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Electron vortices in semiconductors devicesa…
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The hydrodynamic model of electron transport in semiconductors is analyzed and, in analogy with
vortices in fluid mechanics, the curl of electron velocity is defined as electron vorticity, and the
transport equation for the electron vorticity is derived. Aside from the classical hydrodynamic
sources of vorticity, collision terms in the continuity and momentum equations are identified as
sources and sinks of electron vorticity. Similar to three-dimensional fluid flows there is a vortex
stretching term in the vorticity equation. This term could be responsible for the possible cascade of
electron kinetic energy to small scales and formation of chaotic turbulent electron transport regimes.
A scale analysis of the electron vorticity equation is performed and the relative order of magnitude
of each sources of vorticity is found. This analysis and the calculation of electron mean-free-path
due to electron–electron and electron–phonon scatterings characterize a transport regime with
significant electron vorticity effects. Furthermore, conditions for observation of electron vortices in
semiconductor devices are predicted. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1990215�
I. INTRODUCTION

A dramatic decrease in size and increase in the speed of
electronic devices has been observed in recent years, and the
number of transistors in microelectronics has increased with
an exponential pace. While current trends may continue for a
while, inevitable road blocks loom. It is not clear how long
this exponential path can be extended. More radical tech-
nologies and exploring new regimes of electron transport are
needed in the hope of leapfrogging some of these road
blocks and exploring new phenomena and designing new
devices.

Electron transport in two-dimensional electron gas
�2DEG� exists in three regimes: ballistic, quasi-diffusive, and
diffusive. The distinction between these three regimes is de-
fined by the relative magnitude of electron–electron scatter-
ing length, electron–phonon scattering length, and the size of
the device. The diffusive transport regime for 2DEG has
found application in high electron mobility transistors. There
has been extensive research to include quantum mechanical
effects1,2 where the wave nature of electrons plays an impor-
tant role in the device operation. To this end the ballistic
transport regime has been studied extensively with the obser-
vation of conductance quantization, quantum Hall effect, and
fractional quantum Hall effect. The intermediate regime of
the quasi-diffusive transport has been the focus of less atten-
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tion. The quasi-diffusive transport effects in 2DEG have in-
cluded shallow water analogy and terahertz sources.3–6 What
distinguishes quasi-diffusive regime is that the electron tem-
perature is high enough so that many energy levels are oc-
cupied and there is no conductance quantization or coherent
electronic effects. This regime is beyond the Landauer–
Buttiker formalism. In addition, the electron density is high
enough for the electron–electron scattering distance to be the
shortest length scale in the system. Because of the high tem-
peratures, one can use the Hartree approximation and the
relevant equations to describe electron motion are the Bolt-
zmann transport equation and the Poisson equation.

The transport of electrons and phonons can be described
by three distinct classes of physical models:

• Monte Carlo models,
• hydrodynamic models,
• drift diffusion models.

See also Table I. At the most basic level, the individual
particle–particle interactions are simulated for a representa-
tive subset of the particles using the Monte Carlo method. In
Monte Carlo technique the trajectory of a statistically signifi-
cant number of particles in momentum and physical space
are simulated �e.g., Shur7�. There has been a considerable
amount of research on the Monte Carlo methods8,9 to con-
sider effects such as velocity overshoot and improved mod-
eling of heat generation in devices.10,11 This approach is eas-
ily extendible to time scales, as short as femtoseconds and

