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Several previous experimental and theoretical studies have shown that a leading edge
vortex (LEV) on an airfoil or wing can provide lift enhancement. In this paper,
unsteady two-dimensional (2D) potential flow theory is employed to model the flow
field of a pitching flat plate wing. A multi-vortices model is developed to model both
the leading edge and trailing edge vortices (TEVs), which offers improved accuracy
compared with using only single vortex at each separation location. The lift is obtained
by integrating the unsteady Blasius equation. It is found that the motion of vortices
contributes significantly to the overall aerodynamic force on the flat plate. A Kutta-
like condition is used to determine the vortex intensity and location at the leading
edge for large angle of attack cases; however, it is proposed to relax this condition
for small angle of attack cases and apply a 2D shear layer model to calculate the
circulation of the new added vortex. The results of the simulation are then compared
with classical numerical, theoretical, and experimental data for canonical unsteady
flat plat problems. Good agreement with these data is observed. Moreover, these
results suggested that the leading edge vortex shedding for small angles of attack
should be modeled differently than that for large angles of attack. Finally, the results
of vortex motion vs. lift indicate that the slow convection of the LEV creates less
negative lift while the rapid shedding of the TEV creates more positive lift. The
difference between these two contributions of lift results in a total positive lift that
lasts for about two chord-length travel of the plate. It is therefore concluded that
the lift enhancement during the LEV “stabilization” above the wing is a combined
effect of both the LEV and TEV motion. This also provides the insights for future
active flow control of micro aerial vehicles (MAVs) that the formation and shedding
process of LEVs and TEVs can be manipulated to provide lift enhancement. C© 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819878]

I. INTRODUCTION

Over the last several decades, researchers have been trying to unveil the aerodynamic secrets
of natural flyers that have demonstrated the capacity for high performance hovering flight with
unrivaled maneuverability and speed. To understand the basic physical flight mechanisms, early
investigations have focused on experiments and have attributed this high lift performance to, among
other things, an attached leading edge vortex (LEV). The formation and attachment of the leading
edge vortex at high angles of attack has been shown to delay stall in two-dimensional (2D) and avoid
stall in 3D, and provide lift enhancement for flapping wings.1, 2

Although many full numerical studies have been carried out recently to understand the nature
of the LEV,3–6 simplified models and lower computational cost are equally desirable due to the
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requirements in potential micro aerial vehicle (MAV) real-time control applications. To theoretically
model the flapping wing and identify the effect of the leading edge vortex on lift, early researchers
employed steady potential flow models with a single point vortex representing the LEV and a flat
plate representing the wing. The first theoretical evidence for lift enhancement in an attached free
vortex over a flat plate was offered by Saffman and Sheffield.7 They considered a steady two-
dimensional irrotational flow over a thin wing with an attached free line vortex. In their model,
the presence of a vortex results in increased lift by inducing a stronger bound circulation around
the wing. Following this research, Huang and Chow8 extended the work of Saffman and Sheffield7

to include the effects of airfoil thickness and camber. Similar to the approach of Saffman and
Sheffield,7 Rossow9 modeled an airfoil and added a nose flap to trap a vortex. He also added a sink at
the vortex core to represent the spanwise flow which was observed to bleed vorticity from the LEV;
this inspired further investigations by Mourtos and Brooks.10 This preliminary research produced
the same conclusion: attaching and stabilizing a vortex on the upper side of an airfoil will increase
the lift coefficient.

However, these investigations inherently assumed that the free trapped vortex could somehow
be stabilized over the lifting surface and that the vortex should be located at its equilibrium point
(velocity of the vortex center equals zero at this point) in order to perform the Kutta-Joukowski
lift calculation. Furthermore, these early models are basically steady flows which are incapable
of capturing the unsteady features caused by flapping motion or vortex formation and shedding.
Nevertheless, the validity of using the steady flow model and the stabilized vortex was supported
by many studies of aerodynamic forces in insects which demonstrated that a significant part of lift
production is generated during the translational phases of the stroke (down-stroke); see Willmott
et al.11 Moreover, for flapping flyers the LEV appears to be attached to the wing throughout the
translation phase of flapping and seems to be stabilized in the wake region above the wing.12

Therefore, in order to accurately evaluate the lift and understand the physics of the flapping
wing, later modeling attempts have concentrated on resolving the unsteady dynamics of the flat
plate and incorporating vortex dynamics into the wake evolution. Minotti13 was the first to consider
simple 2D unsteady potential flow for a pitching flat plate with a single point vortex to model
the LEV, which is still assumed to be stabilized during pitching motion. Later, Yu et al.14 im-
plemented a perturbation potential flow model with discretized point vortices shed from both the
leading and trailing edges to account for the dynamic effect of the wake. Ansari et al.15, 16 carried out
similar investigations and compared their results with Dickinson’s2, 17 flapping plate experiments,
which showed a good agreement in force calculation and wake evolution behaviors. Pullin and
Wang18 established an evolution model for the vortex sheets at the shedding edges and applied it
to an accelerating plate. Related work has been done on the unsteady dynamics of a sharp-edged
body by Michelin and Smith,19 however, they assumed variable circulation of the shed vortices
and employed a momentum conservative approach (the Brown-Michael equation20) to solve for
the dynamics of the vortices. Other than that, Mason21 and Cochran et al.22 also made contribu-
tions to field by simulating fish locomotion using a deforming airfoil in an unsteady 2D potential
flow.

From these studies, it can be learned that the discretized vortices formulation is an appropriate
reduced order model as it saves computational cost while preserving the physics of the wake.
Therefore, this work follows the approach of most previous studies (e.g., Refs. 14 and 15) by
treating each individual vortex as a free vortex, the motion of which is governed by Kirchhoff’s
law. However, one of the more complicated issues is to determine the intensity and the placement
of the shedding vortices near the shedding edges (especially the leading edge) for unsteady flows.
Dickinson and Gotz2 proposed that the treatment of the leading edge might depend on the size and
configuration of the leading edge vortex or the separation bubble which is related to the angle of
attack. Following this thought, the authors suggest that for a fully separated flow at high angles of
attack, the classical Kutta condition should be satisfied by enforcing a stagnation point at the leading
edge and placing the new vortex in the tangential direction of the edge. At lower angles of attack, a
new condition dealing with the placement and circulation of the new vortices is proposed to release
the Kutta condition at the leading edge which yields a much better representation of the observed
experimental lift.



091901-3 X. Xia and K. Mohseni Phys. Fluids 25, 091901 (2013)

Another major focus of this study is to derive the unsteady force equations based on a potential
flow model. Several existing models have been used by previous researchers to estimate the lift or
drag; Eldredge et al.23 and Wang et al.3 applied empirical force coefficient models as references
of comparison with their computational results; Ansari et al.15 and Michelin and Smith19 followed
Kelvin’s theorem to obtain the unsteady force equations; Yu et al.14 and Miller and Peskin6 adopted
the aerodynamic force equation derived by Wu24 which is based on the first moment of the vorticity
field. In this study, the treatment of the unsteadiness in lift calculation is inspired by Minotti,13 who
calculated the force from an unsteady form of the Blasius equation. However, several modifications
are made here to include the effect of vortex motion and incorporate the multi-vortices model. This
new approach yields additional terms in the lift equation which are found to contribute significantly to
the net lift of the wing. The resulting lift expression is then compared with other similar models18, 19

that have been obtained from different approaches.
In summary, the goal of this study is to build a simple model for pitching wing simulations

based on earlier studies and to provide an accurate model for lift estimation. Such a low-dimensional
model is expected to facilitate future active flow control strategies for flapping wing MAVs. For
validation purposes, a canonical starting plate problem2 and a plate pitching problem35 are studied,
the Reynolds number for the two cases are 192 and 104 respectively, the reduced frequency for the
pitching cases is not larger than 1.

This paper is organized as follows: Sec. II provides the unsteady potential flow model of a
flat plate with vortices shedding at the leading edge and the trailing edge. Section III provides the
derivation of the unsteady force calculations. Section IV presents the unsteady conditions imposed
at the edges to determine the locations and intensities of the shedding vortices. Section V provides
the validation of the lift equation and compares the simulation results with experimental data as well
as other models for canonical cases. Finally, concluding remarks are given in Sec. VI.

II. THE 2D POTENTIAL FLOW MODEL

A. Assumptions and simplifications

This study employs a potential flow theory in seeking of a simplified model thanks to the
inherently explicit representation of the flow field. In order to model a pitching wing problem
by a potential flow theory, several assumptions are made here in advance. First of all, the flow
is assumed to be 2D; this is justifiable as a first approximation since the aspect ratio of insect
wings usually range from 2 to over 10 (see Dudley25). Then, under the 2D flow assumption, the
flat plate simplification is adopted as the thickness and camber of most insect wings are usually
negligible compared to the chord length. This assumption is made to simplify the calculations
and it could be extended to Joukowski’s airfoil with camber. Finally, we assume the flow to be
inviscid. Combining this with the irrotationality, which should be implicitly satisfied for potential
flow, the governing equation reduces to a simple equation in which the Laplacian of the complex
potential equals zero. Therefore, the superposition principle can be applied, which implies that the
flow field could be built up by combining a background flow with singularities while satisfying
proper boundary conditions. Consequently, the flow around a flat plate is obtained by a Joukowski
transformation from the flow around a cylinder. This is valid for the flat plate motion without rotation;
however, Sec. II B will deal with the case in which the rotational motion needs to be modeled
carefully.

