability distribution of the vorticity fluctuations. A
a confined region, Onsager noticed that contrary to statisticqiain criterion for the validity of their approach in predicting
thermodynamics, the temperature could be either negative gfe long term behavior of high Reynolds number flows is
positive. Therefore, for the negative temperatures the statiSpat the relaxation time for the system be shorter than the
tical probability of observing high energy states is higheriscous time scale. When this condition is satisfied the sys-
than for low energy states. The high energy states normallys, rejaxes to an almost equilibrium state, before the viscous
correspond to clustering vortices with the same sign, dubbegdstacts alter the integrals of higher moments of vorticity.

This raises the speculation that only a finite number of con-
dElectronic mail: mohseni@cds.caltech.edu straints might be sufficient for a useful equilibrium theory of
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2D flows, e.g., see Chorihand Chavanis and Sommelfa. liver energy, circulation, and impulse at a rate comparable
It has been noted that the statistical equilibrium theory ofwith the requirement that a steadily translating vortex ring
MWC-RS works remarkably well in the case of vortex has maximum energy with respect to kinematically allowable
merging and for large scale initial vorticity fields where the perturbations. As demonstrated in Sec. IV, Kelvin's varia-
relaxation is relatively violent and take place in a few eddytional principle (energy extremizationhas a close connec-
turnover times. On the other hand, when the initial conditiontion with the entropy maximization in statistical equilibrium
has significant small scale contributions the relaxation tdheory. Numerical evidence for a relaxation process to an
equilibrium takes much longer time and viscosity may alterequilibrium state has already been provided by Mohseni
the invariants of motion® ® Hence, strong discrepancies et al?°in a direct numerical simulation of the pinch-off pro-
can be observed when a prediction from the initial vorticity cess in vortex ring formation.
field is made. However, it was pointed out that if the con-  An interesting observation in this paper is the consis-
stants of motion are calculated from the vorticity field at latertency between Kelvin’s variational principle, dressed vortic-
times the agreement between the entropy maximization anidy density corollary, Turkington’s approach, and the experi-
the quasistationary state of a weakly viscous dynamicgnental and numerical observations that the first few
improves%3 To address Chorin’s speculati{‘_ajnjrurkingtoriL6 invariants of motion, namely the energy, impulse, and circu-
and Boucheret all’ recently developed a statistical theory lation, play the most significant role in the vortex ring pinch-
with a few constraints, where they replaced the equality conoff process. To this end, our results support Chotinand
straints on the general vorticity integrals in the MWC—RSTurkington's® idea of a mean field theory with a few con-
theory with inequality constraints. Some indications on thestraints. In this paper we take the first step in explaining the
validity of their idea in the vortex ring formation was con- vortex ring pinch-off process through a statistical equilib-
sidered in Sec. IV of this study. rium theory. The theoretical foundation has been laid out in
In this paper we are concerned with axisymmetric flows this paper and the details of the numerical experimentation
one of the simplest three-dimensional flows. Although axi-on the mean field equations will be postponed to a future
symmetricity is a limitation, a wide range of challenging publication.
problems reside in this category, including jet flows, vortex ~ Our objectives in this study are several. Following Szeri
rings, drops, and pipe flows. The severe difference betweeand Holme$' (also see Mohseff), in Sec. Il we derive an
the 2D and 3D turbulence is usually contributed to the vanexplicit expression for a canonical Poisson bracket of axi-
ishing of the vortex stretching term in 2D flows. While the symmetric flows which is similar to the Poisson bracket of
general vortex stretching term in the vorticity equation isthe 2D plane case. This Poisson bracket satisfies the Jacobi
missing in the axisymmetric flows as well, the existence of adentity (among other propertigsand therefore makes the
geometrical stretching term makes it more interesting thaspace of functions of vorticity density fields & (the vol-
2D Cartesian flows. ume occupied by the flu)dnto a Lie algebra. In Sec. Il our
Our main motivation for the study of long time behavior goal is to ask whether we can predict and explain the long-
of axisymmetric flows comes from our interest in under-time evolution of flows, such as those mentioned above,
standing the universal formation number of vortex ringwithout explicitly using dynamics. Costly dynamical simula-
pinch-off processes observed in experiments by Ghariltions and significant errors at long times make such a theory
et al,8 theoretical modeling by Mohseni and Ghatthand  attractive for investigating problems where the transient dy-
the numerical simulations of Navier—Stokes equations byramics are not of primary interest. In Sec. IV we show that
Mohseniet al?° In the laboratory, vortex rings can be gen- Kelvin's energy variational result can be deduced from the
erated by the motion of a piston pushing a column of fluidstatistical equilibrium equations. An explanation of the vor-
through an orifice or nozzle. The boundary layer at the edgéex ring pinch-off process as a relaxation of an axisymmetric
of the orifice or nozzle will separate and roll up into a vortexvortical system to its final equilibrium state, predicted by the
ring. We think that since the formation of vortex rings in- Statistical equilibrium theory, is also considered in this sec-
volves strong mixing of the generated shear layer with thdion. Finally, the concluding remarks are presented in Sec. V.
ambient fluid, the ergodicity requirement of statistical equi-
librium theory has a chance to be satisfied. The experimenté. GOVERNING EQUATIONS AND POISSON
of Gharib et al!® have shown that for large piston stroke BRACKET

