
Far-field momentum flux of high-frequency axisymmetric synthetic jets
X. Xia and K. Mohseni 
 
Citation: Physics of Fluids 27, 115101 (2015); doi: 10.1063/1.4935011 
View online: http://dx.doi.org/10.1063/1.4935011 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/27/11?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Interaction between a vortex generator and a synthetic jet in a crossflow 
Phys. Fluids 27, 107101 (2015); 10.1063/1.4932359 
 
A direct numerical simulation investigation of the synthetic jet frequency effects on separation
control of low-Re flow past an airfoil 
Phys. Fluids 27, 055101 (2015); 10.1063/1.4919599 
 
Vortex formation of a finite-span synthetic jet: High Reynolds numbers 
Phys. Fluids 26, 014101 (2014); 10.1063/1.4859895 
 
Interaction of a synthetic jet with the flow over a low aspect ratio cylinder 
Phys. Fluids 25, 064104 (2013); 10.1063/1.4811710 
 
Transitory behavior of a finite span synthetic jet 
Phys. Fluids 19, 094108 (2007); 10.1063/1.2779873 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.227.4.255 On: Wed, 04 Nov 2015 15:40:01

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/948624466/x01/AIP-PT/PoF_ArticleDL_081915/SearchPT_1640x440.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=X.+Xia&option1=author
http://scitation.aip.org/search?value1=K.+Mohseni&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4935011
http://scitation.aip.org/content/aip/journal/pof2/27/11?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/10/10.1063/1.4932359?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/5/10.1063/1.4919599?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/5/10.1063/1.4919599?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/26/1/10.1063/1.4859895?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/25/6/10.1063/1.4811710?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/19/9/10.1063/1.2779873?ver=pdfcov


PHYSICS OF FLUIDS 27, 115101 (2015)

Far-field momentum flux of high-frequency axisymmetric
synthetic jets

X. Xia1 and K. Mohseni1,2,3,a)
1Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,
Florida 32611-6250, USA
2Department of Electrical and Computer Engineering, University of Florida, Gainesville,
Florida 32611-6250, USA
3Institution for Networked Autonomous Systems, University of Florida, Gainesville,
Florida 32611-6250, USA

(Received 8 May 2015; accepted 20 October 2015; published online 4 November 2015)

This study focuses on predicting the far-field momentum flux for axisymmetric
synthetic jets, which is an important parameter that characterizes the performance of
such jets in flow-control applications. Previous researchers have found that a negative
pressure gradient near the jet orifice is responsible for the observed decrease in the
momentum flux in the streamwise direction. As a result, prediction of the far field
momentum flux of synthetic jets has encountered serious challenges. In this paper,
the far-field momentum flux is modeled by calculating the hydrodynamic impulse
of the vortical structure formed during one actuation cycle, under the assumption
that the jet is fully developed and periodic. In this manner, the complex near-field
effect of a synthetic jet is explicitly captured by the interactions between the vortices
and the actuator. Furthermore, the impulse of these vortical structures is predicted
using only the actuation parameters of the synthetic jet, namely, the stroke length,
L, the orifice diameter, d, and the actuation frequency, f . For a synthetic jet with
a stroke ratio, L/d, larger than the formation number, L∗/d, this model predicts
that the normalized far-field momentum flux, K/Ks, decreases when L/d increases.
This can be explained by an increasing circulation fraction of the trailing jet, which
contains less impulse per unit circulation compared with the leading vortex. This
model is validated using hot-wire anemometry measurement of a series of synthetic
jets. Moreover, by comparing with experimental data that have large L/d, this model
suggests that the contribution of trailing jet to the overall far-field momentum flux is
not negligible. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935011]

I. INTRODUCTION

Synthetic jets are pulsatile jets with a zero-net-mass-flux (ZNMF) property at the jet exit plane,
meaning that no propellant is required for jetting to take place. Moreover, due to the compact-
ness and low energy consumption of the actuators, synthetic jets have been applied to a variety
of applications,1,2 such as boundary layer separation control,3–6 flow control over airfoils,7–11 and
underwater vehicle propulsion and maneuvering.12,13 These applications imply a preexisting back-
ground flow of some kind; however, the focus of the current work is on synthetic jets in a quiescent
environment, although we note that several researchers have investigated the interaction between
synthetic jets and background flow configurations.8,14–18 In the near field of a synthetic jet (de-
picted in Fig. 1), axisymmetric vortices are generated, advected away from the exit, and experience
continued mutual interaction until a fully developed, turbulence-dominated far field is achieved.19

This formation process is responsible for the enhanced entrainment and mixing of synthetic jets
as compared to continuous jets.20,21 Furthermore, due to the pulsation of the jets, the near-field
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FIG. 1. Schematic showing the flow field of a synthetic jet. The near-field flow is characterized by a strong periodic flow.
In the transitional region, the vortex rings interact with each other and the background flow and entrain surrounding fluid.
In the far field, the major vortex rings break down into smaller vortices and the flow becomes a turbulent jet. The transition
between these different regions is determined by a combined effect of the stroke ratio and the Reynolds number. The Reynolds
numbers of the synthetic jets in this study range from 548 to 8781.

flow is highly unsteady and so characterization of the effectiveness of synthetic jets through direct
modeling of the near field is quite difficult. Hence, in this study, we pursue the development of a
connection between the synthetic jet actuator parameters and the far-field flow.

Recently, Xia and Mohseni22 developed a model to predict the far-field features of a synthetic
jet. Their data showed that the momentum flux, together with an effective eddy viscosity, dictate
the spreading and decay behaviors of any jet in the far field. Moreover, the momentum flux is
strongly linked to the propulsion of vortex thrusters13,23,24 and is also important in dictating the
performance of a synthetic jet actuator in flow control applications.3,4,8,9,25 In these studies, the jet
effectiveness is typically characterized by the momentum coefficient,7 Cµ, which is defined as the
ratio between the time-averaged jet momentum flux and the characteristic freestream momentum
flux. In other studies, the blowing ratio defined as the jet-to-freestream velocity ratio has also been
reported to gauge the interactions between synthetic jets and crossflow boundary layers.16,26–31 The
estimation of the blowing ratio involves calculating the jet velocity, which is implicitly related to the
momentum flux of the jet. Therefore, the utility of developing an accurate model for the far-field
momentum flux of a synthetic jet is apparent.