length scales down to a few nanometers. In most cases a
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detailed simulation of all of these particles is computation-
ally unfeasible. One approach is to use distribution functions.
To this end, the evolution of the distribution function in
space and time is governed by the Boltzmann transport equa-
tion �BTE�. The Boltzmann transport equation is essentially
a particle number balance equation. Solving the BTE re-
quires a complete calculation of the electron distribution
function. However, a more practical approach is to solve
moments of the Boltzmann transport equation that enforce
the conservation of charge, energy, and momentum without
requiring detailed knowledge of the particle distribution
functions. This is the hydrodynamic model of electron
transport.12,13 Apart from the lower computational costs of
these models �cf. Ref. 14�, their similarity to the flow of
compressible fluids provide an almost unlimited supply of
theoretical and computational tools. This approach is espe-
cially important in fluid systems where the particle flow of-
ten has structure such as boundary layers and vortices. This
sort of structure has recently been investigated in phonon and
electron systems.15,16 Finally, at the longest time and length
scales the flow of particles can be described by the drift-
diffusion equations, which are currently used for the design
of transistors, lasers, and integrated circuits. These equations
assume quasi-thermal distributions. This approach is the
most widely used semiconductor device simulation tool and
it is based on a coupled solution of the carrier drift-diffusion
equations and the Poisson equation. The drift-diffusion equa-
tions can be derived from the Boltzmann transport equations
by taking the first two moments and making simplifying as-
sumptions. The main advantages of the drift-diffusion equa-
tions are their simplicity and that their numerical simulations
are fast. However, the drift-diffusion equations neglect non-
stationary transport effects and energy dependent phenom-
ena. These effects are usually negligible in large- and low-
power devices. However, such effects are of increasing
importance in state-of-the-art submicron feature length semi-

TABLE I. Multiple scale electron transport in dope
device, le-ph=Average mean free path due to electron
electron/electron interaction, �=Wavelength of elec
doped semiconductors.
conductor devices.
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In this paper we will analyze the problem of electron
transport from a hydrodynamic point of view. To this end, it
is curious why electron flows in semiconductors have not
shown the same rich spatial or temporal structures as in con-
ventional fluid flows �viscosity, vortices, laminar flow, turbu-
lence, Reynolds number effects, etc.�. While the governing
equations in conventional fluid dynamics are the Navier–
Stokes equations, in semiconductors one often employs the
drift-diffusion/Boltzmann transport equations �of course,
quantum mechanics is used at very small scale�. This inves-
tigation is aimed at a better understanding of the analogy and
differences between electron and conventional fluid flows.
Both the Navier–Stokes and the drift-diffusion equations can
be derived from the moments of the Boltzmann transport
equation. As discussed in the following sections, under some
conditions, electron flow is dominated by the applied electric
field and lattice scattering. In this case the drift-diffusion can
accurately describe electron motion in a crystal. However, as
device dimensions shrink below electron–phonon scattering
length, ballistic effects become important and drift-diffusion
is not valid anymore. Monte Carlo simulations are typically
used to study device characteristics in the ballistic regime.
Since Monte Carlo simulations are computationally inten-
sive, one cannot easily simulate complicated electron flow
patterns. In this study we focus on the hydrodynamic elec-
tron flow structures in semiconductors. In analogy with fluid
vortices, the curl of electron translational velocity is defined
as the electron vorticity. An electron vorticity equation is
also derived and used to investigate many aspects of electron
flow structures. We found that in a certain range of electron
concentrations and temperatures, electron vorticity could be
observed. This new regime of electron transport could be
used in the design of novel devices. The current investigation
is focused on electron vorticity and its associated transport;
see also Mohseni et al.17,18 Recently, numerical evidence for

iconductors. L=Characteristic length scale of film/
non interaction, le-e=Average mean free path due to
. Typically �� le-e� le-ph in the case of moderately
d sem
/pho
trons
quantum vortices in semiconductor devices was reported in
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electron waveguide structures19 and dopant induced vorticity
in quantum devices.20,21

This manuscript is organized as follows: In the next sec-
tion we consider the governing equations for electron trans-
port in semiconductor devices. We systematically derive the
electron vorticity transport equation in Sec. III where simi-
larities and differences with the vorticity equation in fluids
are clarified. In general, turbulent flows exhibit high levels of
fluctuating vorticity, and the vorticity equation plays an im-
portant rule in the study of turbulence. In Sec. IV we perform
a scale and order-of-magnitude analysis on the electron vor-
ticity equation to obtain the relative importance of each
source term in various transport regimes. Specific example of
transport in 2D electron gas in GaAs is studied in detail and
range of carrier concentration, temperature and device di-
mension for which electron vorticity can be observed is
given. Concluding remarks are provided in Sec. V.