versus diameter ratios (D), the generated flow field con- In this section we study the Hamiltonian structure of
sists of a leading vortex ring followed by a trailing jet. The gyisymmetric flows. It is not obvious how to develop a sta-
vorticity field of the formed leading vortex ring is discon- fisiical mechanics theory without a Hamiltonian. Once the

nected from :c‘hat of the trailing jft at a critical valueloD  yamiltonian is given, very few choices in the development
(dubbed the “formation numbey; at which time the vortex ¢ ine theory remain.

ring attains a maximum circulation. The formation number  ~gnsider an axisymmetric, inviscid, homogeneous, and
was in the range of 3.6—4.5 for a variety of exit diameters’incompressible flow in a 3D axisymmetric regiéh The

exit plane geometries, and nonimpulsive piston velocitiesvebcity u(u,,0u,) of this flow is governed by the vorticity
An explanation for this phenomenon was given based oRy,qution equation

Kelvin's variational principle. It was both experimentafly

and analytically’ observed that the limiting stroke/D oc- 5_w+u £+u do U
curs when the generating apparatus is no longer able to de- 4t ) "or r

, €y
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au,  duy wherex=xi,+yi,, du=dxdyis the area element if},,
o=(AXU)p="—— " (2)  and the kerneM(x|x') is defined b¥*

U, »/r term on the right-hand side of the vorticity equation M(x|x")= .
(1) is the geometrical vortex stretching. This term is absent +2y+2y’'—4\yy’' cosf
in the 2D vorticity equation in Cartesian coordinates. (8)
The governing system consists of a transport equatio
(1) coupled with the elliptic systen2) and the continuity
equationV-u=0. We would like to use a formulation in
terms of the “vorticity density”¢ defined ag= w/r. At any
instant, the velocity field can be described by the Stokes {F,G}zf f(x){
stream function) defined by
1y 19y where

The scalarw is the azimuthal component of vorticity. The Vyy' J'zw cosfdé

railearly the kinetic energy is conserved by the flow. Now, we
define the Lie—Poisson bracket

oF oG

u=——; u )
oroor r r ox

_odf ag g ot
Using the transformatioy=r2/2, one may recast the final {f.o1= 7% Jay  Ix dy

set of equations as
is the canonicalx,y) Poisson bracket. One may ué® to
% ._‘9_5 ‘9_"0 &_g_ ‘9_"0 a_g =0 ) show that
Dt ~at gy ax axady

gt:{gaH}! (10)
and
Py 1 Py which is another form of the vorticity density evolution
L()i=——s+ 5= =7 =& (4  equation. It is not known whether there exists a pair of ca-
ays 2y dx nonical coordinategfunctionals ofé) which diagonalize the