Traditionally, a slug flow model32 has been used to obtain a simple estimation of the jet mo-
mentum flux. However, investigations employing particle image velocimetry (PIV) techniques to
calculate the time-averaged momentum flux at the jet exit33 and in the near field34 have shown that
the slug model does not always offer a sufficient level of accuracy in predicting the momentum flux
of round synthetic jets. Smith and Glezer19 studied the variation of the far-field momentum flux,
as determined from the convective flux of momentum, and found that it decreases with increasing
axial distance from the actuator but eventually reaches an asymptotic value, indicating the conser-
vation of momentum in the far field of synthetic jets. They attributed the apparent decrease in
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the momentum flux to the presence of an adverse pressure gradient in the near field; Smith and
Swift20 and Shuster and Smith34 made similar observations and conclusions. However, this pressure
gradient in the near field, caused by the alternating processes of suction and ejection, is difficult to
model. This is because the flow field near a synthetic-jet orifice is highly pulsatile and vortical. The
unsteady nature of the flow, together with the complex geometry of the jet exit, presents a significant
challenge for finding an analytical solution to the problem. In light of these considerations, a model
for the far-field momentum flux that is based on the pressure gradient mechanism will suffer from
similar difficulties. Frequency is also related to the accuracy of momentum-flux estimation using
the slug model. Krieg and Mohseni13 studied the thrust generated by low-frequency ( f ∼ 101 Hz)
synthetic jets and observed (see Fig. 8 of Krieg and Mohseni13) good agreement with the slug
model at very low frequencies ( f < 5 Hz). However, as the frequency is increased, the model
begins to overestimate the normalized thrust, which is closely related to the normalized momentum
flux. This indicates that a stronger pulsation of a synthetic jet would cause the momentum flux to
decrease. Again, the seemingly different physics between low and high frequencies are related to the
interactions between vortices as well as the suction effect. Specifically, if other conditions remain
the same, a higher frequency would cause the neighboring vortices to be closer to each other and
increase the influence of the suction flow. However, as the frequency is increased above 20 Hz, the
normalized thrust appears to saturate and be independent of the frequency. This saturation event
further indicates that a model independent of frequency could exist for synthetic jets with high
frequency.

To avoid dealing directly with the effects of the time-dependent near field, we use an approach
that considers the hydrodynamic impulse of the fully developed vortical structure that exits the near
field, or equivalently, that eventually enters the far field. First, the change in the far-field momentum
is related to the associated hydrodynamic impulse, and then this impulse is connected to that of the
vortical structure entering the far field. Finally, the impulse of the vortical structure, and hence the
far-field momentum flux, can be related to the jet actuation parameters. This final step, that is, the
relationship between the jet actuation parameters and the evolution of the ejected vorticity (usually
taking the form of a vortex ring), has been the focus of many other studies34–43 and so strengthens
the reliability of the proposed model to predict the far-field momentum flux.

This article is organized as follows: Section II describes the modeling of the far-field mo-
mentum flux for a synthetic jet using the jet-formation parameters. Section III introduces the exper-
imental setup and methods. Section IV briefly discusses the turbulent nature of the jets. Section V
presents the results and discussion associated with the model validation, as well as physical insights.
Finally, concluding remarks are given in Section VI.

II. THEORETICAL MODELING

A. Far-field momentum flux for synthetic jets

Xia and Mohseni22 proposed a unified far field model for both synthetic and continuous jets.
Two governing parameters, namely, the far-field momentum flux and the effective eddy viscosity,
were identified as determining the characteristics of the far field for any turbulent jet. Here, we focus
on modeling the (kinematic) time-averaged momentum flux of the jet (per unit density, in the axial
direction), K , which is defined as

K =
2π
T

 T

0

 ∞

0
u2rdrdt, (1)

where T is the period of the actuator and u is the time-varying axial velocity that depends on both
r and t. Note that this equation is specific to axisymmetric jets. To predict the far-field behaviors
of synthetic jets without any flow field measurement, K must be modeled using the jet-formation
parameters, i.e., the stroke length, L, diameter of the jet exit, d, and the driving frequency, f . We
now begin to develop the new model for the far-field momentum flux of a synthetic jet.

We start by relating the change in the far-field momentum to the corresponding hydrodynamic
impulse. The schematic in Fig. 2 illustrates the evolution of vortical structures in the flow field
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FIG. 2. Schematic showing the periodic evolution of the vortical structures from t = t0 to t0 + T . S1 is the boundary
corresponding to the beginning of the far field, and S2 and S3 are control surfaces located at infinity. The vortical structures in
the far field are grouped into a finite volume Vf , while outside the far field the individual vortical structures, Vi, are assumed
to be isolated control masses. From t0→ t0 + T ,Vi→ Vi+1, whereVN ′+1 becomes part ofVf andV1 is replaced by the newly
generated vortical structure from the synthetic jet.

of an axisymmetric synthetic jet, where the two different instances are separated by one period,
T = 1/ f . The far field is regarded as being a control volume which is enclosed by surfaces S1, S2,
and S3. The linear momentum, M⃗f , within the control volume can be expressed in terms of the
corresponding hydrodynamic impulse, I⃗ f (defined in Eq. (A1a)), plus a boundary flux term by using
a vector/integral identity (Saffman,44 page 51) as

M⃗f (t) = I⃗ f (t) + 1
2


S1+S2+S3

[u⃗(t)(n⃗ · x⃗) − n⃗(u⃗(t) · x⃗)] dS, (2)

where u⃗ is the velocity field, n⃗ is the normal vector of the integrating surface, and x⃗ is the position
vector. The far-field momentum is then obtained by placing the control surface S1 at x = x f , which
is defined to be the axial location of the far-field region. The control surfaces S2 and S3 are assumed
to be at infinity where the jet vanishes and so the velocity is zero, meaning that the associated
surface integrals in Eq. (2) are also zero. Now, since the flow is turbulent and assuming periodicity
at S1, the velocities for different periods are related to each other as

u⃗(t0 + mT) − u⃗′(t0 + mT) = u⃗(t0) − u⃗′(t0) = ⃗̄u(t0), (3)

where u⃗′ and ⃗̄u represent the turbulent fluctuation and the mean value, respectively, with the latter
satisfying ⃗̄u(t0) = ⃗̄u(t0 + mT). Also, m is an integer ranging from 0 to N , with N being the total
number of periods sampled for the measurement of the momentum flux (N is usually the product
of the jet frequency and the sampling time). Note that in reality, the assumed periodicity condition
places a further requirement on the definition of the far field location x f . Evaluating Eq. (2) at t = t0

and t0 + NT and then subtracting yield
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M⃗f (t0 + NT) − M⃗f (t0) = I⃗ f (t0 + NT) − I⃗ f (t0)
+

1
2


S1

{[u⃗′(t0 + NT) − u⃗′(t0)] (n⃗ · x⃗) − n⃗ [(u⃗′(t0 + NT) − u⃗′(t0)) · x⃗]} dS.
(4)

This is the change in the far-field total momentum within N periods, which is equivalent to the
time-integral of the far-field momentum flux across S1 during the same period. To simplify this
equation, x⃗ can be expressed as xe⃗x + re⃗r , where e⃗x and e⃗r are the unit vectors in the axial and
radial directions, respectively. Together with the observation that on the surface S1 the unit surface
normal vector satisfies n⃗ = −e⃗x, the integral in Eq. (4) can be written as

1
2


S1

��
u′r(t0 + NT) − u′r(t0)� (−xe⃗r) + �u′r(t0 + NT) − u′r(t0)� (re⃗x)	 dS, (5)

where u⃗′ = u′xe⃗x + u′r e⃗r , with u′x and u′r being the axial and radial components of the turbulent
fluctuation, respectively. Furthermore, since the jet is axisymmetric, the radial component of Eq. (5)
is zero, as well as the radial components of the momentum and hydrodynamic impulse. By writ-
ing M⃗f = Mf e⃗x and I⃗ f = I f e⃗x, the time-averaged axial momentum flux into the far field is then
calculated to be

K(x f ) = Mf (t0 + NT) − Mf (t0)
NT

=
I f (t0 + NT) − I f (t0)

NT
+

1
2NT


S1

[u′r(t0 + NT) − u′r(t0)]rdS. (6)