B. Potential flow model

The flow configuration of a pitching flat plate is shown in Figure 1. Basically, the pitching
motion can be decomposed into a translational motion and a rotational motion around the rotation
center. A typical way of describing the translational motion is to fix the rotational center of the
plate and then to add an opposite velocity to the background flow. The rotational motion is then
described by a time dependent angle of attack. Next, we shall take steps to handle these two elemental
motions.
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FIG. 1. Diagram representing the unsteady flow model of a pitching flat plate. The plate pivots around its rotation center.
The original translational motion of the flat plate is toward left, while it is substituted by a uniform background flow toward
the right represented by U(t).

The main difficulty of this unsteady problem is created by the rotational motion. To better
understand this, we first consider the case with no rotary motion. In this case, the first step is to
map the complex potential of the physical plane (z-plane) to that of the corresponding cylinder
plane (ζ -plane). Since the plate is fixed in the background flow, the contour closely encircling the
plate is a streamline which indicates that the stream function around the cylinder in ζ -plane is a
constant. With this boundary condition satisfied, we can write the complex potential explicitly using
Milne-Thomson’s circle theorem.26 Now, we consider the case with a plate rotating at an angular
velocity ω. Assuming the physical plane is still within a globally fixed inertial coordinate system,
then the plate has an angular velocity of ω in this coordinate; this implies that the contour closely
around the plate is no longer a streamline. Consequently, Milne-Thomson’s circle theorem cannot
be applied as the stream function at the cylinder boundary is not a constant in the corresponding
ζ -plane. This means that it is difficult to write out the complex potential if the coordinate system is
globally irrotational. Therefore, in order to apply the Milne-Thomson’s circle theorem, it is natural
to consider a non-inertial coordinate system that is fixed on the plate and rotates with it. In this way,
we recover the beneficial property that the contour immediately around the plate can be treated as a
streamline in this new non-inertial coordinate. However, an observer in this new coordinate would
observe the flow field to be rotational with a vorticity magnitude of −2ω. This indicates that the
flow in this non-inertial coordinate system cannot be represented by any potential flow since it is
rotational. Once again, it seems that we cannot find a complex potential that is representative of the
physical flow.

While various approaches to this problem exist, here we present a new solution to this problem
which is inspired by an earlier work by Minotti.13 Again, consider the flow configuration shown
in Figure 1 with the background flow denoted U(t) = (Ux , Uy). We set up a Cartesian coordinate
system oxy, with the origin at the plate rotation center and the x axis along the plate’s chord. We
assume this reference frame, noted as oxy, to be an inertial coordinate which is not rotating with the
flat plate; therefore, the flow in this reference frame can be viewed as the original flow in a global
system. Since the flow in this reference frame is irrotational, it is justifiable to assume it to be a
potential flow. It then follows that the complex potential w(z) and the velocity field u = (ux , uy) of
this flow satisfy

w(z) = φ + iψ, (1)

where

ux = ∂φ

∂x
, uy = ∂φ

∂y
, (2a)

ux = ∂ψ

∂y
, uy = −∂ψ

∂x
. (2b)

Now we consider a second reference frame, denoted by ox′y′, that is attached to and rotates with
the plate. Correspondingly, the velocity in this new reference frame is denoted as u′ = (u′

x , u′
y) and
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the relation between u and u′ can be expressed as

u′
x = ux + �(t)y, (3a)

u′
y = uy − �(t)x, (3b)

where �(t) is the angular velocity of the rotational motion that is related to the angle of attack α(t)
as

�(t) = −α̇(t). (4)

As indicated above, the flow in the reference frame ox′y′ is rotational. So next we will verify the
validity of the conditions of continuity and irrotationality in the reference frame ox′y′. The continuity
equation is

∂u′
x

∂x
+ ∂u′

y

∂y
= ∂ux

∂x
+ ∂uy

∂y
= 0, (5)

which indicates that the stream function ψ ′ exists and is related to ψ by

ψ ′ = ψ + 1

2
�(x2 + y2). (6)

Next, the vorticity is evaluated

ω′
z = ∂u′

x

∂y
− ∂u′

y

∂x
= 2�. (7)

This verifies that the flow is rotational. Therefore, φ′ does not exist and the flow in the reference
frame ox′y′ cannot be represented by a potential flow. To resolve this problem, Minotti13 proposed a
second virtual reference frame, ox′′y′′, in which a potential function will exist. This virtual reference
frame is given by

ψ ′′ = ψ + 1

2
�(x2 − y2), (8a)

φ′′ = φ − �xy. (8b)

Therefore, the velocity in the virtual reference frame ox′′y′′ is related to the velocity of the original
flow (in the reference frame oxy) as

u′′
x = ux − �y, (9a)

u′′
y = uy − �x . (9b)

It is apparent that this virtual flow satisfies both the continuity and irrotationality conditions.
Finally, the complex potential w′′ is related to w as

w′′(z) = φ′′ + iψ ′′ = w(z) + i

2
�z2. (10)

It should be pointed out that one of the differences that distinguish this work from Minotti’s13 lies
in the usage of the virtual reference frame. In Minotti’s13 work, the virtual frame is the base frame
for force calculation. However, this is based on the assumption that the forces in the two frames
(virtual frame and original frame) are equivalent which is not convincing. In Secs. II C and III, we
will show that the virtual reference frame in this study merely serves as a platform to obtain the
complex potential of the original flow, and the vortex dynamics and force calculation are performed
in the original frame oxy. Moreover, granted that the force calculated in frame ox′′y′′ is equated to
that calculated in frame oxy, since the virtual frame ox′′y′′ is a non-inertial frame, Minotti13 had to
deal with the complicated non-inertial form of the Euler equation and the associated non-inertial
form of the Bernoulli equation before integrating the pressure to obtain the force. Apparently, this
is not an issue in our approach.
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FIG. 2. Joukowski transformation between z-plane and ζ -plane and integration contours C1, C2, C3 for the Blasius theorem.
C1 contains the flat plate only, C2 is at the infinity and encloses all, C3 only contains the vortex-sink.

C. The complex potential

In this part, the complex potential w(z) representing the potential flow is derived. Here, the
Joukowski transformation,

z = ζ + a2

ζ
+ x0, (11)

is used to link the physical flow (z-plane) to a virtual flow (ζ -plane), which maps the flat plate to a
cylinder as shown in Figure 2. Here a = c/4, with c being the chord length of the flat plate. In the far
field, we have the following relations:

ζ = z − x0 as |z| → ∞, (12a)

dζ

dz
= 1 as |z| → ∞. (12b)

Next, boundary conditions (BCs) in the reference frame oxy′′ need to be determined to obtain
the complex potential.

1. BC on the flat plate

Because the thickness of the flat plate is ignored, y = 0 represent the flat plate boundary.
As ψ ′ is constant, Eq. (8a) shows that ψ ′′ is also constant. This is the prerequisite for applying
Milne-Thomson’s circle theorem in the ζ -plane corresponding to the reference frame ox′′y′′.

2. BC at far field

The original flow velocity is

ux = Ux (t), (13a)

uy = Uy(t). (13b)

Combining Eq. (10) with U(t) = Ux(t) + iUy(t) yields

w′′
∞(z) = Ū z + i

�z2

2
, (14)

where Ū is the complex conjugate of U. Now, considering the mapping between the physical plane
and the virtual plane via Joukowski transformation, the complex potentials of the two planes satisfy
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wζ (ζ ) = w[z(ζ )]. Here, w and wζ denote the complex potentials in the physical plane and the virtual
plane, respectively. In the reference frame ox′′y′′, Eq. (14) gives the complex potential at the far field.
Combining Eqs. (12a) and (14) gives the corresponding complex potential at the far field in ζ -plane

w′′
ζ∞(ζ ) ≈ w′′

∞(ζ + x0) = Ū (ζ + x0) + i
�(ζ + x0)2

2
. (15)

Therefore, with the stream function on the flat plate boundary in reference frame ox′′y′′ being
zero, the corresponding complex potential of the near field in ζ -plane can be derived using the
Milne-Thomson circle theorem26 as

w′′
ζ (ζ ) = w′′

ζ∞(ζ ) + w′′
ζ∞

(
a2

ζ̄

)

= |U |e−iα(ζ + x0) + i
�(ζ + x0)2

2
+ |U |e−iα(a2/ζ̄ + x0) + i

�(a2/ζ̄ + x0)2

2

= |U |e−iα(ζ + x0) + |U |eiα(a2/ζ + x0) + i
�(ζ + x0)2

2
− i

�(a2/ζ + x0)2

2
. (16)