A suitable phase space for this system is the spacg'of bracket(9). However, what is required in statistical equilib-
defined on the physical space occupied by the fluid. Thélum theory is an invariant measure on the phase space,

natural choice for the Hamiltonian is the kinetic enefgyth ~ Which will be provided by Liouville’s theorem. Therefore,
unity density given by neither the existence of the canonical coordinate nor the ex-

istence of the Lie—Poisson brack8) is required in the sta-
tistical equilibrium theory. The dynamics of the Euler equa-
tions preserves phase space volumes, i.e., the flow in the
phase space is incompressible. The ergodic hypothesis as-
cribes weights in proportion to phase space volume. There-
fore, the phase space flow preserves relative probabilities in

H—lf 2dv 5
_E R3u ] ()

wheredV=r dr dx dé represents the volume element. In the
case of axisymmetric flows without swirl, one can write

the chosen variables. It also follows that the new radial vari-
H==| (u2+u®rdxdr : oal i
o X abley is necessary to compensate for the geometrical in-
' crease in the volume element of the-r space;dxdy
P Ay =rdx dr. Finally, we would like to note that similar results
B P R P dxdr have been obtained by Szeri and HolAtés considering the

nonlinear stability of axisymmetric swirling flows.
A(uyh)  a(u,ih) Equation(3) implies that there are an infinite number of
:WJQ,(MM_ o ax )dxdr conserved vorticity density integral§,,,f(£)du, for any
path »(t) moving with the fluid wherd is an arbitrary func-
tion. Therefore, one can define an infinite number of con-
:77[ L) wypdxdr— % luxdx+uy dr)] served quantities for the Euler equati¢® which can be
' characterized by

=1 dx dy— u,dx+u,dr)t, 6

( fﬂygw y }Q U X+ Uy )] (6) - L) s an
where (), is the half space=0, and(), is the half space g
y=0. By appropriate assumptions on the behavior of theé~ollowing the form of the Lie—Poisson brack® it follows
flow field near the boundaries we can ignore the second terrifat these conserved quantities are Casimirs. Finally, one can
on the right-hand side of E@6). Therefore, we can write the verify that the linear momentum
kinetic energy(also called the excess kinetic enefijyas

1 R
, , , P=§f (xX w)XHdV=27TJ &y du (12
H=7Tfﬂ §l//d,u=77f f MX|X")EX)E(X ) dp dp', aQy
y

(7) is also an invariant of motion.
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The Poisson brackd®) that we have derived for axi- Now the coarse-graine@acroscopig equilibrium vorticity
symmetric ideal flows is similar to the canonical Poissondensity£(x) is defined ag(x) = fno(x,o)odo. The coarse-

bracket of the 2D plane flows. It satisfies the Jacobi iden- grained equilibrium stream functiaf is related tozthrough

tity (inherited from that fof,},, , as is generally the case for £q (4). Note that the macrostates have fluctuations in vor-
Lie—Poisson bracketsamong other properties. Therefore, ticity density, but aa? is obtained by an integration of vor-

gélllstsabuz ?Lg deubcrglénonr%cn;ggfreoxrgiﬁetg|§ bEtillgrtge usaa_m%icity density, there are no fluctuations in the stream function.
tions Witﬁ/ axial s mmetF; q For a system with very small viscosity, we expect that these
y Y. fluctuations will be smoothed out, so that the resulting steady

The Hamiltonian structure of axisymmetric vortex fila- flow becomes the actual final state of the system. Finally, the
ments has been known for more than a century, see, e'%htropy is defined by