II. GOVERNING EQUATIONS

The Boltzmann transport equation for electrons moving
with the group velocity u in an electric field E can be repre-
sented as

�f

�t
+ u · �x f −

e

m
E · �u f = C , �1�

where e is the electron charge, m the effective electron mass,
C the Collision term, f�x ,u , t� the distribution function for
the electrons, x the space variable, and t is time.

The first three moments of the Boltzmann transport
equation �1� in the velocity space are the balance equations
for the flux of electron, momentum, and energy. These equa-
tions are represented as follows:22

�n

�t
+ � · �nv� = Cn, �2�

�p

�t
+ v�� · p� + �p · ��v = − enE − � · P + Cp, �3�

m
�

�t
�n�1

2
�v�2 + eI	
 + m � · �vn�1

2
�v�2 + eI	


+ � · �vP� = − env · E − � · q + CW. �4�

Here, n is the electron concentration, v is the translational
velocity, p is the momentum density mnv, P is the pressure
tensor, q is the heat flux, eI is the internal energy, and Cn, Cp,
and CW represent moments of C, i.e., moments of the colli-
sion terms. These equations are supplemented by the Poisson
equation �in the quasi-electrostatic limit� for the electric po-
tential �

E = − �� , �5�

� · �� � �� = − � eini − k1, �6�

where k1ªdoping concentration and �ªdielectric constant.
For devices in which the quasi-electrostatic approximation is
not accurate enough one needs to use the full Maxwell’s

equations �see e.g., Ref. 23�.
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While there are many similarities between the compress-
ible fluid flows and the electron transport in semiconducting
materials the applied electric force to charged particles �elec-
trons� introduces some fundamental differences with fluid
flows that are summarized below:

• Electric fields are the deriving forces in electron transport
and are missing in most fluid flows. Note that electric
fields, E, are curl free, i.e., ��E=0. Therefore E does not
explicitly appear in the electron vorticity transport equa-
tion �see the next section�.

• There is no lattice scattering �phonons� in fluid flows. In
electron transport the lattice scattering tends to destroy
structures such as electron vortices �see the next section�.

• There is no electron recombination in fluid flows.

These differences introduce new characteristics that are
investigated in the following sections.

III. ELECTRON VORTICITY TRANSPORT EQUATION

In analogy with fluid vortices, the curl of electron trans-
lational velocity is defined as the electron vorticity. Here we
follow the fluid dynamics approach �e.g., see Batchelor24� to
derive an equation for electron vorticity transport. Using the
continuity equation we can write the curl of the acceleration
term as

� �
Dv

Dt
= n

D

Dt
���

n

 +

Cn

n
�� − ��� · ��v , �7�

where �� is the electron vorticity vector ��v, and

D

Dt
ª

�

�t
+ v · � , �8�

is the material derivative. This is, in fact, the modified Bel-
trami vorticity equation25 that includes sources due to elec-
tron generation and recombination. Noting that ��E=0,
and using Eqs. �7�, one can calculate the curl of the momen-
tum Eq. �3� to obtain

n
D

Dt
���

n

 − ��� · ��v = − � � � 1

mn
� · P


+ � � � 1

mn
�Cp − mCnv�
 −

Cn

n
�� . �9�

In the relaxation time approximation, the collision terms
are modeled as

Cn = − R , �10�

Cp = −
p

�p
, �11�

CW = −
W − W0

�w
, �12�

where R is the recombination rate and �p and �w are the
momentum and energy relaxation times, respectively.

Now we need a constitutive law �moment closure� for
26,27
the pressure tensor P. For simplicity, we consider an in-
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viscid model, where we assume that the pressure tensor can
be represented in terms of the effective carrier temperature T
by an ideal gas law relationship

P = nkTI . �13�

Here I is the identity tensor, and k is the Boltzmann constant.
Therefore, the vorticity equation �9� can be written as

n� �

�t
+ v · �
���

n

 = ��� · ��v −

k

m
� �T

n

 � �n

+ �2
R

n
−

1

�p

�� + R � �1

n

 � v .

