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Parameter governing the far-field features of round jets
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This study is inspired by the observation and hypothesis that the spreading and decay
behaviors of a jet directly depend on the momentum-mixing mechanism between the jet
and surrounding fluid. This mixing behavior is dictated by the kinematic viscosity ν for
a laminar jet, which can be dramatically enhanced in a turbulent flow and is represented
by the eddy viscosity ε. Similarly, pulsation in a synthetic jet is identified as another
mechanism for enhancing mixing, which can be captured by an enhanced eddy viscosity
beyond what is observed in a corresponding turbulent continuous jet. To this end, an
effective-eddy-viscosity concept is proposed to model any excitation of a jet that could
result in enhanced mixing beyond what is predicted by the kinematic viscosity. Our previous
study found that ε is actuator dependent and its relationship with the spreading or decay
behavior of a jet is not obvious. To remove the actuator dependence, this study performs
a dimensional analysis to relate the spreading and decay behaviors to a scaled effective
eddy viscosity ε/

√
K (K is the momentum flux). This quantity physically represents a

competition between the radial diffusion and the axial convection of the jet axial momentum.
The experimental results confirm that ε/

√
K governs the spreading and decay rates of the

far field for any round jets.

DOI: 10.1103/PhysRevFluids.1.062401

Round jets have been extensively studied due to their wide usages in applications as well as
their fundamental significance in modeling basic shear and turbulent flows. The first theoretical
benchmark for modeling a round jet is Schlichting’s laminar jet solution [1]. By assuming the
entire jet to be issued from a virtual but continuous point source of momentum and applying the
boundary-layer approximation to the shear layer, Schlichting managed to derive a similarity solution
for an incompressible axisymmetric jet issuing into a static environment. To capture the enhanced
mixing of a turbulent jet, Schlichting [2] further formulated the self-similar solution for a turbulent
jet by simply replacing the laminar viscosity in the boundary-layer equations with an effective eddy
viscosity that is associated with the turbulent jet. The result matches well with the self-similar
velocity profiles in the far field of round turbulent jets that were obtained experimentally [3–9].
Along with self-similarity, researchers [3–9] also investigated the axial variations of the jet width
b and the centerline velocity uc. Interestingly enough, they found similar behaviors in the far field
of round turbulent jets, e.g., the spreading rate and nondimensional decay rate were identified to be
around 0.1 and 6, respectively. The spreading and decay behaviors were also analytically studied by
other researchers [10–13] and similar scaling relations (uc ∼ x−1 and b ∼ x) were concluded.

Different from the continuous jets introduced above, synthetic jets [14,15] are generated by
periodically inhaling ambient fluid and then ejecting vortex rings [14,16]. Recently, synthetic
jets have been applied in various applications [15,17–22] due to their enhanced entrainment and
mixing properties [14,23–25] compared to continuous jets. Researchers have found that although
fundamental differences exist in the near field, the far field of a synthetic jet displays a self-similar
feature [14,24,26] that resembles a continuous turbulent jet. Based on this observation and the
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TABLE I. Test matrix for five continuous jets (CJ) and three sample synthetic jets (SJ). A total of 50
synthetic jets was tested and the parameters were reported in Ref. [27]. Here d is the orifice diameter, V̇ is the
volumetric flow rate, f is the driving frequency, and L/d is the stroke ratio. The Reynolds number is defined
as Res = Usd/ν, where Us is the effective jet velocity estimated at the jet exit.

Case d (mm) V̇ (L/min) f (Hz) L/d Res

CJ1 1.0 6.0 8488
CJ2 1.0 8.0 11318
CJ3 1.0 10.0 14147
CJ4 1.5 14.0 12739
CJ5 1.5 18.0 16977
SJ9 1.0 1850 48.6 8476
SJ17 1.5 1850 14.8 5814
SJ33 2.0 1850 4.7 3284

approach Schlichting had taken to extend the Schlichting jet solution from laminar flow to turbulent
flow, Krishnan and Mohseni [26] performed a similar adaptation in their synthetic-jet model by
replacing the laminar viscosity with an effective eddy viscosity ε that includes the pulsatile effects
of the synthetic jet.