Shariff et al?” and references therein. The Hamiltonian for-
malism of vortex filaments can be considered as a special

case of the field Hamiltonian formalism of this section. We — S= _f No(X,o)INNg(X,0)do dpe. (14

refer to the Appendixsee also Mohseff) for a derivation of

the Hamiltonian formalism of axisymmetric vortex filaments Now the standard methods of statistical mechanics can be
from the field Hamiltonian. Now that the Hamiltonian for- used. We started from a Hamiltonian system which gives the
malism for axisymmetric flows is established, we can pro-dynamics of a great number of particles and which is the

ceed with our development of statistical mechanics of vormicroscopic level of description of the system. Then, at a
ticity density fields. macroscopic level, we consider some relevant means, which

we call macroscopic observable. To these two levels of de-
scription we associate an entropy functional using Boltz-
IIl. STATISTICAL EQUILIBRIUM THEORY mann’s formulaS=klogW, whereW is the volume occu-

In this section we will extend the statistical equilibrium Pied in the phase spaceendowed with the invariant
theories of MWC—RS and Turkington for 2D plane flows to Liouville measurgby the set of all the microstates giving the
axisymmetric flows. In doing so we assume ergodicity, i.e.S8Mme macrostate. Maximizing the entropy functional then
that the dynamics of the flow samples all the phase Spacgives the equilibrium states. The entropy functional in Eqg.
consistent with the conservation laws. The treatment we dé-14) represents the logarithm of the number of possible vor-
scribe is to cast the problem as a variational problem witHiCity configurations associated with a final macrostate.
constraints. The maximization of an entropy functional will  The equilibrium state is obtained by maximizing the
then result in the equations for statistical equilibrium of theMixing entropy,(14) subjected to the constraints of motion
flow. The derivation technique is basically the same for botH11)—(12) and the normalization conditiofl3). We write
MWC-RS and Turkington’s theories. Therefore, we first ex-these (Enstraints in terms of the Iocally_averaged vorticity
tend MWC—RS theory to axisymmetric flows. By relaxing densityé and the associated stream functipnThe resulting
the equality constraints on the generalized vorticity densityconstrained variational problem can be treated by introduc-
to inequalities, we can then obtain the maximization problening the Lagrange multipliers such that the first variations
for Turkington’s method. satisfy

The governing equations are given 8) and (4), and
the conserved quantities of the axisymmetric Euler equations
are H, P, and the infinite series,. The conservation oP 5S—B5H—,6’f a(0)dy(o)do
results from the absence of global pressure forces inxthe
direction. Note thaH and |, are conserved in the general _f {(X)8
case for any domaifil. By contrast the conservation of the
physical momentun is specific to a given geometry.

In the axisymmetric Euler equatio(B8), the vorticity
density ¢ is a material property. This implies that the total
area fraction occupied by each vorticity density levels
conserved. We call this quantity the global probability distri-
bution of vorticity densityy(o). The distribution function
no(x,o) is defined as the locébut coarse-grainggrobabil-
ity of finding the vorticity levelo in a x neighborhood.
Thereforeng(x,0) may be considered as the local density of
the vorticity density with strengtlr. This distribution func-
tion satisfies the normalization conditigimcompressibility F=S-BH _ﬁf a(a)y(o)do

Jnodcr)d,u—,BUc?P:O, (15)

whereg is the inverse of the temperatuigo) is the chemi-

cal potential of species, andU is the translation velocity. In
general, energy or temperature may be considered as an in-
dicator of how closely the vorticity is packdéde will come

back to this point latgr The final state can be considered
either as a critical point of the entropy for any admissible
perturbations(that satisfies the invariants of motjoror
equivalently, as a critical point of the free enerigy?