�14�

This is the electron vorticity transport equation. Note that for
simplicity we derived the electron vorticity equation for an
inviscid constitutive relation �13� where there is no vorticity
redistribution due to diffusion. For the viscous constitutive
relations for P a diffusion term will be added to the electron
vorticity equation. The main advantage of this equation over
the classical hydrodynamic models is that the electric field
does not appear explicitly in the electron transport equation.
This is due to the fact that electric fields are curl free.

Equation �14� shows that the ratio of the electron vortic-
ity to the electron concentration �following an electron con-
centration element� can change with time due to the terms on
the right-hand side of Eq. �14�. There are seven terms in-
volved in the electron vorticity transport equation �14�. The
two terms on the left-hand side form the material derivative
of the vorticity density, �� /n. The third term represents the
vortex stretching essential for turbulence. In three-
dimensional flows, vortex stretching is responsible for the
cascade of kinetic energy to smaller scales �energy transfer
from the mean flow to the fluctuations�, which is necessary
for the formation of turbulent and chaotic flows. This is con-
sistent with recent observation of chaotic electron flows in
semiconductors.28 In general, turbulence is characterized by
high levels of fluctuating vorticity. These random vorticity
fluctuations do not persist in two-dimensional flows, since
the main vorticity-maintenance mechanism, vortex stretch-
ing, is absent in these flows. The fourth term is similar to the
baroclinic generation of vorticity in fluid mechanics and is
due to the interaction of the principal part of the pressure
tensor P and the density field n. While the principal part of
the pressure tensor P acts on the center of a differential ele-
ment of the electron flow, the electric field acts on a different
point inside the element if the electron density is not uni-
formly distributed over the element �see Fig. 1�. The net
force acting on these two points apply a torque on the ele-
ment, and is the essential mechanism for the baroclinic vor-
ticity generation. The last three terms in Eq. �14� are due to
vorticity generation through the collision terms in the Eqs.
�2� and �3�.

It is clear that in various regimes of electron transport,
different terms in the electron vorticity equation are domi-
nant. In large systems and under normal field conditions the
vorticity sink term, due to the interaction of vortices with the

lattice, damps out most of the electron vorticity generation.
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In the next section we perform an order of magnitude analy-
sis to predict transport regimes in which electron vorticity
dynamics play an important role.

IV. SCALING AND ORDER OF MAGNITUDE ANALYSIS

Since the strength of the electric field applied to the de-
vice can vary significantly, it is interesting to compare the
order of each term in the vorticity equation. We assume that
the characteristic scales of the problem, i.e., velocity, length,
electron concentration, temperature, and electric field are
given by U, L, n0, T0, E0, respectively. Note that the time
scale is given by �=L /U. We can now introduce non-
dimensional variables �assuming that the scaling is the same
in each direction�

x* =
x

L
, v* =

v

U
, t* =

U

L
t, n* =

n

n0
, �15�

�� * =
L

U
�, T* =

T

T0
, E* =

E

E0
, �* =

�

L
. �16�

Now, the appropriate scaling for T0 and E0 should be found.
The scaling for E0 can be easily obtained from Eq. �5�,

E0 =
�0

Ld
, �17�

where �0 is the scaling for the electric potential applied to
the device. The scaling for T0 may be obtained from the
energy Eq. �4�. In doing so we assume that the order of the
main driving term env·E is the same as the convective de-
rivative on the left-hand side. Of course, after such an as-
sumption one should check its validity at the end of the

FIG. 1. Baroclinic electron vorticity generation in a differential element of
electron flux with n�n�: The temperature gradient acts on a center of mass
��� and the gradient in electrostatic potential acts on a center of electron
charge at ���. Since the two gradients act on different points within the
differential element, there is a net torque on the electron fluid.
calculations. Hence
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T0 =
e�0

k
. �18�

It is important to note that even though the electric field does
not enter directly in the vorticity equation, it sets the scaling
for electron temperature in the device. Now we can write the
nondimensional vorticity equation with the appropriate scal-
ing,