This is the complex potential for the background flow. Further incorporating the effects from the
singularities (vortex/sink) into Eq. (16) gives the complete complex potential representing the flow
field in reference frame ox′′y′′. Here, we first consider a case with a single free point vortex-sink
singularity36 located at z1 in the z-plane, mapped to ζ 1 in the ζ -plane, with vortex and sink intensities
of 	1 and Q, respectively. The resulting complex potential in ζ -plane and reference frame ox′′y′′ is

w′′
ζ (ζ ) = |U |e−iα(ζ + x0) + |U |eiα(a2/ζ + x0) + i

�(ζ + x0)2

2
− i

�(a2/ζ + x0)2

2

− 1

2π

[
(i	0 − Q) ln(ζ ) + (Q + i	1) ln(ζ − ζ1) + (Q − i	1) ln(ζ − a2/ζ̄1)

]
. (17)

Recalling Eq. (10), the complex potential in ζ -plane and reference frame oxy can be written as

wζ (ζ ) = |U |e−iα(ζ + x0) + |U |eiα(a2/ζ + x0)︸ ︷︷ ︸
Translational effect

+ i�
x2

0 − 2a2 − 2(a2/ζ + x0)2

2︸ ︷︷ ︸
Rotational effect

− 1

2π

[
(i	0 − Q) ln(ζ ) + (Q + i	1) ln(ζ − ζ1) + (Q − i	1) ln

(
ζ − a2/ζ̄1

)]
︸ ︷︷ ︸

Singularities

. (18)

It should be pointed out that 	0 is the total circulation at the center of the cylinder which contains
two parts: one part has a circulation of 	1, which is induced by the image vortex −	1; the other part
represents the bound circulation, with an intensity of 	0 − 	1. The bound circulation is a circulation
around the wing that is generated by the imparting vortices. According to Kelvin’s circulation
theorem, the magnitude of the bound circulation equals the total circulation of all vortices shed from
the wing while the sign is opposite. In this case, if the vortex 	1 is the only vortex imparted from the
body, the bound circulation would be −	1 which indicates that 	0 = 0; if there are other vortices
shed from the wing, the bound circulation, 	0 − 	1, is no longer −	1 and can be determined by
the flow conditions (i.e., Kutta condition at the trailing edge). Also note that in Eq. (18) the first two
terms represent the translational effect as the third term represents the rotational effect; the last term
describes the contribution from the singularities.

III. LIFT EVALUATION

A. Unsteady Blasius equation

In order to calculate the total force on the plate, we first employ the unsteady Bernoulli equation
to obtain pressure distribution around the plate. We then calculate the total force by integrating the
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pressure along the entire body. Considering the physical flow in the inertial reference frame oxy, the
unsteady Bernoulli equation is written as

− P

ρ
= ∂φ

∂t
+ 1

2
|∇φ|2. (19)

The aerodynamic force over the flat plate is then calculated by integrating the pressure along a
closed contour around the plate surface,

F = −
∮

Pn dl, (20)

where n is the normal vector of the 2D integral surface, and dl denotes the integral path along the 2D
surface. Therefore, the expression for the unsteady Blasius theorem, written in the complex domain,
is

Fx − i Fy = −i
∮

Pdz̄

= iρ
∮ (

∂φ

∂t
+ 1

2
|∇φ|2

)
dz̄

= iρ

2

∮ (
dw

dz

)2

dz + iρ
∮

∂φ

∂t
dz. (21)

Subsections III B–III D describe the steps taken to evaluate the integrals in Eq. (21) using the
complex potential given by Eq. (18). Note that the steady term and unsteady term will be treated
separately.

B. Steady Blasius integral

The solution of the integrals in Eq. (21) requires defining three separate integration contours
as shown in Figure 2. C1 is the path that encircles the flat plate boundary and is used to compute
the steady Blasius integral,

∮
(dw/dz)2 dz. Another contour C2 at the infinity is drawn to include

both the flat plate and the vortex-sink point at z1 in the z-plane. Then, a smaller C3 contour is drawn
to include the vortex-sink point only. As (dw/dz)2 is analytic inside the C2 − C1 − C3 region, we
obtain ∮

C1

(
dw

dz

)2

dz =
∮

C2

(
dw

dz

)2

dz −
∮

C3

(
dw

dz

)2

dz. (22)

In the following, the integrals on the right hand side of Eq. (22) are computed successively.

1. The integral at infinity

Since the integral
∮

C2
(dw/dz)2 dz is calculated in the far field, we have the approximation

z → ζ + x0. Consequently, Eq. (18) can be converted to a complex potential in z-plane as

w∞(z) = |U |e−iαz + |U |eiαx0 + i�
−x2

0 − 2a2

2
+ |U |eiαa2

z − x0
− i

2�a2x0

z − x0

− (i	0 − Q) ln(z − x0)

2π
− (Q + i	1) ln(z − x0 − ζ1)

2π

− (Q − i	1) ln
(
z − x0 − a2/ζ̄1

)
2π

. (23)

Under the limit |z| → ∞, the terms z − x0, z − x0 − ζ 1, and z − x0 − a2/ζ̄1 are all approximately
equal to z; therefore, by taking the derivative of the velocity potential this yields

dw∞(z)

dz
= |U |e−iα − i	0 + Q

2π z
+ a2(2i�x0 − |U |eiα)

z2
. (24)
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Making use of Cauchy’s residue theorem, the integral along contour C2 can be computed as∮
C2

(
dw

dz

)2

dz = 2π iRes

[(
dw∞(z)

dz

)2

, z = 0

]
= −2i |U |e−iα (Q + i	0) . (25)

2. The integral around the singularity

As ζ 1 is a singular point in the ζ -plane, it implies that the corresponding z1 is also a singular
point in the transformed z-plane. In order to calculate the integral around the contour C3, we divide
the velocity potential into two parts

w(z) = w′(z) − Q + i	1

2π
ln(z − z1). (26)

Here, w′(z) represents the velocity potential that excludes the contribution from the vortex-sink; it is
therefore analytic over the region surrounded by the contour C3. Taking the derivative of w(z) yields

dw(z)

dz
= dw′(z)

dz
− Q + i	1

2π (z − z1)
. (27)

By taking square of both sides, we obtain(
dw(z)

dz

)2

=
(

dw′(z)

dz

)2

− Q + i	1

π

(
dw′(z)

dz

)
1

z − z1
+ (Q + i	1)2

4π2

1

(z − z1)2
. (28)

As discussed previously, w′(z) is analytic inside contour C3. It follows that dw′(z)/dz and
(dw′(z)/dz)2 are also analytic inside contour C3; therefore, the second integral on the right hand
side of Eq. (22) can be computed using Eq. (28) and Cauchy’s residue theorem∮

C3

(
dw

dz

)2

dz = 2π i

{
0 + Res

[
− Q + i	1

π

(
dw′(z)

dz

)
1

z − z1
, z = z1

]
+ 0

}

= −2i (Q + i	1)

(
dw′(z)

dz

)∣∣∣∣
z=z1

, (29)

where the term (dw′(z)/dz)|z=z1 equals the conjugate of the velocity of the free vortex-sink that can
be derived to be(

dw′(z)

dz

)∣∣∣∣
z=z1

= ζ 2
1

ζ 2
1 − a2

[
|U |

(
e−iα − a2eiα

ζ 2
1

)
+ i�

2a2

ζ 2
1

(
a2

ζ1
+ x0

)]

− ζ 2
1

ζ 2
1 − a2

(
1

2π

i	0 − Q

ζ1
+ 1

2π

Q − i	1

ζ1 − a2/ζ̄1

)
+ Q + i	1

π

ζ1a2

(a2 − ζ 2
1 )2

. (30)

Note here that the last term in
(
dw′(z)/dz

) |z=z1 is known as the Routh correction.27, 28 This term
represents the difference of velocity at the location of the singularity between the actual flow and a
virtual flow without the point singularity (this virtual flow only considers the effect of the image of
the singularity).

C. Unsteady Blasius integral

To compute the integral
∮

(∂φ/∂t)dz, the velocity potential φ is divided into four components
based on different methods used to evaluate the integral and the corresponding complex potential
wζ (ζ ) can be expressed as

w1ζ (ζ ) = |U |e−iα(ζ + x0) + |U |eiα

(
a2

ζ
+ x0

)
+ i�

(ζ + x0)2

2
− i�

(a2/ζ + x0)2

2
, (31a)

w2ζ (ζ ) = −i�
z(ζ )2

2
= −i�

(ζ + a2/ζ + x0)2

2
, (31b)
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w3ζ (ζ ) = − 1

2π
(i	0 − i	1 − Q) ln(ζ ), (31c)

w4ζ (ζ ) = − 1

2π

[
(Q + i	1) ln(ζ − ζ1) + (Q − i	1) ln

(
1 − a2/(ζ ζ̄1)

)]
. (31d)

In this way, by distinguishing the analytic part from the logarithmic part, the integral terms of∮
(∂φ/∂t)dz are handled through different approaches as shown below. Basically, the analytic part

will be integrated by the residue theorem, while the logarithmic part will be integrated by carefully
dealing with different singularities inside and outside the integration contour.