f No(x,0)do=1. (13

—J’ j {(X)ngdodu— BUP. (16
Subsequently(11) may be recast as the conservation of
y(o)=[ng(X,0)du=[8(c—&(X))du. Physically, y(o)  The resulting distribution function is a Gibbs state of the
measures the fractional area covered by the vorticity level form
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no(x’o_):ef,B[Zmr(JerU)+a(rr)]f175. 17) Turkilngton’s methpd can be easily exterj.ded' to the axi-
symmetric flows of this study by some modifications of the
Using the normalization constraift3) we can remove the theory developed in this section. It can be easily shown that,
Lagrange multiplier{ to obtain the resulting distribution unlike H, the generalized enstrophy density depends on

function the smallest vorticity fluctuations. In our extension of the
_ MWC-RS theory to axisymmetric flows the generalized en-
g~ Al2mo(y+yU)+a(0)] strophy densities were treated the same as the total kinetic
No(X,0) = (18 energyH. However, in extending the Turkingtoet all51’

—Bl2ma(ytyU)+a(o)]d,, . . . .
Je do model to axisymmetric flows the equality constraints on the

A differential equation fors may be obtained by multiplying generalized enstrophy density in the axisymmetric maximum
both sides 0f18) by o and integrating entropy principle is relaxed to a family of convex inequality
constraints. This approach is compatible with the experimen-
— — tal observations and numerical simulations of the vortex ring
— &y 1y 1 d inch-off process discussed in Sec. IV
L(P)im—et — — = —— —InZ, 19 P P SV
ay> 2y ax* 2wB dy
IV. KELVIN'S VARIATIONAL RESULT AND VORTEX

where the partition functiotf is given by RING PINCH-OFE PROCESS

Kelvin's variational principle was recently applied in ex-
plaining the vortex ring pinch-off proced8.In this section

The partition function relates the properties of the micro-Ve investigate the relation between Kelvin’s variational prin-

/ ) . - ple and the statistical equilibrium theories of Sec. Ill. This
scopic system, and it provides all the statistical parameters of . . . .
. S will offer another explanation of the vortex ring pinch-off
a macroscopic system. The Lagrange multipligrdJ, and

functions a(o) are determined by the initial conditions, process based on th_e staustuca_xl equilibrium theory.
A general variational principle due to Kelffhcharac-

Z(_):f e*ﬂ[Zm(JWUHa(rr)]do.' (20)

namely terizes steady flows in a 2D ideal fluid as the stationary val-
efﬁ[zw@wwm(o)] ues of the kinetic energy for given circulation and hydrody-
'y(O')Zf — du, namic impulses, with respect to kinematically allowable
Z((X)) perturbations. Kelvin states the principle without proof as
being obvious to hin{see Secs. 4 and 18 of Kelvfin The
E= _Wf Eg(%d#, (21) conceptual basis of this theory has been furnished by