n*� �

�t* + v* · �*
��� *

n* 

= ��� * · �*�v* −

e�0

mU2�*�T*

n*
 � �*n* + 2
RL

Un0

�� *

n*

−
L

U�p
�� * +

RL

Un0
�*� 1

n*
 � v*. �19�

The three nondimensional numbers that appear on the right-
hand side of Eq. �19� are of fundamental importance in our
analysis. The nondimensional number e�0 /mU2 of the baro-
clinic term is the ratio of the absorbed energy of a free elec-
tron from the external potential �0 to the average thermal
energy of electrons. One can obtain an estimate for this non-
dimensional number by using Eq. �3�. If assuming that the
order of the driving force, �e /m�E, is the same as the accel-
eration term Dv /Dt, and using �17� we obtain mU2�e�0.
This implies that the baroclinic term is of the same order as
the vorticity acceleration and vortex stretching terms. The
nondimensional number L /U�p=� /�p in front of the momen-
tum relaxation source term is, in fact, the ratio of the transit
time to the momentum relaxation time. Note that the recom-
bination rate can be represented as R�n0 /�r. Therefore, the
nondimensional number RL /Un0=� /�r in front of the recom-
bination term in Eq. �19� can be interpreted as the ratio of the
transit time in the device to the recombination relaxation
time.

In most cases one can neglect the vorticity generation by
the recombination term; � /�r is usually a very small number.
Since the momentum relaxation term acts as a sink of elec-
tron vorticity, one expects to observe the transport of electron
vortices in a regime in which this term is smaller than the
other remaining source terms, i.e., it is of the order of one or
less. A simple calculation of � /�p for a semiconductor mate-
rial with �p=1 ps �e.g., GaAs at low temperatures� shows
that for easily achievable feature sizes �0.1–1.5 	m� and
applied electric potentials �0.1–1 V�, the order of magnitude
of this term is around one and significant electron vorticity
generation and convection can be observed �see Fig. 2�. This
is a new electron transport regime that has not been rigor-
ously investigated before. In order to verify that this regime
of transport falls within the range of hydrodynamic flow as-
sumption, we calculate electron mean-free-path due to
electron–electron �le–e� and electron–phonon �le–ph� scatter-
ings.

In Fig. 3, the relevant scattering lengths are plotted as a
function of electron temperature Te: the electron–electron
scattering length le–e=vF�e–e�, the impurity scattering length
lI=vF�i�, and the phonon scattering length lph=vF�ph�,

where vF is the Fermi velocity and �e–e�, �i�, and �ph� are
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the electron–electron, impurity, and phonon scattering times,
respectively. In these calculations, a low temperature 2DEG
mobility of 	�T=0�=2�106 cm2/Vs and density n=2.7
�1011/cm2 was assumed. The calculation of the electron–
phonon scattering is based on Fig. 8 of Kawamura.29 Acous-
tic phonon deformation potential and piezoelectric scattering
have been considered with density dependent screening ac-
counted for by the random-phase approximation �RPA�. As
shown in Kawamura,29 the calculated scattering rates agree
well with measured mobilities over the range of temperatures
and densities considered here. The electron–electron mean
free path is determined by the expression used by Gurzhi.4,5

Again the estimated electron–electron mean free path has
been carefully verified with experimental results in the bal-
listic regime.30 It is evident from Fig. 3 that at Te=20 K,
le–e�0.5 	m is much smaller than lm and if a wire with

FIG. 2. Contour plot of � /�p with �p=1 ps. For higher voltage regimes �e.g.,
�0�0.8� the intervalley transfer of electrons should be considered.