1. First unsteady integral

Note that the integral is taken around the contour C1. It is not difficult to verify that ψ1 = 0
on C1. Therefore, by expanding the contour C1 to infinity and employing the residue theorem, this
integral is evaluated to be∮

C1

∂φ1

∂t
dz =

∮
C1

∂w1(z)

∂t
dz

= 2π i Res

[
∂w1ζ

∂t

(
1 − a2

ζ 2

)
, ζ = 0

]
= 2π ia2(|U̇ |(eiα − e−iα) − 2i�̇x0︸ ︷︷ ︸

Added Mass

−2i |U |eiα�︸ ︷︷ ︸
Rotational

), (32)

where U̇ and �̇ represent the translational and angular accelerations of the plate, respectively. The
results of the calculation give the added mass and rotational force terms as shown above.

2. Second unsteady integral

Since w2(z) = −i�z2/2, z = z̄ on the contour C1 which is near the wall of the flat plate. This
yields w2(z) + w2(z) = 0, and the unsteady integral associated with φ2 becomes∮

C1

∂φ2

∂t
dz = 1

2

∮
C1

∂(w2(z) + w2(z))

∂t
dz = 0. (33)

3. Third unsteady integral

On the contour C1 that is closely around the flat plate, the following relations are satisfied:
Imag[i(	0 − 	1) ln(ζ )] = (	0 − 	1) ln(a) and Real[−Q ln(ζ )] = −Q ln(a), which are constants on
C1ζ at any time. However, their integrals over a contour should be equal to zero at any time even if
	0 − 	1 and Q are time variants. In this case, the unsteady integral associated with φ3 is computed
as ∮

C1

∂φ3

∂t
dz = − 1

2π

∮
C1

∂(Real(i	0 − i	1 − Q) ln(ζ )))

∂t
dz

= − 1

2π

∮
C1ζ

∂(i(	0 − 	1) ln(ζ ))

∂t

dz

dζ
dζ

= − i

2π
(	̇0 − 	̇1)

∮
C1ζ

∂ ln(ζ )

∂t

(
1 − a2

ζ 2

)
dζ. (34)

Note here, 	̇0 − 	̇1 represents the rate at which the bound circulation changes with time. To evaluate
the above integration, the corresponding indefinite integral is first calculated:

∫
ln (ζ )(1 − a2/ζ 2)dζ

= −ζ + ζ ln (ζ ) + a2/ζ (ln (ζ ) + 1). For ln (ζ ) is multi-valued function, proper branch cut is needed
to reflect the discontinuity of φ3 on C1ζ . Here, the point of discontinuity should be picked at the
vortex shedding edge to make physical sense. This is because the discontinuity of φ3 at the surface
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of the flat plate is essentially generated through vortex shedding, which makes the vortex shedding
edge being the point of discontinuity. Consequently, Eq. (34) becomes∮

C1

∂φ3

∂t
dz = 	̇0

(
ζ + a2

ζ

)∣∣∣∣
ζT E

− 	̇1

(
ζ + a2

ζ

)∣∣∣∣
ζL E

= 2a(	̇0 + 	̇1), (35)

where ζ LE and ζ TE are the leading and trailing edges in ζ -plane, respectively. Pay attention here,
this result is only valid when 	0 is used to represent the effect of the TEV while 	1 is considered
as the LEV, which is a default assumption in this single vortex-sink model. However, for any vortex
	n, the sign before 	̇n should always be positive for LEV and negative for TEV.

4. Fourth unsteady integral

This integral actually reflects the unsteady force generated by the singularity point in the flow
field. Similar to ψ1, ψ4 also equals zero on the contour C1 that is closely around the flat plate.
Therefore, this integral is derived as∮

C1

∂φ4

∂t
dz =

∮
C1

∂w4(z)

∂t
dz

= − 1

2π

∮
C1ζ

∂

∂t

[
(Q + i	1) ln(ζ − ζ1) + (Q − i	1) ln

(
1 − a2/(ζ ζ̄1)

)] dz

dζ
dζ. (36)

Here in ζ −plane, the contour C1ζ can be picked to be closely around the boundary of the circle.
Therefore, C1ζ is time invariant and the temporal partial derivative in the above equation can be
taken outside of the contour integral. To integrate the above equation, C1 should not be expanded
directly to infinity without considering the effect of the singularity points. The detailed derivation of
Eq. (36) is provided in the Appendix and the result is expressed as∮

C1

∂φ4

∂t
dz = −i

∂

∂t

[
(Q + i	1)a2/ζ1 + (Q − i	1)(−a2/ζ̄1)

]
= −i[(Q̇ + i 	̇1)a2/ζ1 + (Q̇ − i 	̇1)(−a2/ζ̄1)

+ (Q + i	1)(ż1 − ζ̇1) + (Q − i	1)( ˙̄ζ1 − ˙̄z1)]. (37)

Here, Q̇, 	̇1, ż1, and ζ̇1 represent the time derivatives of Q, 	1, z1, and ζ 1, respectively. Combining
Eqs. (22), (32), (33), (35), and (37) gives the second term in the force calculation (Eq. (21)) of
Fx − iFy.

D. The final expression of the unsteady force

Combining Eqs. (21), (22), (25), (29), (32), (33), (35), and (37) together with the observation
that ζ̇1 − ż1 = d(−a2/ζ1)/dt , one could derive the total force to be

Fx − i Fy = ρ|U |e−iα (Q + i	0) − ρ(Q + i	1)˙̄z1

+ 2πρa2
(|U̇ |(e−iα − eiα) + 2i�̇x0 + 2i |U |e−iα�

) + 2a	̇0iρ

− ρ

(
(Q + i	1)

d

dt
(−a2/ζ1) − (Q − i	1)( ˙̄ζ1 − ˙̄z1)

)
− ρ

(
(Q̇ − i 	̇1)a2/ζ̄1 + (Q̇ + i 	̇1)(−a2/ζ1) − i(	̇0 + 	̇1)2a

)
. (38)

At this point, we have completed the derivation of the unsteady force for a pitching flat plate
with a single attached vortex-sink singularity. Further setting Q to be zero (no sink is considered at
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the location of the vortex for simplicity), the above equation can be simplified to be

Fx − i Fy = iρ |U |e−iα	0︸ ︷︷ ︸
Kutta-Joukowski

+2πρa2(|U̇ |(e−iα − eiα) + 2i�̇x0︸ ︷︷ ︸
Added Mass

+ 2i |U |e−iα�︸ ︷︷ ︸
Rotational

)

− iρ 	1
d

dt

(
−a2

ζ1
+ ζ̄1

)
︸ ︷︷ ︸

Vortex Convection

−iρ

[
	̇1

(
−2a − a2

ζ̄1
− a2

ζ1

)
− 	̇02a

]
︸ ︷︷ ︸

Vortex Variation

. (39)

Note again here 	1 is assumed to be the LEV. From the discussion of Eq. (35), the “Vortex Variation”
term associated with 	̇1 would be 	̇1(2a − a2/ζ̄1 − a2/ζ1) if 	1 were TEV.

Here, we would like to contrast the presented method and terminology with the well-known
work by von Karman and Sears.37 von Karman and Sears37 focused on a so-called quasi-steady
flow where the instantaneous flow field at each stage of a non-uniform motion of an airfoil could be
considered as a steady flow around the airfoil at that configuration. Subsequently, they attributed the
total lift to three lift components, namely, the “quasi-steady lift,” the “contribution of the apparent
mass” and the “effect of the wake.” The “quasi-steady lift” represents the lift generated by the center
circulation of the plate, which is the same as “Kutta-Joukowski” lift in our derivation in Eq. (39).
The “contribution of apparent mass” represents the lift caused by the translational acceleration of the
plate without considering any effect of the wake. This apparent mass lift contribution corresponds
to the “added mass” term in this study represented in Eq. (39). The “effect of the wake” apparently
includes all the lift effect from the vortical structures in the wake, and this term is reflected by the
“vortex convection” in this study in Eq. (39). Note that although 	̇0 is not directly from the wake,
	0 is actually resulted from the circulation in the wake and therefore it can loosely be considered as
the wake effect. While there are similarities between our lift components and the ones introduced
by von Karman and Sears37 there are certain differences that warrant further investigations. First
of all, the “rotational” lift term derived in this study for a fully unsteady flow is ignored in von
Karman and Sears’s37 work on quasi-steady flows. Moreover, their lift calculation of “effect of the
wake” was based on the thin airfoil theory which also assumes a quasi-steady flow. This means that
associated effects of the change of the location and intensity of the vortex were not fully considered
in their work. As a result, only partial effect of the “vortex convection” derived in this study was
accounted for by the original “effect of the wake” derived by von Karman and Sears37 while the
“vortex variation” effect was completely ignored.