Inspection of Eq. (4) shows that the boundary flux contribution to the change in the far-field mo-
mentum is entirely associated with turbulent fluctuations of the velocity field at the surface S1;
Eq. (6) provides the further result that the contribution is from fluctuations of the radial velocity.
Again, this result is contingent on the periodicity condition being satisfied at x f in the far field. Now,
since Eq. (6) represents the time-averaged axial momentum flux, then by definition of a turbulent
fluctuation, the boundary flux contribution is zero. Therefore, Eq. (6) can be reduced to

K(x f ) = I f (t0 + NT) − I f (t0)
NT

. (7)

In this way, a link between the axial momentum flux and the change in hydrodynamic impulse
of the far-field fluid is established. In order to evaluate I⃗ f (t0 + NT) − I⃗ f (t0), one could first calcu-
late I⃗ f (t0 + T) − I⃗ f (t0) and then apply the periodic feature to extend the result to the time interval
t0 < t < t0 + NT . The Appendix provides a detailed derivation showing that I⃗ f (t0 + T) − I⃗ f (t0) = I⃗1,
where I⃗1 = I1e⃗x is the hydrodynamic impulse of all newly discharged vorticity during the jett-
ing period and immediately before the next cycle begins. Extending this relationship to t0 < t <
t0 + NT , Eq. (7) can be simplified to

K ≈ f I1. (8)

It is now assumed that the above estimate for the far-field momentum flux is equivalent to the
hydrodynamic impulse (times f ) of the vortical structure that is ejected from the synthetic jet and
then arrives at the far field. This relies on the assumption that once the vortical structure (or simply,
the vortex) is completely formed, the effect of the actuator wall can be ignored relative to the effects
induced by other vortices. The rationale behind this assumption is that the interaction between the
wall and the vortex is strongest during vortex formation but diminishes significantly as the vortex
develops and is advected farther away. Practically speaking, the effect of the wall is evidenced by a
variation in the radius of the vortex, which several previous studies have observed to quickly reach a
nominal value in the near field.34–36,45

B. Estimation of hydrodynamic impulse

Having related the time-averaged momentum flux in the far field to the hydrodynamic impulse
of the fluid entering the far field, that is, I⃗1, we are ready to develop a model to express I⃗1 in
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terms of the jet-formation parameters. Several studies investigating a starting vortex jet as well as a
synthetic jet have employed the classic slug flow model for this purpose, and we briefly introduce
this concept. In the slug model, each ejection of fluid is treated as a slug with a constant diameter
d and a total length L. The uniform, but time-dependent velocity of the slug is given a sinusoidal
form, namely us(t) = π f L sin(2π f t) with a 50% duty cycle. This velocity program is intended to
account for the sinusoidal deflection of the piezo-electric membrane. The momentum flux computed
from this slug model is readily obtained as13

Ks =
π3

16
f 2d2L2. (9)

While Eq. (9) may predict the functional dependency of K on f , d, and L, the magnitude is often
over-predicted (e.g., see Fig. 10(b)) in cases with large stroke ratios at high frequencies.13 Smith and
Glezer19 and Shuster and Smith34 regarded the adverse pressure gradient near the jet orifice as being
the cause of this discrepancy, whereby some of the ejected momentum is prevented from escaping
the near field. In the context of this study, the pressure gradient is tantamount to the actuator suction
and the induced effects of existing vortices. Although the direct modeling of these latter near-field
processes is also difficult, their resultant effect is contained within the final circulation and configu-
ration of the vortical structure that is generated and leaves the near field. Therefore, we next set out
to include these effects to improve the model for I⃗1 by analogy with a starting jet and utilizing the
extensive amount of previous research on the vortex formation of starting and synthetic jets.

A starting vortex ejected from a round exit generally consists of a large leading vortex (vortex
ring with diameter slightly larger than that of the jet orifice) and a slim tail (trailing jet containing
smaller-scale vortices). Moreover, Gharib et al.37 have shown that at a certain stroke ratio the
circulation of the final leading vortex saturates (an event termed pinch-off), meaning that further in-
creases of the stroke ratio only increase the circulation of the trailing jet. This phenomenon has been
well-established for starting jets37–39,46 and recently confirmed for synthetic or pulsed jets.34,40,41

To characterize this phenomenon, a non-dimensional parameter called the formation number, L∗/d,
was introduced and it is found to be approximately a constant for a jet with the same velocity
program and nozzle style. In this study, we first focus on the case with L/d > L∗/d, where there is
both a leading vortex and a trailing jet and reserve discussion of the L/d < L∗/d case to follow.

We begin again with the uniform, temporally sinusoidal slug flow velocity, us(t), which is a
1D jet model, and regard the synthetic jet as being a single-pulsed jet. We note that Krieg and
Mohseni43 have developed a 2D model for starting jets that accounts for the significant effects
of various nozzle geometries on, for example, circulation production. These effects are mani-
fested in jets that have non-uniform and/or radial velocity gradients. For orifice nozzle types,
Krieg and Mohseni43 observed non-negligible radial velocity gradients when the diameter-to-depth
ratio is large. However, for the orifice nozzle used in this study, the diameter-to-depth ratio is
around 1, which will result in a negligible radial expansion of the flow at the jet exit. Hence, a 1D
model is deemed appropriate for the current study. As such, the rate of circulation production is
dΓ1/dt = us(t)2/2, which yields a total circulation of Γ1 = π2 f L2/8 ejected during one cycle.

Given the total circulation, Γ1, the amounts of circulation that are contained within the leading
vortex, Γh, and the trailing jet, Γt, are now determined. Letting C = Γh/Γ1, which is the fraction
of total circulation in the leading vortex, we then have Γt/Γ1 = 1 − C, and it is noted that C is a
function of the stroke ratio, L/d. The circulation fraction, C, is obtained by finding the time during
the actuator cycle, say t∗, at which the ejected slug length is equal to L∗ and then evaluating the
circulation at this time. The result is

C = 2

t∗

T
− sin(4πt∗/T)

4π


, (10)

where

t∗

T
=

1
2π

arccos
(
1 − 2

L∗/d
L/d

)
. (11)
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Next, we consider the geometric effects of the vorticity distributions of the leading vortex and
trailing jet. This is accomplished by equating the hydrodynamic impulses of each vorticity distri-
bution to those of circular line vortices that have the same respective circulation and which have
particular radii, denoted Rh and Rt (see Eq. (12)). These radii represent the geometrical effects and
are used to define two vortex geometry parameters as α = 2Rh/d and β = 2Rt/d, which we refer to
as the (non-dimensional) ring radius and the trailing jet radius, respectively. It is important to note
that, in general, α and β may be functions of L/d. From Eq. (8), the total momentum flux can then
be written as

K ≈ f I1 = f π
�
R2
hΓh + R2

tΓt
�
=

π3

32
f 2d2L2 �α2C + β2(1 − C)� . (12)

Finally, the slug model momentum flux, Ks, is used to normalize K yielding

K
Ks
≈ 1

2
�
α2C + β2(1 − C)� . (13)

Recall that this derivation, and so the above equation, is only valid for L/d > L∗/d, where the
vortical structure contains a trailing jet (Eq. (11) ceases to be a real number when L/d < L∗/d).