Benjamin®! whose work is especially noteworthy because it
_ connects the abstract variational principles with concrete
PZ—ZWJ yL(¢p)dp, model problems in ideal fluid dynamics. Conceptually, this
variational result leads to a formulation of the general math-
the global conservation of vorticity density(o), energyE,  ematical problem entirely in terms of the natural physical
and the linear momenturR, respectively. The equilibrium invariants associated with the equations governing vortex dy-
states are not steady in general but translate uniformly witlhamics: energy, impulse, and circulation. A one-parameter
velocity U. In the case of nonvanishing circulation, we canfamily of such solutions was presented by Norbtfryar?
change the frame of reference to the one moving with thetudied the maximization property of a limiting case in Nor-
center of vorticity density, wherB=0. The stream function pury families, namely Hill's spherical vortex. Both Kelvin's
in this case is obviously+yU. Knowing the invariants of approach and the statistical equilibrium theory are of varia-
motion and the Lagrange multiplier2,will be only a func-  tional types concerning the equilibrium states of Euler equa-
tion of ¢, and therefore, Eq19) will be of the form L( ) tions. While Kelvin prefers extremization of an energy func-
= f(@_ tional, in statistical equilibrium theory it is the maximization
Chorin'! recently indicated that a few constraints might of @ mixing entropy that determines the final equilibrium
be sufficient for a reasonable theory of statistical equilib-state. Consequently, one might expect that a close relation
rium. Subsequently, Turkingtoat al!®1’ presented a statis- €Xists between the final equilibrium states predicted by these
tical equilibrium theory for the 2D Euler equations based ontwo approaches. In this section we show that the equilibrium
a few constraints, where they criticized the implicit assump-solution predicted from the statistical equilibrium the¢ey-
tion in the MWC—RS theory that the microstate vorticity on tropy maximization satisfies an energy extremization similar
the lattice satisfies the same constraints as the vorticity soldo Kelvin's approach with a few explicit constraints.
tions to the Euler equations in the physical domain. Conse- An input to the statistical theories of the previous section
quently, in Turkington’s model the family of enstrophy con- is the initial vorticity density distributioré(x), or equiva-
straints relaxes to inequalities. The diverging point betweerently the invariants of motion in the form of Casimirs. How-
the MWC—RS technique and Turkington’s method is the cal€ver, in most practical applicatior®.g., the Red Spot of
culation of the mean vorticity distribution from the general- Jupiter and vortex ring pinch-off procé$$9 our informa-
ized enstrophy density and the prior choice of the probabilittion on the initial condition is very limited. What is usually
measure. measurable is the finite resolution vorticity distributiéfx).
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Therefore, the only measurable distribution function is thestate is the one that maximizes the energy consistent with the
dressed distribution functiotas defined for the 2D case in y4(0), i.e., its isovortical perturbations. Note that the higher

Ref. 9 enstrophy densities are not explicitly specified in Kelvin’s
o variational principle(in contrast to Arnold’s approac).
'yd(O')=f Slo—&)du. (22)  Since the energy, circulation, and impulse of the system are

conserved during the equilibrium process, the final solution
Here, y(o) is the initial distribution function and/y(o) is  of the statistical equilibrium theorfor equivalently dressed
the distribution function observed on any finite length Scalevorticity density corollary satisfies the requirements of
Note that£(x) is a smooth function except f@8— = and  Kelvin's variational principle. It is interesting to note that the
that in general the vorticity distribution functiopy (o) de-  conservation of energy, circulation, and impulse have a con-
rived from the mean field profilg is not the same ag (o).  sequential effect on the dressed vorticity density corollary,
In the process of statistical equilibrium, when going from theke|vin's variational principle, and Turkington’s model,
microscopic description to the macroscopic description, it iy ile the higher generalized enstrophy densities seem to be
natural that a major part of the information abo‘ﬁ .the det"’?'Isinsignificant in the final state of the system. The connection
of the small scales is lost. Therefore, the vorticity dens'tybetween the equilibrium states predicted by the statistical

conservation lawg11), except for the total circulatiomh, o . .
are all violated on the macroscopic scale. No other momen?qu'“b”um theories and the steady state solutions of the Eu-
ler equations is clear in this argument.

of the vorticity density is necessarily the same for bgtind e o )
y4. In this process only the energy, circulation, and impulse An implication of the dressed vorticity corollary is that

are conserved both on the fine scales and on the coardg@r a fluid in statistical equilibrium, coarse-grained quantities
scales. In general, when using the final vorticity distributionsuffice to determine the equilibrium. Chavanis and
from the statistical equilibrium theory, only linear function- Sommerid® showed that in the limit of strong mixing the
als of vorticity are conserved. Although it is impossible to higher enstrophy densities do not have a significant effect on
experimentally infery (o) from the equilibrium state alone, the final equilibrium state predicted in the theory of MWC—
one can make partial predictions by knowing(c). Thisis, ~ RS. This observation is also consistent with Turkington’s
in fact, consistent with the observations in 2D Euler or hightheory!® Therefore, it is expected that our equilibria might
Reynolds number Navier—Stokes equations, where it is Welbarsist in the presence of a viscosity acting to smear the
known that there is an inverse cascade of energy to lar9€mall scales. An equivalent way of stating this result is that
scales and a forward cascade of enstrofsegond integral of }he long-time dynamics of an inviscid fluid will evolve to a

vorticity |,) to smaller scales. Therefore, by measurement o ) ) o
yl2) y configuration which is a global extremum of the energy, sub-

finite resolution one might expect to recover almost all of the, s he | . icity distrib
initial kinetic energy of the system, while the conservation of{[_eCt to satisfying the long-timédressedl vorticity distribu-
ion.