In this study we move a step forward to show that the Schlichting jet adaptation not only satisfies
self-similarity, but also provides a unified approach to model the spreading and decay behaviors for
both continuous and synthetic jets. This is based on the eddy viscosity approximation that ε dictates
the momentum-mixing mechanism of a jet. Krishnan and Mohseni [26] showed that ε for a synthetic
jet is significantly higher than that for a continuous turbulent jet with the same jet-exit dimension and
momentum flux. However, they also found that ε for a synthetic jet varies dramatically depending on
the actuator configuration and driving parameters. To close the gap between the actuator dependence
of ε and its apparent unified effect on jet mixing, we employ a dimensional analysis in the current
study to connect the spreading rate and nondimensional decay rate to a scaled effective eddy viscosity
(ε/

√
K , where K is the momentum flux) for any jet that has established self-similarity. This gives

us a single parameter ε/
√

K that controls the spreading and decay behaviors of any round jet.
Furthermore, applying the Schlichting jet solution, we show that the scaling laws take linear forms
with analytically determined slopes.

In this experiment, turbulent continuous jets were created by regulating compressed air through
different jet orifices at constant flow rates. Here, two different continuous jet nozzles were designed
with orifice diameters d of 1.0 and 1.5 mm. The synthetic jets were created using actuators, which
contain a round piezoelectric disk sealed between two aluminum parts so they form a cavity with
an orifice on one side and a flexible diaphragm on the other. The synthetic-jet actuators have the
same cavity dimension, which is 27.8 mm in diameter and 2.0 mm in depth, but different orifices,
the diameters of which are 1.0, 1.5, and 2.0 mm, respectively. The frequency and strength of
the synthetic jets were controlled by adjusting the frequency and voltage of the sinusoidal signal
applied across the piezoelectric disks. The strength of a synthetic jet is characterized by the stroke
length L. With the assumptions that the flow is incompressible and the shape of the diaphragm
can be approximated by the static deflection of a circular membrane clamped on the edge and
subject to a uniform load, L can be estimated by measuring the deflection of the piezoelectric
diaphragm with a laser sensor (see Ref. [26] for details). The test parameters for continuous and
synthetic jets are presented in Table I. The time-averaged velocity field of a jet was measured using
a constant-temperature hot-wire anemometry system, the details of which have been reported in
our previous study [27]. Since the near field of a synthetic jet (within 10d–15d away from the jet
exit) is dominated by strong vortices, flow reversal could exist and impair the accuracy of the hot
wire. Therefore, this study avoided measuring the near-field region of synthetic jets.
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FIG. 1. Normalized velocity profiles at selected axial locations for (a) CJ5, (b) SJ9, and (c) SJ33. The axial
velocity u is scaled by the centerline velocity uc, while the radial location r is normalized by an effective axial
location x − xo based on the jet’s virtual origin [26,27] xo. For comparison, the spreading rate of a reference
continuous jet is fixed at 0.11.