According to Gharib et al.,37 when L/d < L∗/d, all of the circulation produced are contained in
the leading vortex, meaning that C ≡ 1 and from Eq. (13), the normalized momentum flux becomes
simply

K
Ks
≈ 1

2
α2, (14)

which is a constant if α is also a constant. In such a case, the implication is that the dependency of
the momentum flux on L/d is exactly that of the slug model. However, it is important to recall that
Eqs. (13) and (14) are based on a single-pulsed jet rather than a synthetic jet. In other words, the
effect of the suction phase on the vortex formation, and so I1, has not yet been explicitly taken into
account. These effects are increasingly important for smaller stroke ratios (<L∗/d) because when
the suction cycle begins, the previously ejected vortex is still in a dynamic formation process and is
also in the proximity of the orifice. As a result, the vortex formed during ejection is either ingested
back through the orifice or prevented from convecting away from the orifice.34 Actually, Shuster and
Smith34 have pointed out that the formation vortex ring of a synthetic jet contracts in the near field
when L/d is small. This indicates that the geometric configuration of the vortical structure will be
altered for a synthetic jet when L/d is small. Hence, α in Eq. (14) will vary with L/d and is also
likely to be less than that in Eq. (13) (L/d > L∗/d). Moreover, the amount of circulation that is put
into the vortex will also be affected (i.e., decreased) as some vorticity will be ingested back through
the orifice during suction.47 Nonetheless, we can retain the total circulation estimate used above and
implicitly model the suction effect by absorbing it into the vortex geometry parameters α and β.
This will be discussed in more detail in Section V B, where the choices for α and β are analyzed
and determined by comparing the model with the measured data.

III. EXPERIMENTAL METHODS

A. Setup and equipment

The experimental setup consists of a hot-wire anemometry system to measure the time-
averaged velocity field and is shown in Fig. 3(a). The hot-wire probe is a single platinum-plated
probe (Dantec Dynamics 55P16), with a length of 1.25 mm and a diameter of 5 µm. This probe,
when operating in the optimal mode through a constant temperature anemometer (Dantec MiniCTA
type 54T30), has a frequency response up to 400 kHz. The hot wire is calibrated with fourth order
polynomial curve following an iterative procedure,48 which results in an uncertainty of 2% for air
speed greater than 1 m/s and about 20% for air speed less than 0.2 m/s. The hot-wire probe is
positioned in the flow field using a two-dimensional traverse system consisting of linear actuators
(Zaber TLA60) and translation stages (Zaber TSB). The data acquisition system and the controllers
are automated and synchronized using LabVIEW.
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FIG. 3. (a) Schematic of the synthetic jet actuator and hot-wire measurement system. (b) Laser setup for piezo-membrane
deflection calibration.

Three different piezoelectric actuators were designed to create different synthetic jet flows. The
actuators were all fabricated with the same cavity dimensions, that is, a diameter of 27.8 mm and a
depth of 2.0 mm, but different orifice dimensions. The diameters of actuator 1, 2, and 3 are 1.0 mm,
1.5 mm, and 2.0 mm, respectively. The piezoelectric membranes of the actuators are driven by sinu-
soidal input voltages for which the frequencies and amplitudes can be controlled. These parameters
are varied to create synthetic jets with different stroke lengths, L. The test matrix containing the
relevant parameters for the synthetic jets is shown in Fig. 4.

The stroke length L is estimated by measuring the deflection of the piezoelectric membrane.
This involves a laser measurement,49 a schematic of which is shown in Fig. 3(b). This experiment
uses a laser nano-sensor (LMI LNS type 4) that is capable of detecting the location of a highly
reflective surface perpendicular to the laser beam path. For each synthetic jet case, the laser test
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FIG. 4. Test parameters for 50 synthetic jet cases, including (a) driving frequency, f , (b) stroke ratio, L/d, and (c) Reynolds
number, Res, as estimated from Res =

√
2 f Ld/ν (proposed by Krishnan and Mohseni49) at the jet exit. The diameters of the

three different actuators are marked by the different symbols in the figure.

is repeated 5 times to give the average p-p deflection of the membrane center. The average stan-
dard deviation of the deflection is within 5%. However, combining the error associated with the
alignment of the laser setup, the uncertainty in the measurement of L/d is estimated to be around
10%.

B. Experimental calculation of momentum flux

Once the measurements of the velocity field have been acquired, these data are used in Eq. (1)
to compute the momentum flux of the synthetic jets; this calculation is performed at each of the
axial locations at which measurements were taken. According to Eq. (1), this requires integrating
the (square of the) axial velocity in the radial direction from r = 0 to ∞. In reality, the jet velocity
becomes negligible (i.e., below the resolution of the anemometer) at very large radial locations and
so the integration domain can be made finite. However, there still remains the issue of obtaining
accurate measurements of the small, but significant velocities at radial distances close to the jet
boundary. Namely, the accuracy of the hot-wire anemometer drops when the velocity falls below a
certain threshold (the uncertainty is approximately 2% for measured velocity U > 1 m/s and 20%
for U < 0.2 m/s). Fig. 5 shows the error analysis of a typical velocity profile of the far field (SJ33).
The measurement of the same velocity profile was repeated six times and the standard deviation of
the velocity at each radial location is σstd. The total uncertainty of the velocity, σ, can be estimated

using σ =

σ2

std + σ
2
m, where σm is the uncertainty associated with the hot-wire anemometry.

Fig. 5 verifies that the measurements at large radial distances in the far field are susceptible to
more significant errors. Therefore, numerical integration of the velocity data will introduce their
associated errors into the calculation of the momentum flux, K . A similar issue was reported by
Smith and Swift.20

To overcome the above-mentioned challenges, we calculate the momentum flux based on curve
fitting a velocity profile using only measurements that exhibit a high signal-to-noise ratio (similar
techniques are described in Refs. 19 and 20). For this purpose, we use the classical self-similar
turbulent jet velocity profile, which is given by Eq. (15) in Sec. IV. Another advantage of this
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FIG. 5. Velocity profile measurement and error bars at axial location x/d = 60 for a sample case (SJ33). The plot shows the
averaged data of six different tests of the same velocity profile. Each location of the profile was sampled for 5 s at a rate of
25 kHz during each test. Therefore, the error in this case is a combination of the standard deviation of the measured velocity
and the uncertainty associated with the hot-wire anemometry.

approach is that the radial extent of the flow measurement can be further reduced significantly.
Fig. 6(a) shows the measured velocity profiles at several axial locations of the same synthetic jet
case (SJ33). The data points at large radial distances and with notable deviations are excluded.
The curve fitting process is performed in a least squares sense based on the limited data points to
determine the jet half-width parameter. The resulting curves are also given in the same plot.

IV. VALIDATION OF THE TURBULENT JET VELOCITY PROFILES

In Sec. III, the reason for fitting an analytical profile to the measured velocities was dis-
cussed, along with the experimental method for doing so. However, the accuracy of this method

FIG. 6. Velocity profiles at selected axial locations for a sample case (SJ33). (a) Axial velocity normalized by centerline
velocity vs. radial location normalized by the orifice diameter; the measured data are fitted to the velocity profile expressed
by Eq. (15). (b) Normalized axial velocity vs. radial location normalized by the adjusted axial location based on the jet’s
virtual origin,49 xo, and comparison of the velocity profiles with the classical turbulent jet (TJ) model.
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strongly depends on the appropriateness of the analytical velocity profile employed. We use the
classical self-similar turbulent jet velocity profile solved by Schlichting50 (also used by Krishnan
and Mohseni49 to model the far field of a synthetic jet), which is given by

u(r, x) = Um(x)
(1 + (r/b1/2)2)2 , (15)

where Um is the centerline velocity at x and b1/2 is the half-width of the jet. Next, we investigate
several properties of the measured jet velocity data to validate the use of Eq. (15) for the synthetic
jets studied here.