It is important to note that the entire lift contribution from the vortex is captured by the last
two terms in Eq. (39), i.e., “vortex convection” and “vortex variation.” This indicates that both the
variation of intensity and the convection in space of a vortex could generate force on the flat plate.
To compare this equation with the calculations obtained by Pullin and Wang18 and Michelin and
Smith,19 their “vortex variation” term is −iρ	̇1(ζ̄1 − a2/ζ1) under the condition that 	̇0 = 0 while it is
−iρ	̇1(−2a − a2/ζ̄1 − a2/ζ1) in this study. This difference is originated in the different expressions
of the complex potential of the vortex. In this study, the complex potential for a vortex in the cylinder
plane is 	1

2π i [ln( ζ−ζ1

ζ−a2/ζ̄1
) + ln ζ ] as presented in Ref. 26, while it is expressed as 	1

2π i ln( ζ−ζ1

ζ−a2/ζ̄1
) in their

studies. It can be easily verified that the different term, ln ζ , causes the difference during integration
of Eq. (36). Michelin and Smith19 explained that the use of the simplified expression of the vortex
is to satisfy Kelvin’s circulation theorem at infinity. However, this expression cannot guarantee a
constant stream function at the surface of the cylinder (or plate in the z-plane), which means the
boundary condition is not satisfied. Therefore, this work still use the classic expression of a vortex
for the integration in Eq. (36). The Kelvin’s circulation theorem is still satisfied here by setting 	0 to
0. While this difference is important if 	1 changes, it has no bearing on the case example considered
here where we assume that 	1 is constant.

IV. THE MULTI-VORTICES MODEL

In Secs. II and III, the complex potential of the flow field and the force equations are computed
based on a single point singularity model that features both a vortex and a sink/source. The physical
nature of the flow around a flapping wing, however, is significantly affected by the shedding of
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vortices from the leading and trailing edges. The formation of these vortices and the evolution of
their structure will necessarily impact the flow field as well as the interaction between the flow
and the flat plate which is readily indicated from the derived force calculations. This additional
consideration of the flow physics is highly relevant to the force model and is not taken into account
by the single vortex model. Therefore, Sec. IV A introduces a discretized multi-vortices model
to represent the vortex structures in the vicinity of the leading and trailing edges. Moreover, new
vortices will be added near the vortex shedding edges at each time step to simulate the behavior of
the separated shear layer, which in reality serves as the source of vorticity.14, 16, 19

A. Complex potential and force calculation

In essence, the multi-vortices model extends the theory of Secs. II and III to a system of many
vortices shed from the edges of the plate. The complex potential of this flow can be obtained by
summing the same background flow with multiple free vortices instead of the single singularity
point. It should be mentioned that due to the existence of spanwise flow, future models might need
to consider incorporating Q into the model to account for some aspects of 3D flow effect; however,
for the current study, we assume Q = 0 for all vortices. To implement this model, two new vortices
are generated at the leading and trailing edges, denoted by 1n and 2n respectively, at the nth time
step. The positions of the vortices, z1n and z2n, are determined by the vortex shedding conditions
that will be discussed below. Typically, the circulations 	1n and 	2n are updated by implementing
Kutta conditions both at the leading edge and the trailing edge.14, 16 However, in this study, we will
also present a new method for computing 	1n for the shed vortices at the leading edge as well as
introducing a shedding condition for low angles of attack. With these initializations, the complex
potential can be written by adapting Eq. (18) for the multi-vortices model

wζ (ζ ) = |U |e−iα(ζ + x0) + |U |eiα(a2/ζ + x0) + i�
x2

0 − 2a2 − 2(a2/ζ + x0)2

2

− i

2π

N∑
n

[
	1n ln

(
ζ − ζ1n

ζ − a2/ζ̄1n

)
+ 	2n ln

(
ζ − ζ2n

ζ − a2/ζ̄2n

)]
, (40)

where N is the number of total vortices shed from the leading or trailing edge. Again, it is assumed
that the intensities of the vortices are constant once they are generated. This is reasonable because
there is no need to resolve vortex generation and diffusion mechanism at the wall, the time scale
of which is much smaller than the simulation time step. We further note that 	0 vanishes in this
expression. As discussed in Sec. II, this is because all shed vortices are represented in this model, thus
the bound circulation, expressed as 	0 − ∑

(	1n + 	2n), actually equals −∑
(	1n + 	2n) according

to Kelvin’s circulation theorem. This clearly indicates that 	0 = 0. Therefore, the corresponding
force calculation is expressed as

Fx − i Fy = 2πρa2
(|U̇ |(e−iα − eiα) + 2i�̇x0 + 2i |U |e−iα�

)
− iρ

N∑
n

[
	1n

(
ζ̇1n − ż1n + ˙̄ζ1n

)
+ 	2n

(
ζ̇2n − ż2n + ˙̄ζ2n

)]
= 2πρa2(|U̇ |(e−iα − eiα) + 2i�̇x0︸ ︷︷ ︸

Added Mass

+ 2i |U |e−iα�︸ ︷︷ ︸
Rotational

)

− iρ
N∑
n

[
	1n

d

dt

(
ζ̄1n − a2

ζ1n

)]
︸ ︷︷ ︸

LEV Effect

−iρ
N∑
n

[
	2n

d

dt

(
ζ̄2n − a2

ζ2n

)]
︸ ︷︷ ︸

TEV Effect

. (41)

Here, the velocities of the vortices can be easily obtained in a similar manner as for the single
singularity model in Eq. (30); the detailed calculations are not presented here for brevity. It should
be pointed out that the force contribution from the vortices, as shown in Eq. (41), is similar to
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that obtained by Pullin and Wang18 and Michelin and Smith19 due to the vortex variation term in
Eq. (39) being zero under the constant circulation assumption.

B. Kutta condition and vortex placement for large angle of attack

To simulate the dynamics of the flat plate as well as evaluating the aerodynamic forces, the
intensities and locations of the shedding vortices at the shedding edges are important components
in Eqs. (18) and (41). However, in the physical flow, the presence of the shedding vortices is related
to the LE or TE shear layer, which in turn is a product of the viscous effects near the plate. Since
viscosity is ignored in a potential flow model, a typical way of reconciling that is to apply the Kutta
condition. This means that all the viscous effects can be incorporated into a single edge condition29

which allows the Blasius theorem to be applied for computing the aerodynamic forces. A common
way of describing the Kutta condition for steady flows is known as the steady state trailing edge
Kutta condition which requires a finite velocity at the trailing edge.7, 8, 10 After some algebra, the
effect of the steady state Kutta condition is to simply place a stagnation point at the trailing edge in
the ζ -plane at all time. By prescribing a value for the circulation of the shed vortex which satisfies
the trailing edge Kutta condition, the flow becomes physically accurate and the aerodynamic forces
can be estimated.

Mathematically, this condition is implemented by placing a stagnation point at the trailing edge
of the cylinder in the ζ -plane so that a finite velocity at the trailing edge of the flat plate in the z-plane
is guaranteed. Thus, the velocity at the upper and lower surfaces of the plate at the trailing edge will
be equal, which implies the streamline emanating from this stagnation point will be parallel to the
plate, fulfilling the condition proposed in previous studies.30, 31 While it is relatively straightforward
to understand the implementation of this Kutta condition for the trailing edge, the physics around
the leading edge are quite different. It is suggested by Dickinson and Gotz2 that the treatment of the
leading edge might depend on the size and configuration of the leading edge vortex or the separation
bubble. Dickinson and Gotz2 recognized that for the case with a large leading edge vortex, which
normally emerges for a fully separated flow at large angles of attack, the presence of the leading
edge vortex eliminates the leading edge suction force by establishing a Kutta-like condition that is
similar to the trailing edge Kutta condition. This can be interpreted as shown on the left image in
Figure 3(a); a stagnation point exists on the bottom side of the plate for the case with high angle
of attack which results in a reverse flow and creates a shear layer originating from the bottom of
the leading edge and emanating in the tangential direction of the leading edge extension. This shear
layer at the leading edge resembles that of the trailing edge and therefore it is reasonable to apply a
similar Kutta condition as the one for the trailing edge.