The modeling strategy for synthetic jets in this study is inspired by the following observations and
hypothesis. The spreading and decay of a jet directly depends on the momentum-mixing mechanisms
between the jet and ambient fluid. Without external excitation, this mixing behavior is dictated by the
physical kinematic viscosity ν. Schlichting [1] has offered an analytical solution for the spreading
of a laminar jet in axisymmetric [or two-dimensional (2D)] flows. Schlichting later argued that the
recognition of the importance of enhanced mixing in a turbulent flow, represented and modeled by the
eddy viscosity ε, allowed this analytical solution to be extended to the case of a turbulent continuous
jet [2]. We argue that in a synthetic jet there is another mode of excitation, related to the pulsed nature
of the jet, that causes yet another mechanism for enhanced mixing beyond the kinematic viscosity and
turbulent mixing. Following the same idea, we hypothesize that any axisymmetric (or 2D) excitation
of a jet that could result in enhanced mixing beyond what is dictated by the kinematic viscosity
can be represented, modeled, and measured by an effective-eddy-viscosity concept. Consequently,
the analytical solution for continuous jets [2] can be extended to such cases. The adaptation of the
Schlichting jet solution for round or 2D synthetic jets is supported by the match of the self-similar
velocity profiles between theory and experiment, as has been demonstrated in our previous studies
[26–28]. Here, Fig. 1 again shows the self-similarity for one continuous jet (CJ5) and two synthetic
jets (SJ9 and SJ33).

In this study we will offer further justification of this modeling approach, in addition to the
self-similarity, in terms of the relationship between spreading and decay rates for both continuous
and synthetic jets. The spreading rate Sb is defined by b1/2 = Sbx, where b1/2 is the jet half-width
and the decay rate Su is defined by uc = (Sux)−1, where uc is the centerline velocity. To better
compare the decay behaviors we propose a velocity scale UK , which is defined for each individual
jet as UK =

√
4K/πd2, where K is the far-field momentum flux. Figures 2(a) and 3(a) plot the

axial variations of the jet half-width and the inverted centerline velocity for five sample cases (CJ1,
CJ5, SJ9, SJ17, and SJ33). For synthetic jets, it can be observed that the jet spreading and decay are
enhanced in the axial region around 20d; however, this enhancement gradually declines and then
saturates at a downstream location (∼50d for SJ9, ∼40d for SJ17, and ∼30d for SJ33), where the
actual far field begins. This observation can be quantitatively verified in Figs. 2(b) and 3(b). Previous
studies [24,26,29,30] have reported the far field of synthetic jets to start from an axial distance of
10d–15d, where the flow begins to display self-similarity. According to this study, we believe that
the synthetic jet region immediately after 10d–15d, which corresponds to enhanced and varying
spreading and decay rates, should be identified as an extended transitional region. Based on this
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FIG. 2. (a) Axial variations of the jet half-width b1/2 for continuous and synthetic jets. The short lines show
the linear fittings of the far-field data, the slopes of which correspond to the spreading rates (CJ1, 0.098; CJ2,
0.104; SJ9, 0.116; SJ17, 0.123; and SJ33, 0.103). (b) Axial variations of the jet spreading rate Sb.

finding, the actual far field starts from x = 30d–50d for different synthetic jets (see Ref. [31] for a
detailed discussion).

It is worth mentioning that the spreading and decay behaviors are qualitatively similar for each jet,
comparing Figs. 2 and 3. This observation clearly indicates that the spreading and decay behaviors of
both synthetic and continuous jets are coupled, which will be discussed later. It is also interesting to
contrast the characteristics of continuous jets with those of synthetic jets. As shown in Figs. 2 and 3,
the spreading and decay rates for continuous jets increase inside the transitional region (20d–50d),
while they decrease for synthetic jets. In particular, Figs. 2(b) and 3(b) imply that the change of
spreading and decay rates in the transitional region is more gradual for continuous jets than that for
synthetic jets. Although further investigation is needed, we hypothesize that the slow increase of
spreading and decay rates for continuous jets might correspond to a natural (free of forcing) transition
of instability and mixing from less turbulent flow to more turbulent flow; however, the intensified
spreading and decay behaviors of synthetic jets within the transitional region might be caused by
the strong effect of pulsation and vortex interaction, which degrades into turbulent-dominated flow
as the jet evolves into the far field. Finally, the spreading and decay rates in the far field of synthetic
jets approach constant values that are comparable to continuous jets. In other words, the constantlike
parameters in the far field (e.g., the spreading rates being around 0.1 for a typical turbulent continuous
jet) among different jets suggest that the models for continuous and synthetic jets might converge to
a single approach.