First, the self-similar behavior of the velocity profiles is examined at the far field. Fig. 6(b) plots
the velocity measurements from the typical sample case of Fig. 6(a), but with the radial position
normalized by the axial location. This figure shows that the jet possesses the assumed self-similarity
property as all velocity profiles collapse to one. Note here that the axial location in Fig. 6(b) should
be evaluated relative to the virtual origin, xo (see Krishnan and Mohseni49 for details). This is an
imaginary point along the x-axis as if the far field of the jet linearly spreads out from this point.
Therefore, the virtual origin can be obtained by fitting a line to the jet half-width data in the far field
and then extending this line to cross with the x-axis, as shown in Fig. 7.

Next, we discuss the turbulent characteristics of the synthetic jets. The flow field for a typical
case is shown in Fig. 8; similar results were obtained for other cases. Since the near field is not
the focus of this study, the measurement of the flow field is started from an axial distance of 17d
from the jet orifice, which approximately corresponds to the beginning of the transitional region of
a synthetic jet. By comparing the power spectrum plots, it is evident that the energy is transferred
from the high- to low-frequency flow structures in both the axial and radial directions. It can be
further observed that this energy transfer includes the frequency band corresponding to the turbulent
energy. This verifies that turbulence is the dominant mechanism driving the energy transportation in
the transitional and far-field regions of the synthetic jets investigated here. Moreover, as the location
changes from the transitional region to the far field (starting from 40d), the turbulent frequency
band is shifted away from the driving frequency of the jet. This indicates that the turbulent nature
of the far field is less likely to be affected by the jet’s pulsation. Therefore, this power spectrum
analysis supports the use of a turbulent jet velocity profile to describe the far field of a synthetic jet.

Now, we also note that the derivation of Eq. (15) is based on the assumptions that the streamwise
pressure gradient is zero and that K , as computed from Eq. (1), is constant.49 In other words, the
momentum flux calculation based on the curve fitting method is only valid where the conservation

FIG. 7. The variation of jet half-width, b1/2/d, in the axial direction for SJ33. A linear variation of b1/2/d vs. x/d can be
observed in the far field, and the slope of the fitted line corresponds to the far-field spreading rate of the jet. The intersection
between the x-axis and the fitted line gives the virtual origin (xo) of the far-field jet.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.227.4.255 On: Wed, 04 Nov 2015 15:40:01



115101-12 X. Xia and K. Mohseni Phys. Fluids 27, 115101 (2015)

FIG. 8. Power spectrum plots for a sample case (SJ33) for a high-frequency synthetic jet corresponding to (a) locations
near the jet centerline and (c) radial locations near the boundary of the jet. The vertical-dashed lines indicate the first seven
harmonic frequencies (the 1st harmonic frequency equals the driving frequency of the synthetic jet). (b) Axial velocity
contour plot; the unit of the contours is m/s. In order to reduce the number of sampling locations in an axisymmetric jet while
capturing the center region of the jet, the flow field measurement was primarily performed on one side of the centerline, with
less region covered on the other side. However, the symmetry of the jet flow itself can be indicated from Figs. 5 and 6(a).

of momentum can be confirmed. Here, the axial momentum flux at a given streamwise location, Kx,
is computed at different positions in the transitional region and the far field for each synthetic jet.
The measured results for selected synthetic jet cases are shown in Fig. 9. In general, it is observed
that the momentum fluxes decay toward constant values in the far field, verifying the assumption of
constant momentum flux in the far field. Therefore, the asymptotic value of the momentum flux for
each synthetic jet is defined as the far-field momentum flux, K . Previous studies19,20 have also reported
similar decreases and leveling off of the momentum flux with increasing streamwise distance. Since
the conservation of momentum is a basic physical law, the decay of Kx in the transitional region
indicates that other sources of momentum, such as a streamwise pressure gradient, are present. It is
also worthwhile to identify the axial location of the region where Kx approaches K , which can be
considered as the beginning of the far field in a momentum-conserved sense. For the synthetic jets in
this study, this region ranges from about 40d to 50d, which is considerably larger than the commonly
accepted value (about 10d to 15d49,51,52) obtained by identifying the beginning of the turbulent region
of a synthetic jet. Since the near field of a synthetic jet is generally characterized by pulsation while
the far field is characterized by turbulence, the result of this study indicates that a transitional region
exists where the flow is both pulsatile and turbulent.

V. RESULTS AND DISCUSSIONS

This section compares the experimentally determined far-field momentum flux, K , with the
momentum flux computed from the classical slug flow model. Then, the model proposed in
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FIG. 9. Streamwise variation of dimensionless momentum flux, Kx/K . Momentum flux, Kx, is normalized by the far-field
momentum flux, K . The test case parameters are provided in Fig. 4.

Section II B, which predicts K based on the jet-formation conditions, is discussed. The insight
provided by this model offers a new explanation for the momentum drop in the near field of a
synthetic jet.

A. Far-field momentum flux

To determine the dependence of the far-field momentum flux on the jet-formation parameters,
the dimensional K is first plotted against the stroke ratio, L/d, as shown in Fig. 10(a). As mentioned
previously, K is obtained by estimating the asymptotic value of Kx in the far field. It can be seen
that for a given actuator, the momentum flux monotonically increases with L/d for the synthetic
jets. For a given stroke ratio, a larger diameter actuator results in a larger momentum flux. Both
of these trends are intuitive, because each results in more fluid being ejected. To eliminate these
actuator-specific dependencies, the momentum flux is normalized by d4 f 2 according to the Buck-
ingham Π theorem, similar to the normalization performed by Krieg and Mohseni.13 The results
are plotted against the stroke ratio in Fig. 10(b), which shows that the actuator dependency has
mostly collapsed. The normalized momentum flux computed from the slug model is also plotted
for comparison, and according to Eq. (9) predicts a proportionality to (L/d)2. Although the exper-
imental data show an increasing trend, the constant of proportionality that is provided by the slug
model is confirmed to result in a significant over-prediction of the measured momentum flux. As
mentioned previously, this notable disagreement has also been found in other studies.20,33,34

Despite the poor agreement of the measured momentum flux with the slug model observed in
Fig. 10(b), the collapse of the actuator dependency along with a clear trend involving the stroke
ratio indicates that there is potential for establishing a unified model for the far-field momentum
flux of synthetic jets. Moreover, the strong dependence on the stroke ratio, which governs the
vortex formation in the near field of a synthetic jet, elucidates the relevance between the far-field
momentum flux and the vortex-based analysis proposed in this study. In other words, the theoretical
model developed in Section II and represented by Eq. (13) seems to be an apt candidate to rectify
the large discrepancy associated with the slug model. Therefore, further analysis and discussion
regarding this model will be presented next in Section V B. Before preceding to Sec. V B, we note
that this study deals only with high-frequency ( f ∼ 103 Hz) synthetic jets, for which the dependency
of the normalized momentum flux on the frequency cannot be readily identified in Fig. 10(b). This,
again, verifies the finding of Krieg and Mohseni13 that the dependency of the normalized thrust on
the frequency appears to vanish for large-frequency synthetic jets.