In the cases of large angle of attack, a classical Kutta condition are implemented at both vortex-
shedding edges, which has also been applied in some previous studies.13, 14 In this potential flow
model, this means that stagnation should be imposed at both vortex-shedding edges in the ζ -plane.
Explicitly, the two new vortices near the vortex-shedding edges introduced at the nth time step are
named as 1n and 2n. Assuming the positions of the shedding vortices ζ 1n and ζ 2n are already known
or can be pre-calculated, the circulations 	1n and 	2n are then determined by

∂wζ (ζ )

∂ζ
= 0, for ζ → ±a, (42)

which can be specified as

∂wζn−1 (ζ )

∂ζ
− i	1n

2π

∂

∂ζ

(
ln

(
ζ − ζ1n

ζ − a2/ζ̄1n

))
− i	2n

2π

∂

∂ζ

(
ln

(
ζ − ζ2n

ζ − a2/ζ̄2n

))
= 0, for ζ → ±a,

(43)
where wζn−1 (ζ ) represents the complex potential without new vortices 1n and 2n. With ζ 1n and ζ 2n

given, we can solve for 	1n and 	2n from Eq. (43).
As ζ 1n and ζ 2n are actually unknown and need to be calculated at each time step, the next focus

is to find a model to determine the locations of the newly added vortices. This is of course done by
first calculating the corresponding z1n and z2n in the physical plane. While a traditional way is to
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FIG. 3. Kutta condition and vortex placement (incoming flow from right to left). The black arrows represent the flow that is
responsible for creating the shear layer at the leading edge. The dots represent the approximated centers of the vortex sheet
segments emanated during each time step. In terms of vortex placement, both cases employ the “1/3 arc” approach. (a) The
diagram on the left shows the streamline plot and the diagram on the right shows the vortex placement and the reverse flow
at the leading edge which is similar to a Kutta-like condition of the trailing edge. (b) From the streamline plot on the left, the
stagnation point is not on the bottom side of the plate but on the surface of the leading edge. Evidently, the dominant flow in
this case creates a shear layer that leaves the leading edge from the top side of the plate. In this way, the leading edge would
not satisfy Kutta-like condition. (Although in the lift calculation the thickness of the plate is assumed to be infinitesimal, here
for schematics, the plate tip is assumed to be rectangular to illustrate the dependence of tip conditions on angle of attack. The
error associated with the shape is negligible if the thickness to chord ratio is small enough.)

place the shed vortex tangential to the shedding edge and at the spot where the shedding edge was
located in the previous time step, an improved approach has been used by previous researchers15, 21

and has been proven to yield decent performance. Ansari et al.15 placed the vortex at 1/3 of the
distance from the shedding edge to the previous vortex while Mason21 placed the vortex at 1/3 of
the arc from the shedding edge to the previous vortex. We hereby adopt Mason’s method because
it enforces the direction of the shear layer to be tangential to the shedding edge. The use of the 1/3
distance or the 1/3 arc can be illustrated in Figure 3(a). Basically, the discrete point vortices are
representative of the vortex sheet shedding from the leading or trailing edge. Therefore, each point
vortex is actually a concentrated vortex sheet element with some length δzn. With the assumption
that the vortex sheet is continuous and the length of the vortex element does not change over single
time step, it is reasonable to conclude that the shed vortex should be placed near δzn/2 at the nth
time step and the vortex center should move away about δzn at the next time step. Therefore, the new
vortex is located at about 1/3 of the distance or 1/3 of the arc along the vortex sheet to the previous
shed vortex from the shedding edge. The validity of this approach indicates that the convection of
the flow near the vortex shedding edge actually determines the rate of vorticity feeding of the shear
layer.
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C. Treatment for small angles of attack

The flow field for a large angle of attack case can be characterized by a large attached LEV, the
thickness of which is comparable to the chord as shown in Figure 3(a). However, the flow pattern
is dramatically different for a small angle of attack case as shown in Figure 3(b). Typically, the
flow structure of the wake behind a flat plate with small angle of attack can be characterized by an
attached flow at the leading edge or a thin separation bubble after the leading edge instead of a large
leading edge vortex. The authors believe that a different leading edge treatment than the Kutta-like
condition should be implemented in order to capture the physics of this flow. This is because the
intensity and location of the shedding vortex are essentially determined by the feeding vorticity in
the shear layer at the leading edge which is different for small and large angles of attack. As indicated
previously, there is a reverse flow at the bottom of the leading edge for large angles of attack that
generates a shear layer tangential to the leading edge. However, for the case of small angles of attack,
this reverse flow does not exist as the lower adverse pressure gradient inside the boundary layer is
unable to overcome the viscous effects. Consequently, the dominant shear flow at the leading edge
follows the streamwise direction and leaves the leading edge on the top side of the flat plate almost
in the tangential direction to the leading edge surface. For the case of the square leading edge in
Figure 3(b), this is perpendicular to the plate chord; if the leading edge is rounded, the flow could
remain attached and the leading edge vortex shedding location might be pushed rearward, e.g., refer
to Lipinski et al.32 for the vortex shedding of an airfoil at low angle of attack. With the direction of
the shear layer decided, the same “1/3 arc” approach can be applied to calculate the placement of
the vortex as shown in Figure 3(b).

To determine the circulation of the newly added vortex near the leading edge, the previous
used Kutta-like condition (Eq. (43)) should not be used due to the small angle of attack. Therefore,
a novel simple model is presented here to estimate the circulation from a 2D vortex sheet model.
Basically, consider a 2D vortex sheet shed by the leading edge with elemental vorticity of dU/dδ,
where dδ represents the thickness of the vortex sheet. Integrating the elemental vorticity over the
area of the vortex sheet gives the approximate total circulation generated during dt to be dU2dt/2.
Here, dU is determined by relating the velocity gradient to the convection velocity of the vortex
sheet through a simple mass conservation of the fluid contained in the vortex sheet. The performance
of this approximation of circulation will be verified in Sec. V.

V. LIFT VALIDATION AND COMPARISON

In this section, we compare our model with existing studies for two cases including a starting
flat plate and a pitching flat plate problems.

A. Model validation for a starting plate problem

The objective of this section is to validate the flow field evolution as well as the lift calculations
based on our multi-vortices model. The validation is done by simulating the experimental study of a
flat plate start up problem done by Dickinson and Gotz.2 The parameters of the physical problem are:
the chord length of the flat plate is 5 cm and the angle of attack is fixed at certain angles for each test
case. The background flow accelerates at a rate of 62.5 cm s−2 from rest and reaches a steady-state
velocity of 10 cm s−1 in 0.16 s. The flat plate is brought to rest after 7.5 chord lengths of travel.
Experimental runs were carried out for angle of attack ranging from −9◦ to +90◦ in increments of
4.5◦. The Reynolds number for this experiment is 192, which is evaluated based on the chord and
the steady flow velocity.

The flow-visualization images for the experimental case with angle of attack of 45◦ were
presented in their paper and shown in the left column of Figure 4 as a reference for comparison. The
time snap-shot images correspond to the distance traveled from 1 to 4 measured in chord length.
The right column presents the corresponding simulation snap shots predicted by the current model.
As observed from the figure, vortex shedding behaviors and flow patterns match nicely between
this model and Dickinson and Gotz’s2 experiment. This qualitatively validates the accuracy of the
multi-vortices model.
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FIG. 4. Comparison of the model in this paper with experimental results by Dickinson and Gotz2 at 45◦ angle of attack.
(a)–(d) correspond to different distances traveled by the flat plate. s is the actual distance traveled by the flat plate.

Next, we will evaluate the proper selection of time-step by comparing the predicted lift co-
efficient for the case of 45◦ angle of attack, with the results from Ansari’s15 computational fluid
dynamics (CFD) simulation and aerodynamic model.33 The lift coefficient is evaluated using Eq.
(41). Note that Fy is the force in the y-direction; the actual lift should be computed from Fx + iFy

based on the direction of the incoming flow. Generally, for all simulations involving time evolution,
a motion with a higher Reynolds number requires a finer time resolution to guarantee accurate
solutions. However, smaller time step also translates into higher computational cost. Here, to find
a reasonable time step which will yield good accuracy while preserving the simulation efficiency,
several time steps are attempted and the simulation results are shown for the time steps of 0.01 s,
0.005 s, 0.002 s, and 0.001 s. We compared these lift calculations with those predicted by Ansari’s
CFD and theoretical model in Figure 5. All cases match the CFD results reasonably well up to
three chord lengths traveled. After 5 chord lengths of travel, all model predictions demonstrate some
“delay” behavior compared to CFD which might be caused by the lingering of the newly generated
TEV in an inviscid flow model. This can be observed by comparing the flow structures between
this model and Ansari’s CFD simulation as shown in Figure 6. It can be further observed that this
model starts to show time convergence when time step equals 0.005 s, while the converged solution
seems to have higher magnitude of lift compared to CFD. This is also one of the cons of the inviscid
model, in which velocity of the vortex close to the flat plate is not bounded. This effect is especially
profound when the time step becomes smaller. In this study, the case with time step of 0.005 s
shows both convergence and computational economy while matching with the CFD results; it is
therefore preferable to pick 0.005 s as the time step for the following simulations. It should be added
that although the issue with the small time step is theoretically unavoidable, practical ways can
potentially improve the accuracy. For example, one can use a model to estimate the thickness of the
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FIG. 5. Lift coefficient vs. chord lengths of travel for a starting flat plate at 45◦ angle of attack. Different results obtained
from different time steps are compared to Ansari’s CFD and aerodynamic model results.33 Images shown at the bottom of
the figure show the evolution of flow field and vortex structures corresponding to each instant of time. As indicated from
the force equation in this study, for a leading edge vortex (	v < 0) a motion in the positive streamwise direction (ξ̇v > 0)
will create positive lift, while for a trailing edge vortex (	v > 0) a motion in the positive streamwise direction (ξ̇v > 0) will
create negative lift. This indicates that LEV shedding leads to a decrease of lift while TEV shedding increases lift. This is
also readily verified in this figure by relating the lift coefficient trend to the corresponding vortices structures, e.g., from
0–2 chord lengths of travel, a constant positive lift is created due to TEV shedding and the relative stabilization of LEV on
the flat plate.

boundary layer over the flat plate and then enforce a restriction for the vortices inside the boundary
layer. Another approach could be implementing vortex amalgamation scheme under the condition
that the merging process has negligible impact on the feeding shear layers.