enstrophy will be violated. L . . .
Following Miller et al.® a dressed vorticity density cor- Our motivation for studying axisymmetric flows comes

ollary is in order:&(x), the averaged vorticity density field, from our interest in the formation of coherent vortical struc-
is the maximum energy solutidigorresponding td —0~ or  tures in jets and at the exit of nozzles. An interesting prob-
B— —x) of the statistical equilibrium equations with con- lem, in this context, is the pinch-off process in vortex ring
straint functionyg(o) (note that the negative temperaturesformation at the exit of a nozzle in cylinder—piston mecha-
correspond to the clustering of vortices with the same)sign nism; see, e.g., Gharitt al® for experimental observations,
For the maximum energy solutiolyy(a) = y(o). The proof  Mohseni and Gharit for modeling, and Mohsergt al ° for

is analogous to the proof for a similar corollary in 2D turbu- computational results. For large piston stroke versus diam-
lence in the plarfeand it is not repeated here. Althoughis  eter ratios /D), the generated flow field consists of a lead-
in general different fromy, a consequence of the above ar-jnq yortex ring followed by a trailing jet. At a critical value
gument is that at a given energyy results in the same ¢ /p (dubbed the “formation numbel’ at which time the
equilibrium solution asy. Furthermore, the given energy vortex ring attains a maximum circulation, the vorticity field

wi:ﬂsyom to be precisely the maximum energy compa‘ubleof the formed leading vortex ring is disconnected from that
d .

Note that aside from the total kinetic energy and hydro_of the trailing jet. An explanation for this phenomenon was

dynamic impulse the total circulatioh, is also preserved given based on Kelvin's variational principle. It was both
during the equilibrium process, i.e. experimentally® and analytically® observed that the limiting
stroke L/D occurs when the generating apparatus is no
J Uy(U)dU:J oyq(o)do. (23) longer able to dellyer energy,. circulation and |mpulse at a
rate comparable with the requirement that a steadily translat-