B. Momentum flux model for high-frequency synthetic jets

The preliminary analysis described in Section V A has shown that the dimensionless mo-
mentum flux, K/(d4 f 2), primarily depends on L/d in the case of high-frequency synthetic jets. In
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FIG. 10. Measured results for the relationships between far-field momentum flux and stroke ratio for the synthetic jet cases
specified in Fig. 4. (a) K vs. L/d and (b) normalized momentum flux, K/(d4 f 2), vs. L/d.

this section, we investigate the dependency of the momentum flux scaled by the slug model, K/Ks,
on L/d in order to obtain appropriate values for the parameters (L∗/d, α, and β) of the model that
was developed in Section II. Fig. 11(a) plots the experimental K/Ks against stroke ratio, L/d, and
shows that the scaled momentum flux initially increases rapidly from near-zero values, comes to a
sharp cusp-like peak, and then displays a more gentle decay toward zero as L/d is increased further
(note the scale of the horizontal axis is logarithmic). When the stroke ratio approaches the formation
number, the physics of the vortex formation drastically changes. As such, the location of the sharp
peak in Fig. 11(a) corresponds to the formation number, which is estimated to be L∗/d = 1.8. This
is consistent with a recent vortex formation study by Lawson and Dawson,42 which showed that
the non-dimensional formation time of the vortex core of a synthetic jet is slightly less than 2.
Therefore, we choose the value of L∗/d = 1.8 for the model in the current study.

It is worthwhile to note that the formation number is about 4 for starting vortex jets.37 In fact,
even for starting jets, the formation number is found to vary some what between 3.0 and 4.537–39,53,54

FIG. 11. Relationship between the non-dimensional momentum flux, K/Ks, and the stroke ratio, L/d. Ks is the momentum
from the slug model. The model corresponds to α = 1.2 and β = 0.29. (a) Log scale x axis and (b) normal scale x axis focusing
on the small L/d region.
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for different flow configurations, and the variations can be made quite large by introducing various
effects (e.g., temporally variable exit39,55 and background flow56). Although the difference in forma-
tion number for synthetic jets should be studied independently in the future, here we hypothesize that
it is related to the suction effect as well as the induced effect of the preexisting vortices in the flow.

1. Large stroke ratios: L/d > L∗/d

We now discuss in more detail the estimation of the parameters, α and β, for the stroke ratio
range corresponding to L/d > L∗/d. Also, for convenience, the circulation fractions for the leading
vortex and the trailing jet, C and 1 − C, are plotted in Fig. 12. Recall that α is the non-dimensional
radius of the leading vortex ring, which was found to depend primarily on L/d for starting vortex
jets according to the studies of Maxworthy35 and Didden.36 They further showed that α varies in
the range of 1.0–1.4 corresponding to L/d = 0.5–3.0, and it tends to saturate around 1.4 when
L/d > 2.0. Recently, Sullivan et al.45 also showed that α approaches a constant of 1.3 as L/d is
increased from 2.0 to 3.0. For synthetic jets, Shuster and Smith34 have shown that a larger L/d
corresponds to a larger value of α and which is approximately 1.2 when L/d = 3.0. These studies
indicate that the saturated value of α for a synthetic jet seems to be a little lower than that for a start-
ing vortex jet due to the suction effect. Furthermore, we can conclude that α is function of L/d when
L/d < 2.0, while it can be considered as a constant ranging between 1.2 and 1.4 when L/d > 2.0.
Since L∗/d ≈ 1.8 in this study, α is approximately a constant for L/d > L∗/d. The value for α can
be further corroborated in an empirical way by using the experimental value of K/Ks ≈ 0.7 near
L/d = L∗/d ≈ 1.8 (where C = 1) which yields α ≈ 1.2. Hence, we opt to use the value α0 = 1.2 in
this model, where the subscript is used to denote that it is a constant.

The effect of the trailing jet is reflected by the non-dimensional vortex radius of the trailing jet,
β. Here, we determine β empirically by looking at the scaled momentum flux for the larger stroke
ratios tested (30 < L/d < 50), where the trailing jet momentum flux contribution should dominate
over that of the leading vortex (see Fig. 11(b)). The average experimental scaled momentum flux in
this range is approximately 0.053 and with a corresponding average of C being about 0.016 along
with α0 = 1.2, we estimate β0 = 0.29 (again, the subscript implying a constant). The model curve
corresponding to these parameters is shown in Fig. 11(a) and is seen to match fairly well with
the measured data for the L∗/d < L/d < 30 region as well. Next, we discuss the physical meaning

FIG. 12. The fractions of the total circulation that belong to leading vortex, C , and the trailing jet, 1−C . These fractions are
obtained from the slug model.
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of β0 = 0.29. On the one hand, several vortex formation studies of starting vortex jets37,39,43 have
shown that the radius of a trailing jet in the near field approximately equals the radius of the jet
exit, which corresponds to β = 1. For synthetic jets, this is also the case according to the study of
Lawson and Dawson.42 However, their study indicates that the trailing jet tends to vanish and its
effective vortex radius decreases during its advection to the far field (Figs. 11 and 12 of Lawson and
Dawson42). This means that β in the far field should be less than 1 for synthetic jets. This is verified
in this study as β0 = 0.29, which is likely a consequence of the suction effect of the synthetic jet
actuator. On the other hand, we note that limL/d→∞C = 0 from Eq. (10) and Fig. 12. As a result, the
circulation in the flow, and so the momentum flux, will be dominated by that in the trailing jet and
Eq. (13) reduces to K/Ks → β2/2. From Fig. 11(a), it can be observed that the experimental K/Ks

tends to approach 0 as L/d → ∞. This intuitively suggests that β → 0 in the same limit, which
physically means that the effective vortex radius of the trailing jet equals zero or the trailing jet
contributes zero impulse to the flow away from the near field. Apparently, this is not the case since
β0 = 0.29. This result suggests that the trailing jet contributes majorly to the far-field momentum
flux of a synthetic jet when L/d is large. This is consistent with the study of Lawson and Dawson,42

which shows that for large L/d case even when the material flux of impulse (and circulation) into
the leading vortex has ceased, the trailing jet can continue to deliver impulse via a vortex force; they
describe this as the trailing jet giving the leading vortex an “extra push.”

2. Small stroke ratios: L/d < L∗/d

Moving on to the L/d < L∗/d region, where there is only a leading vortex and no trailing jet
(C ≡ 1 or equivalently β ≡ 0), recall that Eq. (14) predicts a constant value of K/Ks provided that
α is a constant. However, this trend is clearly not observed in Fig. 11(a) in which the experimental
K/Ks are observed to increase with L/d up to L∗/d. This is related to the fact that the suction phase
more significantly affects the still-forming vortex when L/d < L∗/d. Similarly, the interaction with
the actuator wall will also play a role. From a more physical point of view, for smaller L/d, the
vortex will possess lower initial momentum and so will linger in the near field for a longer time
and thus be susceptible to these effects. As a result, the final radius of the vortex will be smaller for
lower L/d values. This is supported by the literature,34–36,45 which has shown that the radius of the
final vortex increases significantly with L/d when L/d is small.