Before validating these lift calculations by comparing with the experimental cases for differ-
ent angles of attack, there is an important implication which needs to be pointed out regarding
Eq. (41). Basically, what this equation indicates is that the force contribution from a vortex
(LEV or TEV) located at ζv = ξv + iηv with a circulation 	v can be expressed as Fvx − i Fvy

= −iρ	v( ˙̄ζv + ζ̇va2/ζ 2
v ). Since the lift calculation is of most interest here, we would like to explic-

itly find the relation between the velocity of the vortex and the lift generated by the motion of the
vortex. Considering the motion of a vortex in the streamwise direction, without losing generality,

FIG. 6. Additional comparison of the flow field and vortex structures for a starting flat plate at 45◦ angle of attack. The
results from this simulation (top) are compared to Ansari’s CFD results33 (bottom) for large chord length of travel.
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it is convenient to assume zero angle of attack so that the lift is purely Fvy and ˙̄ζv = ζ̇v = ξ̇v .
Therefore, the lift in this case can be simplified to Fvy = ρ	vξ̇v(1 + Real(a2/ζ 2

v )). As a < |ζv|, it
yields

∣∣a2/ζ 2
v

∣∣ < 1 and thus Real(a2/ζ 2
v ) > −1. As a result, (1 + Real(a2/ζ 2

v )) > 0 which means
that Fvy/(	vξ̇v) > 0. This indicates that for a leading edge vortex (	v < 0) a motion in the positive
streamwise direction (ξ̇v > 0) will decrease the lift, while for a trailing edge vortex (	v > 0) a mo-
tion in the positive streamwise direction (ξ̇v > 0) will increase the lift; thus, LEV shedding decreases
lift while TEV shedding increases lift (Note here that the concept of vortex shedding refers to the
convection of the vortex center away from the flat plate rather than the fracture of the feeding shear
layer. This applies to all the “shedding” terms in the following context.). This might be a reason why
flapping flyers try to stabilize the LEV during most of the upstroke cycle. It should also be noted
that simulation by Yu et al.14 report similar conclusions. Moreover, this interpretation can be used
to explain the lift coefficient variation shown in Figure 5 by analyzing the flow field snap shots of
the vortex evolution behavior. From 0–2 chord lengths of travel, a constant positive lift is created
due to TEV shedding and the relative stabilization of LEV on the flat plate. From 2–3 chord lengths
of travel, the LEV is still growing while a second TEV gradually forms and sticks to the trailing
edge which results in the lift decrease to its first minimum. From 3–4 chord lengths, the second TEV
grows around the trailing edge and causes a stronger leading edge shear layer which potentially
would become the second leading edge vortex. This addition of stronger vorticity to the LEV results
in a small increase of lift and the first lift maximum. From about 4–5 chord lengths, the first LEV is
cut by the growing second TEV and starts to shed; this decreases the lift and generates the second
minimum point in the lift curve. However, after about 5 chords, the reduction of the lift is reversed
due to the shedding of the second TEV, which lasts for a relatively long time and enhances the lift so
significant that it reaches its greatest magnitude. From the above analysis, it can be concluded that
the generation of new LEV or TEV is responsible for the first maximum or minimum of lift, while
the shedding of LEV or TEV generates the second minimum or maximum of lift.

Next, we will validate the model and lift calculations by comparison with experimental lift
coefficient data2 at a variety of angles of attack. Since it is not straightforward to establish a criterion
to distinguish between small and large angles of attack, we also present the results of the lift
calculations using both approaches for larger angles of attack. The present criterion angle is then
determined by the observation of the flow pattern and the matching with experimental lift variations.
In this paper, 4.5◦ ≤ α ≤ 45◦ are calculated with small angle of attack treatment while 27◦ ≤ α

≤ 45◦ are calculated with assumption of large angle of attack. The results are compared in Figure 7.
Note that at 27◦ ≤ α ≤ 45◦, both methods are tested and the results are compared with each other.
We can conclude that the low angle formulation has a better performance at α = 27◦ and even at
α = 31.5◦, while at α = 36◦ the advantage disappears. At α = 40.5◦ and α = 45◦, better performance
from the high angle formulation can be confirmed which indicates that α = 40.5◦ is large enough to
implement the Kutta condition at the leading edge. Therefore, a proper region corresponding to the
transitional angles of attack here could be between 30◦ and 40◦.

The lift calculations match nicely with experimental results for low angles of attack ranging
from 4.5◦ to 22.5◦. There are some oscillations in the simulation results which are caused by the LE
and TE shedding alternately. For high angles of attack, the magnitude of lift matches with experiment
and has been shown in Figure 5 to match reasonably well with the CFD results presented by Ansari
et al.15 However, it should not be ignored that the 2D results divert from experiment after large chord
length of travel due to the buildup of 3D effect. The leading edge vortex in 3D case attaches longer
than the 2D case which causes a delay of stall. More details about the 3D effect on lift can be found
in this recent study from our group.38

Here, we would like to point out an important conclusion related to the insect flight from this
study. A traditional view attributed the lift enhancement of the insect wing to the stabilization of the
LEV.1, 2 However, according to our findings here, this traditional view is more of a partial observation
of the physics involved in lift generation rather than an explanation. We believe this lift enhancement
is due to a mutual effect of the LEV and the TEV. As is known, the TEV convects downstream
rather rapidly as compared with the slow moving LEV. This creates an apparent stabilization of the
LEV when a significant positive lift can be observed (see the first two chord travel of the plate in
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FIG. 7. A starting flat plate. (a)–(j) Lift coefficient compared with experiments2 for angles of attack ranging from 4.5◦
to 45◦.
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Figure 5). However, from our analysis in this section, one could conclude that the LEV contributes
to negative lift during its convection downstream. This clearly indicates that the stabilization of the
LEV alone cannot generate positive lift. Actually, the positive total lift in this case is due to a stronger
convecting effect of the TEV which overweighs a relatively weaker convecting effect of the LEV.

Moreover, this study also provides some implications about the aerodynamic stall. In Figure 5,
a dramatic decrease of the lift can be observed from the second to the third chord length travel of the
plate. From a lift calculation perspective, this stall behavior is caused by less positive lift contributed
from the new generated TEV which shows the trend of stabilization around the trailing edge rather
than convecting downstream. The physics behind this is that the excessive growth of the large LEV
after two chord length movement of the plate begins to interact strongly with the flow around the
trailing edge. This will rupture the feeding shear layer of the first TEV while creating and growing
a new TEV. Consequently, the interaction of large LEV with the TEV could provide an explanation
for this temporary lift-stall observed between the second and the third chord length of plate travel.

B. A pitching flat plate

This section will simulate a pitch-up, hold, and pitch-down motion for a flat plate using our
model and will compare the results with existing experimental, theoretical, and computational
results. The original experimental studies used for comparison of this case were conducted by OL,34

with the motion analytically prescribed by Eldredge et al.23 In the following discussions, four cases
are simulated with the pivot about the leading edge and half-chord, and with the maximum pitch
amplitudes of 25◦ and 45◦.

The comparison between experimental flow visualization35 and potential flow simulation of
two cases is shown in Figure 8. Both cases pivot about the leading edge with pitch amplitudes
of 25◦ and 45◦, respectively. The flow field and vortex structures simulated by this model match
well with those from the experiment for both small and large angles of attack. This indicates that
the unsteady potential flow model applied in this study well captures the flow features of unsteady
motions of the flat plate. Moreover, the good matching of the vortex structures also reflects the proper
implementation of vortex shedding conditions at various angles of attack. Here, it should be noted
that since two different treatments are proposed for the leading edge vortex shedding, the criterion
for activating the more appropriate one needs to be handled carefully, especially at mid-ranged
angles of attack. Although a more delicate model is needed in the future to determine this condition,
here it is justifiable that we determine this criterion by matching the configurations and size of the
leading edge vortex or separation bubble with experiments. Following this rule, the critical angle is
found to be about 20◦ during the pitch-up motion for both cases.

Next, we compare the lift calculations of four test cases with experimental approach of OL,35

computational and theoretical approaches of Ramesh et al.35 as shown in Figure 9. The theoretical
model of Ramesh et al.35 adopted Theodorsen’s method, based on thin airfoil theory, which does
not resolve explicit vortices in the wake. It can be observed that the overall time evolution trends of
our lift calculations resemble experimental data in most of the periods for all cases. Actually, the lift
calculations from this model match well with experiments during the pitch-up and hold phase of the
pitching motion (t∗ < 4, t∗ denotes the non-dimensional time) in all cases. When further compared
with others’ work (including CFD simulations), this model seems to display a better performance
at small angles of attack during the pitch-up motion and comparable performance with CFD during
the hold phase. This indicates that the implementation of the vortex shedding condition for small
angles of attack accurately interprets the physics that occur at the leading edge shear layer. However,
at higher angles of attack during the pitch-up motion (above 30◦), this model tends to overestimate
the lift to some extent. The reason for this might be the abrupt transition between the two vortex
shedding schemes, which creates an initial offset that increases the lift when the high angle of attack
shedding condition is activated. This indicates that additional work needs to be done to smooth the
transition between the vortex shedding methods.