However, in general the conservation of any other generalnd VOrtex ring has maximum energy with respect to kine-
ized enstrophy density integralsg would be violated. Now matically allowable perturbations. The formation number
the connection between Kelvin's variational principle andwas observed to be in the range 3.6—4.5 for a variety of
the dressed vorticity density corollary is clear: for a systemexit diameters, exit plane geometries, and nonimpulsive pis-
with fixed circulation and impulse the statistical equilibrium ton velocities.
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Inspired by these observations we offer a relaxationalty density corollary the connection between the statistical
(statistical approach to the pinch-off procé$€’ This is an  equilibrium state and Kelvin's variational principle was in-
alternative explanation of the vortex ring pinch-off process,vestigated. The maximum entropy state predicted by the sta-
based on a mixing entropy maximization, besides the energgystical equilibrium theories satisfies Kelvin's variational
extremization approach in Kelvin's variational principle. principle (energy extremization
From this point of view, any vortex ring generator can be  Statistical relaxation of axisymmetric flows offers an ex-
viewed as a tool for initializing an axisymmetric flow with a planation for the vortex ring pinch-off proce¥5?°the sys-
particular rate of the generation of invariants of motion. Eachtem relaxes to an equilibrium state from its initial configura-
vortex ring generator has a specific rate for feeding the flowion dictated by the stroke ratib/D in the cylinder—piston
with the kinetic energy, impulse, circulation, etc. In this pic- mechanism of vortex ring generation or more generally by
ture, at small strokemallL/D) one will find that all of the  TU/h for a general vortex ring generator. Hefas the pe-
initial vorticity density will coalesce into a steadily translat- riod of vortex sheddingy is the translational velocity, arfd
ing vortex ring. As the stroke increases the size, strength, and the toroidal radius of the resulting vortex ring. It was sug-
the translational velocity of the resulting vortex ring in- gested that the final state of the problem is governed by the
crease. This process persists until a critical formation numbéifirst few invariants of motion, namely the energy, impulse,
is reached, when the vortex generator is not able to providand circulation. Note that any vorticity generation mecha-
invariants of motion compatible with a single translating vor-nism has its own specific rate for the generation of these
tex ring. Equivalently, beyond the critical formation number invariants of motion. For a cylinder piston mechanism these
a single vortex ring at equilibriurtsteadily translatingthat  rates are given in Mohseni and GhatibThe physical expla-
maximizes the mixing entropy for given energy, impulse,nation is that for short strokes the system relaxes to a small
and circulation is not possible. In this case the leading vortesteadily translating vortex ring. Increasing the stroke results
ring will pinch-off from the trailing jet and will relax to a in a larger vortex ring. For high enough strokebove the
translating vortex ring with the translational velocltydic-  formation numberthe traditional cylinder piston mechanism
tated in the maximum entropy principle. For very largeis not able to provide energy compatible with an equilibrium
strokes(greater than twice the critical formation numper state at the same circulation and impulse that maximizes the
successive vortex rings will pinch-off from the the trailing mixing entropy in the statistical equilibrium theory. This is
jet. This scenario was verified in the numerical simulationsan alternative explanation, besides the energy extremization
of the vortex ring pinch-off process in Mohseetial?° The  in Kelvin's variational principle, for the vortex ring pinch-off
general observation in these simulations was that the maiprocess.
invariants of motion in the pinch-off process are the kinetic
energy, circulation, and impulse. The higher enstrophy denACKNOWLEDGMENTS
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V. CONCLUSIONS APPENDIX: HAMILTONIAN FORMALISM OF
_ _ S o _ AXISYMMETRIC VORTEX FILAMENTS
The equations derived in this investigation give relaxed

end-states of the axisymmetric Euler equations and are be- W€ assume that the vorticity density distribution can be
lieved to be closely related to the forced and slightly dampedPProximated by a combination of discrete axisymmetric
turbulent dynamics of Navier—Stokes equatidi@ostly dy-  Vortex filaments as

namical simulations based on the Euler or Navier—Stokes N

equations and significant errors at long times make such a §(x)=2 Ci O(X—X;).

theory attractive for investigating problems where the tran- =1

sient dynamics are not of primary interest. The resulting soSubstituting this equation into the Hamiltoniéf we obtain
lutions of these statistical equilibrium theories are in fact the NN

equilibri_um solutions to t_he axisymm_etric Euler equations, H=772 2 CiCjM(Xi|Xj),

constrained by the invariants of motion. We observed that =1 j=1

while the infinite number of Casimir&nstrophy densities here/\/l(xi|xj) is given by(8). One can use the symmetry

miriglri)r?;?rm Ic?vxf(re]r?sd:fv\?l)orggi]te nggats?te t&igg&:ghe%?;ﬁof the kernel functionM(x;|x;) to simplify the double sum
. po Y "ty S 331 this relation. It can be easily shown that

physical scale will not be the same as in the initial state an

can be relaxed as was suggested by Turkingtoal, 61’ H 9 oH JH d 6H

Chorin!! and Chavanis and SommeffaThe only apparent . Ciox 9E and ay. gy se|

conserved quantities are the energy, impulse, and total circu- i %

lation. In fact, these conserved quantities are explicitly speciHence using/Al) and ¢(x) the Poisson bracket agf andH

fied in Kelvin's variational result. Through a dressed vortic-can be represented by

(A1)
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