As mentioned at the end of Section II B, the suction and wall interaction effects are to be
accounted for by absorbing them into α. Accordingly, the model will require α to be a function
of L/d for values below L∗/d. From Fig. 11(a), it can be inferred that K/Ks should take values
from 0 to α2

0/2 as L/d is varied from 0 to L∗/d. To obtain a functionality of α, we further observe
the L/d < L∗/d region in Fig. 11(b), and note that the experimental K/Ks data appear to fall on a
straight line. This suggests a functionality of K/Ks = α2/2 = k[(L/d)/(L∗/d)], where the constant
of proportionality, k, is obtained from the continuity of K/Ks at L∗/d, namely, k = α2

0/2. Finally,
we note that synthetic jets have a critical stroke ratio, L0/d, below which jetting does not occur.57

Therefore, L/d can be substituted with L/d − L0/d to ensure K/Ks = 0 at L/d = L0/d. This gives
α = α0

(L − L0)/(L∗ − L0) for L/d < L∗/d, which predicts that for synthetic jets α could be lower
than 1 when L/d is small. Actually, this is supported by the study of Shuster and Smith,34 which
shows that α is between 0.7 and 0.75 for a synthetic jet with L/d = 1. Based on the above analysis,
the modified model for the momentum flux can be written as

K
Ks
=




1
2
α2

0

(
L − L0

L∗ − L0

)
L/d < L∗/d

1
2
�
α2

0C + β2
0(1 − C)� L/d > L∗/d

, (16)

where C is obtained from Eqs. (10) and (11). In this study, L0 is determined to be 0.7 by fitting this
model to data in the L/d < L∗/d region. This value is comparable with those obtained by Holman
et al.57 (L0/d ≈ 0.5) and Shuster and Smith34 (L0/d ≈ 0.6).

Before concluding this study, the necessity that α be a function of L/d when L/d < L∗/d can
be further corroborated by appealing to the Norbury vortex family58 with αN varying between 0 and
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√
2 (αN is the non-dimensional mean core radius). The use of Norbury vortices has been shown

to yield good accuracy in a vortex formation study of a starting jet by Mohseni and Gharib.38 In
the Norbury vortex family, the vortex corresponding to αN = 0 is a circular line vortex (thin core
vortex), the vorticity of which is concentrated on an infinitesimal core; while the vortex correspond-
ing to αN =

√
2 is actually the axis-touching Hill’s vortex that has a finite core area and distributed

vorticity. From Fig. 6 of Norbury,58 the ratio between impulse and circulation, I/Γ, for the thin
core vortex and the Hill’s vortex can be calculated to be πR2 and 5.02R2 (R is the vortex radius),
respectively. This means that if a thin core vortex has the same amount of circulation and impulse
as a Hill’s vortex, the radius of the thin core vortex must be larger than that of the Hill’s vortex.
Now consider a starting vortex jet, the formed vortex in the near field may closely resemble a thin
core vortex ring when the stroke ratio is small (L/d < L∗/d); however, as L/d increases, the core
of the formed vortex will thicken, much like the core of a Norbury vortex does (by definition) with
increasing αN . Recall that the thin core vortex model is applied in this study regardless of the actual
thickness of the core and, as a result, it requires a larger radius of the thin core vortex to hold the
same amount of circulation and impulse of an actual vortex with finite core radius. This means that
α has to increase in response to a thickened vortex core when L/d is increased. For synthetic jets
with small L/d, the strong suction effect in the near field could cause α to be smaller than that of
starting jets;34 nevertheless, the above discussion about the correlation between α and L/d should
still be valid.

To summarize, the measured data are found to agree with the values obtained with the model
when L/d > L∗. In the L/d < L∗/d region, although the overall trend in the data is in agreement
with the model, the estimation of α depends on empirical fitting. Therefore, any future work should
focus on the vortex formation process of synthetic jets to provide a more rigorous and accurate
model for α.

Next, we emphasize the significance of this study. The primary contribution of this model is
that it addresses the difficulty of predicting the far-field momentum flux of a synthetic jet caused by
complex near-field effects. By estimating the impulse of the vortices exiting the near field, it avoids
dealing directly with the effects of the time-dependent near field. The secondary contribution of
this model is that it predicts a decrease of the normalized far-field momentum flux with increasing
L/d for synthetic jets with L/d > L∗/d. This trend is due to an increasing circulation fraction of
the formed trailing jet while its contribution to the impulse per unit circulation is much less than
that of the leading vortex. With the non-dimensional vortex radius of the trailing jet (β) found to
be approximately 0.29, it indicates that a major part of the trailing vortices might be decelerated
or ingested during the suction phase. Nevertheless, β > 0 still confirms that the contribution of
the trailing jet vortices to the overall far-field momentum flux of a synthetic jet is not negligible,
especially when L/d is large. Therefore, this fundamentally explains how the pressure gradient
caused by suction decreases the momentum flux of a synthetic jet in the near field.

There are multiple applications where this model can be utilized. For example, to predict the
far-field features (spreading rate and decay rate) of synthetic jets in quiescent flow, the far-field
momentum flux is required according to our recent study.22 The model presented here provides
far-field momentum flux based on the actuation parameters of a synthetic jet. Therefore, this model
could also be useful in the application of high-frequency vortex thruster since thrust is closely
related to the far-field momentum flux. Flow control is another field where this model might be
applied. Such applications usually involves the interaction between a synthetic jet and a background
crossflow.6,16,26,30 One concern here might be that the roll-up of the vortex sheet is affected by
the crossflow near the jet exit, causing the vortex ring becomes non-axisymmetric.6 If this is the
case, the model developed in this work might not accurately capture the impulse carried by the
vortex ring. However, we argue that for larger-blowing-ratio cases where the synthetic jet velocity
dominates the background flow, this model could still be valid. This is because the influence of
the crossflow is relatively small compared with the strong vortex ring formed by the synthetic
jet actuator. Further limitations of this model are provided below. It is apparent that this model
is developed for high-frequency axisymmetric synthetic jets. For low-frequency cases, the vortex
geometry parameters, α and β, as well as the pinch-off process could be different from those for
high-frequency cases. This is primarily due to the near-field background flow being less influenced
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by the preceding vortices and the suction flow if the actuation frequency is low. The extension of
this model to non-axisymmetric jets should also be handled with caution. Take the rectangular syn-
thetic jet, for example, a similar approach might be applied to predict the far-field momentum flux
by estimating the impulse of the fully developed vortical structure that is created during each jetting
cycle. However, this is rather difficult due to 3D effects. Namely, an “axis switching” phenom-
enon59,60 causes a dramatic change in the shape of an elliptical vortex ring during its early transition
in the near field. As a result, this morphing behavior of the vortex ring makes it difficult to estimate
the ring shape and the circulation distribution around the final vortex ring, as well as the parameters
associated with the pinch-off process.

VI. CONCLUSIONS

The purpose of this study was to develop a model that predicts the far-field momentum flux
of high-frequency axisymmetric synthetic jets. To find the relationship between the far-field mo-
mentum flux and the actuation parameters, the former is addressed by calculating the hydrodynamic
impulse of vortical structures in the flow. With the flow assumed to be fully developed and periodic,
the total induced effect of external vortical structures on a fully formed vortex is shown to vanish
during the evolution of the vortex into the far field. Therefore, the momentum flux of the far field
can be converted to the hydrodynamic impulse of a completely formed vortex, which can be further
modeled using jet-formation conditions, such as the stroke length, L, the orifice diameter, d, and the
frequency, f .