In Figure 9, it is also notable that the gap between model prediction and experimental data are
significant for most cases (except for case (b)) during the pitch-down motion (4 < t∗ < 6). It seems
that the decreasing lift trends are either delayed (case (a) and (c)) or advanced (case (b)) relative to
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FIG. 8. (a) and (b) A pitch-up, hold, and pitch-down flat plate. The figure shows the comparison of flow fields and vortex
structures between previous experimental work35 (top) and the potential flow model (bottom) for a pitching flat plate.

the experimental values. The results from CFD and other models apparently suffer from the same
issue as neither of their predictions show convincing matching of lift in this region. One reason that
might have caused this mismatch could be the 3D effects built up after the “hold” phase. As observed
by Shields and Mohseni,38 among others, the stall behavior can be delayed up to 45◦ angle of attack
for a low aspect ratio wing compared to a 2D wing. In this study, we compared our results with the
experiments reported in Ref. 35 where the plate aspect ratio is only two. Therefore, it is possible that
3D effect could play a large role at later convective time, e.g., the interaction between the tip vortex
and the trailing edge might cause a misprediction of the stall when the flat plate starts to pinch off.
Besides the influence of the 3D effect near the tip region, there are two other potential reasons cause
the difficulty of lift prediction here. First of all, the leading edge vortex becomes extremely large
and moves rearward before the pitch-down motion as separated and reverse flows develop on top
of the flat plate, which would result in the failure of the traditional Kutta condition at the trailing
edge. Second, during the pitch-down motion the trailing edge has a possibility of interfering with the
growing leading edge vortex which would add further complexity to the flow near the trailing edge.
With the awareness of these two circumstances, the authors believe that traditional Kutta condition
should be relaxed at the trailing edge during the pitch-down motion to better reflect the reality (refer
to Ansari et al.15 for similar discussions about releasing Kutta condition at the shedding edges). As
a result, a similar implementation to that of the leading edge condition at small angle of attack is
adopted with the circulation determined by a simple equation: dU2dt/2. However, the question still
remains as to when this condition should take an effect. It has been implied from the results that an
arbitrary activation of this condition only results in the delay or advance of the lift variation trends.
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FIG. 9. (a)–(d) Comparison of lift coefficient with previous results35 for a pitch up-hold-pitch down maneuver.

In the starting flat plate problem, it is apparent that lift enhancement is achieved when the
leading edge vortex grows and the trailing edge vortex sheds. This can also be verified by the
pitching problem during the hold phase (3 < t∗ < 4). In cases (a) and (c) in Figure 9 where the
pitch amplitude is small, the LEV is still growing and the trailing edge is shedding vortices without
interference from the LEV during the hold phase (see Figure 8(a)). As a result, a conservation or
even slight increase of lift is observed. In cases (b) and (d) during the same period with larger
pitch amplitude, the leading edge vortex is much larger and affects the trailing edge vortex shedding
significantly (see Figure 8(b)). In this case, even as the leading edge vortex is growing, the trailing
edge vortex shedding is altered which results in a declining trend in the lift coefficient. To this end,
it should be reasonable to conclude that maintaining the growth of the LEV and simultaneously
preventing the trailing edge flow from being interrupted by the LEV or other unsteady flows should
be a main method to enhance lift (or prevent lift loss) in high angle of attack situations. This might be
the reason why stabilizing the LEV will enhance the lift. For future active flow control applications
on MAVs, control actuations should be aimed at creating and maintaining the LEV, while eliminating
the effect of LEV on the trailing edge and maintaining the normal shedding condition at the trailing
edge.

VI. CONCLUSIONS

The problem of a pitching flat plate is investigated in this paper. First, an unsteady potential flow
model is presented with a single vortex-sink singularity attached to a flat plate. Then, a multi-vortices
model is extended from the single singularity model to discretely simulate the shedding vortices
from the leading and trailing edges. The lift calculation is performed by integrating the unsteady
Blasius equation. This is an improvement based on Minotti’s13 unsteady lift calculations in the sense
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of identifying the velocity contributions from the LEV and TEV. It is shown that the shedding of
TEV and stabilization of LEV would increase the lift.

Shedding conditions required to determine the intensities and placement of the shedding vortices
at the shedding edges are discussed. It is suggested that a Kutta-like condition should be satisfied
at the leading edge for cases with large angles of attack, while a vortex sheet based model is
proposed to calculate the circulation for cases with small angles of attack. The shedding conditions,
together with the dynamic model and lift estimation, are verified by comparing the simulation of
a starting flat plate problem with previous experimental, CFD, and model approaches. The results
show good performance of lift coefficient at various angles of attack. Furthermore, several cases of
the canonical pitch up and pitch down motion are simulated using this model and the results are
compared with experiments, numerical simulations, and other previous models. The results show
promising performance of lift prediction during the pitch-up and hold phases of the pitching motion.
Excellent matching behaviors are observed at pitching cycles with small angles of attack which
verify the new shedding model for the leading edge. Moreover, since this model is based on the
flow configuration with wake and vortex movement being resolved, it can be expected to provide
more accuracy than the thin airfoil model during the pitch-down phase of pitching motion as well.
However, to better improve this model, future work should be focused on modeling the shedding
condition with complex flow configurations such as the presence of strong edge-wake interactions.
In addition, the time variations of the lift coefficient in both the starting plate problem and, the
pitching up and down problem provide insights to future flow control applications that stabilizing
the LEV and at the same time maintaining the normal shedding of trailing edge vortices are required
to enhance the lift of MAVs.
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APPENDIX: DERIVATION OF EQ. (37)

Here, we provide the detailed derivation from Eqs. (36) to (37). Equation (36) can be calculated
to be

∮
C1ζ

∂

∂t

[
(Q + i	1) ln(ζ − ζ1) + (Q − i	1) ln

(
1 − a2/(ζ ζ̄1)

)] dz

dζ
dζ

= ∂

∂t

∮
C1ζ

[
(Q + i	1) ln(ζ − ζ1) + (Q − i	1) ln

(
1 − a2/(ζ ζ̄1)

)] (
1 − a2

ζ 2

)
dζ. (A1)

The result is evaluated by integrating the two parts as follows.
The first part is integrated

∂

∂t

∮
C1ζ

(Q + i	1) ln(ζ − ζ1)

(
1 − a2

ζ 2

)
dζ

= ∂

∂t

[
(Q + i	1)

(∮
C1ζ

ln(ζ − ζ1)dζ −
∮

C1ζ

ln(ζ − ζ1)
a2

ζ 2
dζ

)]
, (A2)

where the indefinite integrals are calculated:
∫

ln (ζ − ζ 1)dζ = −ζ + (ζ − ζ 1)ln (ζ − ζ 1) and
∫

ln (ζ
− ζ 1)( − a2/ζ 2)dζ = a2[ln (ζ )/ζ 1 + (1/ζ − 1/ζ 1)ln (ζ − ζ 1)]. Considering the singularities,
ζ = 0 is within the integration contour C1ζ while ζ = ζ 1 is outside of C1ζ . Therefore, only
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logarithm function ln (ζ ) is integrated and the result is

∂

∂t

[
(Q + i	1)

(∮
C1ζ

ln(ζ − ζ1)dζ −
∮

C1ζ

ln(ζ − ζ1)
a2

ζ 2
dζ

)]

= ∂

∂t

(
(Q + i	1)2π ia2/ζ1

)
. (A3)

The second part is

∂

∂t

∮
C1ζ

(Q − i	1) ln(1 − a2/(ζ ζ̄1))

(
1 − a2

ζ 2

)
dζ, (A4)

where ln(1 − a2/(ζ ζ̄1)) can be expanded to Taylor series at the integration contour C1ζ as

ln(1 − a2/(ζ ζ̄1)) = −a2/ζ̄1

ζ
− 1

2

(
−a2/ζ̄1

ζ

)2

+ O

(
−a2/ζ̄1

ζ

)3

. (A5)

Therefore, using the Residue theorem, the result of this integral can be obtained as

∂

∂t

∮
C1ζ

(Q − i	1)

(
−a2/ζ̄1

ζ
− 1

2

(
−a2/ζ̄1

ζ

)2

+ O

(
−a2/ζ̄1

ζ

)3
) (

1 − a2

ζ 2

)
dζ

= ∂

∂t

∮
C1ζ

(Q − i	1)

(
−a2/ζ̄1

ζ
+ O

(
1

ζ 2

))
dζ

= ∂

∂t

(
(Q − i	1)2π i(−a2/ζ̄1)

)
. (A6)

Combining the two parts given in Eqs. (A3) and (A6) yields the expression shown in Eq. (37).
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