FIG. 3. The electron-impurity �lI�, electron–phonon �lph�, and electron–
electron scattering lengths for a 2DEG with the mobility 	�T=0�=2
�106 cm2/V s and density n=2.7�1011/cm2. The lattice temperature TL is

fixed at 1 K and the electron temperate Te is varied.
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diffuse boundary scattering is fabricated with a width of
�5 	m, then a Poiseulle like regime as first predicted by
Ref. 31 might form. Since the electron–electron mean free
path is of the same order as the phase-breaking length �lphi�,
the transport regime where the electron density and tempera-
ture is such that le–ph� le–e= lphi corresponds to a regime
where the macroscopic transport is purely classical and is
well described by the hydrodynamic equations. For a range
of device dimensions between 0.1–1 	m this corresponds to
densities of approximately 1011 cm−2 and temperatures be-
tween 10–40 K. At higher densities or lower temperatures
the phase-breaking length �lphi= le–e� becomes equal to the
device dimension and a classical description fails. At higher
temperatures, le–ph is on the order of the device dimension
and there is strong damping on the evolution of any gener-
ated electron vortices. It should also be mentioned that fast
electron–electron scattering destroys quantum mechanical
phase coherence. This has been demonstrated in Aharanov–
Bohm experiments in the temperatures of interest in this
study.

For a classical gas, viscosity is given by 	c= 1
2mnvT�,

where � is the interparticle scattering length �mean free
path�, m the mass of the particle, n the gas number density,
and vT the thermal velocity.32 For an electron Fermi gas, the
analogous expression for viscosity is 	e�mnvFle–e

32 where
m is the effective mass of the electrons and vF is the Fermi
velocity. For typical devices of interest in this study one can
easily estimate the Reynolds number Re=UL /
 to be of the
order of 10. Similar estimate for the Reynolds number of a
2DEG was reported by Dyakonov and Shur.33

In summary, for submicron devices at moderately low
temperature one can expect considerable electron vorticity
formation. This new regime of electron transport is interest-
ing for both a fundamental point-of-view and for applica-
tions. Many effects observed in classical fluid dynamics
could be studied in the electron gas in semiconductors. In
addition, the rich structure of the flow �e.g., vorticity forma-
tion and shedding� and the importance of the boundary con-
ditions can be used in the design of novel devices.

V. CONCLUSIONS

We analyzed the hydrodynamic model of electron trans-
port in semiconductors and in analogy to fluid mechanics the
curl of electron group velocity is defined as the electron vor-
ticity, �� =��v �proposed in Ref. 17 and 18�. An equation
for electron vorticity transport is derived. It is found that in
addition to the conventional stretching term and baroclinic
generation of vorticity �e.g., see Ref. 24�, the other sources
of electron vorticity are the generation of electron vortices
due to the recombination term and decay of vortices due to
the momentum relaxation. To simplify our analysis, the dif-
fusion term in the modeling of pressure tensor is neglected.
This assumption is valid for low viscosity and away from the
boundaries. For regions close to nonconductive boundaries, a
diffusion term is needed in the right hand side of the vorticity
transport equation to provide a means for the diffusion of
electron vorticity, created at the boundary, into the conduc-

tive region. This can be achieved through electron–electron
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interaction and nondiagonal terms in the pressure tensor �vis-
cosity�. The rate of vorticity generation at the boundary is set
by the boundary conditions. To obtain a complete set of
equations of electron transport in semiconductors one needs
to supplement the vorticity equation �14� by an equation for
electron dilatation, � ·v. This is the topic of a future publi-
cation.

A scale analysis of the electron vorticity equation is per-
formed and the relative order of magnitude of each source of
electron vorticity is found. In most cases, electron-lattice
scattering will destroy any coherent structure in electron
flows. This could explain why there has been no observation
of electron vortices �coherent structures� in semiconductor
devices. However, our analysis predicts conditions for a new
regime of electron transport in submicron to micron size de-
vices at moderately low temperature, where significant elec-
tron vorticity generation and structures are expected. This
result could guide experimentalists and numerical analysts of
semiconductor devices to explore formation of electron vor-
tices. Controlled vorticity formation and the spatial and tem-
poral structure in electron flow can be used in the design of
novel devices. This investigation is set in the regime of va-
lidity of hydrodynamic models, i.e., the characteristic length
scales are so that the quantum mechanical effects can be
neglected and the electron-electron scattering is fast enough
so that one cannot make the independent electron approxi-
mation. In order to observe electron vortices, electron transit
time in a device should be of the same order as the momen-
tum relaxation time. In addition, the device geometry, bound-
ary effects, material properties, and temperature should be
chosen appropriately.
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