The measured momentum flux is first studied by analyzing the relationship between the
far-field momentum flux, K , and the stroke ratio, L/d. The results show a strong dependence of K
on L/d. Moreover, the model proposed in this study predicts that the scaled momentum flux, K/Ks,
decreases when L/d is increased for the L/d > L∗/d cases. It is also found that K/Ks increases
with L/d for the L/d < L∗/d cases. The matching between the experiment and model is reasonable
for both large and small stroke ratios. In addition, the experimental results also indicate that the
scaled momentum flux K/Ks exhibits very little dependency on the frequency for high-frequency
synthetic jets. Finally, but most importantly, the geometry parameter, β, which corresponds to the
effective radius of the trailing jet, is found to be 0.29. This indicates that the trailing vortices does
contribute to the final momentum flux in the far field, and this contribution becomes dominant when
L/d is large. However, with β being much smaller than 1, it suggests that the effect of the suction
phase decelerates or ingests the trailing vortices so that the impulse of the trailing jet is significantly
lowered after exiting the near field. This provides an auxiliary explanation for the momentum flux
decay in the near field, as observed by other researchers.

In conclusion, this momentum flux model creates a link between the normalized far-field mo-
mentum flux of a synthetic jet and the stroke ratio of the actuator. For the first time, this model
enables the prediction of the far-field momentum flux for synthetic jets, based on the jet-formation
conditions. This model also contributes to a turbulent jet model that predicts the far-field features of
synthetic jets using only the jet-formation conditions (L, d, and f ) without any measurements of the
flow field.
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APPENDIX: CHANGE IN HYDRODYNAMIC IMPULSE

This section describes the derivation that connects the change in the hydrodynamic impulse of
the far field (I⃗ f (t0 + T) − I⃗ f (t0)) to the hydrodynamic impulse of a newly generated vortex of the
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jet (I⃗1). Since the flow vanishes at infinity, a finite volume Vf bounded by S1 + S2 + S3 is defined
to contain the far-field flow of the jet, as shown in Fig. 2. On the other hand, N ′ volume sections
from V1 to VN ′ are defined to contain the N ′ individual vortical structures before the far field. Now,
at time t = t0, we consider all the fluid inside the volume, Vf + VN ′, as being a joined controlled
mass, denoted by m f ; this controlled mass would be occupying Vf at time t = t0 + T when ΓN ′
(corresponding to the hatched region in Fig. 2) has completely entered the far field. Next, the
hydrodynamic impulses of the controlled mass at time t0 and t0 + T are evaluated separately as

I⃗m f (t0) = I⃗ f (t0) + I⃗N ′(t0) = 1
2


Vf (t0)+VN ′(t0)

x⃗ × ω⃗dV (A1a)

and

I⃗m f (t0+T ) = I⃗ f (t0 + T) = 1
2


Vf (t0+T )

x⃗ × ω⃗dV, (A1b)

where I⃗N ′ represents the hydrodynamic impulse of the fluid inside volume VN ′. The definition of the
hydrodynamic impulse in the above equation indicates that vorticity is the only source contributing
to the hydrodynamic impulse. This means that, instead of having to calculate the entire flow field,
momentum estimation might be possible by focusing only on the vortical structures.

To further estimate I⃗ f (t0 + T) − I⃗ f (t0), the property of the isolated vortices (see Saffman,44 page
58) is applied to the controlled mass, m f , so the corresponding rate of change of hydrodynamic
impulse is written as

dI⃗m f

dt
=


m f

F⃗dx +

m f

u⃗e × ω⃗dV, (A2)

where F⃗ is the non-conservative external body force, which is zero everywhere for a free jet; u⃗e

accounts for both the velocity of m f relative to the background flow and the velocity induced by
external vortices. Therefore, combining Eqs. (A1a), (A1b), and (A2) yields

I⃗ f (t0 + T) − I⃗ f (t0) = I⃗N ′(t0) +
 t0+T

t0


m f

u⃗e × ω⃗dVdt. (A3)

Further note that no background flow is considered in this study, so only the vortical structures
outside the far field contribute to u⃗e, i.e., the N ′ − 1 vortices from Γ1 to ΓN ′−1. For simplification
purposes, a new quantity, ∆Ii, j(t0), is defined here as

∆Ii, j(t0) =
 t0+T

t0


i→ j

u⃗e × ω⃗dVdt, (A4)

where i and j are the subscripts of the vortical structures, Γi and Γj, respectively; i → j denotes the
induced effect of Γi on Γj. Therefore, ∆Ii, j(t0) represents the change in the hydrodynamic impulse of
Γj due to the induced effect of Γi from t = t0 to t = t0 + T . Consequently, Eq. (A3) becomes

I⃗ f (t0 + T) − I⃗ f (t0) = I⃗N ′(t0) +
N ′−1
i=1

(∆Ii,N ′(t0) + ∆Ii, f (t0)). (A5)

Note that, here, Γf represents all of the vortical structures in the far field, as shown in Fig. 2. This
equation indicates that the change in the hydrodynamic impulse in the far field equals the impulse
carried by the fluid entering the far field plus any effect induced by the other vortical structures in
the jet.

At this stage, an estimation of the momentum flux in the far field is made using Eqs. (7) and
(A5). However, there is still a gap between the impulse of the vortical structures and the forming
conditions of the jet (L, d, f ). The quantities in Eq. (A5) need to be further calculated by consid-
ering the vortex formation process in the near field. Here, the fluid contained inside VN ′ at t = t0
(the hatched region in Fig. 2) is treated as a control mass. The vortical structure corresponding to
VN ′ is ΓN ′, the history of which can be traced back to Γ1 at t = t0 − (N ′ − 1)T , immediately after
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the vortical structure was formed. Therefore, by setting t0 = N ′T , this control mass corresponds
to Γj and Vj at t = jT under the periodic assumption. According to Eq. (A2), the change in the
hydrodynamic impulse of this control mass from t = jT to t = ( j + 1)T can be expressed as

I⃗ j(( j + 1)T) − I⃗ j( jT) =
N ′

i=1, i, j

∆Ii, j( jT) + ∆I f , j( jT), for j = 1, . . . ,N ′ − 1. (A6)

As a result, I⃗N ′(t0) in Eq. (A5) is related to I⃗1(T) by

I⃗N ′(t0) − I⃗1(T) = I⃗N ′(N ′T) − I⃗1(T)

=

N ′−1
j=1

(I⃗ j(( j + 1)T) − I⃗ j( jT))

=

N ′−1
j=1

*.
,

N ′
i=1, i, j

∆Ii, j( jT) + ∆I f , j( jT)+/
-
. (A7)

Here, ∆Ii, j(kT) stays the same for any integer k due to periodicity of the flow. Therefore, ∆Ii, j( jT)
and ∆I f , j( jT) can be reduced in the above equation to ∆Ii, j and ∆I f , j, respectively, for any integer
j. Also note that ∆Ii, j = −∆I j, i because the induced effect of Γi on Γj is exactly the opposite of the
effect of Γj on Γi, so Eq. (A7) can be further simplified to

(A8)

Now, combining Eqs. (A5) and (A8) yields

I⃗ f (t0 + T) − I⃗ f (t0) = I⃗1(T) +
N ′−1
j=1

(∆IN ′, j + ∆I f , j) +
N ′−1
i=1

(∆Ii,N ′ + ∆Ii, f )

= I⃗1(T). (A9)

Eq. (A9) demonstrates that the change in the hydrodynamic impulse of the far field during one
period equals the hydrodynamic impulse of the newly generated vortex, which is located outside the
near field. Apparently, all of the induced effects between the vortices eventually cancel each other
out during their evolution to the far field.
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