To explain the above observations, we start with the basic assumption for a Schlichting jet that the
far field can be considered to be a fully developed flow that originates from a virtual but continuous
point source of momentum in an infinite domain. Here the momentum source of the jet is measured by
the kinematic momentum flux (per unit density, in the axial direction) K = 2π

∫ ∞
0 u2rdr , where r is
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FIG. 3. (a) Axial variations of the inverted centerline velocity for the same cases shown in Fig. 2. (b) Axial
variations of the nondimensional decay rate.
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FIG. 4. Validations of Su

√
K = k0Sb for (a) continuous jets and (b) synthetic jets. The experimental data

are based on the 5 continuous jets in Table I and 50 synthetic jets reported in Ref. [27]. Continuous jets from
previous studies (Ref. [4], �; Refs. [6,7], +; Ref. [8], �; and Ref. [9], ◦) are plotted in (a) for comparison.

the radial position and u is the axial velocity. Basically, this model requires momentum conservation
in the far field, which has been validated experimentally for continuous jets that were issued into a
space with sufficient spanwise dimension [6,7,9,32]. For synthetic jets, Smith and Glezer [14] found
that the momentum flux decreases dramatically in the near field due to an adverse pressure gradient.
Recently, Xia and Mohseni [27] added that the momentum flux decrease of a synthetic jet is directly
related to the loss of impulse of the trailing jets that are formed after vortex ring pinch-off [33–35].
Nevertheless, they, together with others [23,36,37], confirmed that the momentum flux of a synthetic
jet would eventually reach an asymptotic value in the far field. Therefore, we define this asymptotic
value of the momentum flux as the far-field momentum flux K , an in-depth discussion of which has
been provided in our previous work [27].

With the constant K assumption, the self-similar Schlichting jet solution can be obtained by
solving the boundary-layer form of the Navier-Stokes equation (see Ref. [26] for details). Applying
this solution, we can show that the spreading and decay rates satisfy

Sb =
√

3K

16πε2
η1/2, Su = 8πε

3K
, (1)

where η1/2 = 2(
√

2 − 1)1/2. Canceling ε in Eq. (1) yields

Su

√
K = k0Sb, (2)

which indicates that the spreading rate is proportional to the decay rate for any round jet with the
same momentum flux. Recall in Fig. 3 that UKSud is a nondimensional decay rate and UKd ∝ √

K ,
so Su

√
K ∝ Sb in Eq. (2) fundamentally explains the similar spreading and decay behaviors observed

by comparing Figs. 2 and 3. For continuous jets, we note that although the linear relationship between
Sb and Su

√
K has been reported previously [5,10–13], this model further gives the proportionality

k0 to be [3(
√

2 − 1)/π ]−1/2.
To quantitatively validate Eq. (2), Fig. 4 plots the experimental data of Su

√
K vs Sb, which displays

an overall good match with the model for both continuous and synthetic jets. For continuous jets,
the results of previous studies [4,6–9] are also presented in Fig. 4(a) and show promising agreement
with, in particular, the data from more recent works [6,7,9]; however, the continuous jet studied
by Wygnanski and Fiedler [4] displays a small deviation from the model. This mismatch is likely
to be related to the location where the momentum flux was evaluated, because the momentum
fluxes in these previous studies were measured at the jet exit rather than in the far field. This would
cause an overestimation of the far-field momentum flux if the momentum flux is not conserved
in the axial direction. In this sense, the mismatch of Wygnanski and Fiedler actually indicates a
discrepancy between the far-field momentum flux and the initial momentum flux. The momentum
loss of Wygnanski and Fiedler’s jet has also been confirmed by several other studies [8,9,38], while
both Capp and Hussein et al. attributed this momentum change to the confined spanwise dimension
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FIG. 5. Plot of Sb vs ε/
√

K for (a) continuous jets and (b) synthetic jets. All cases are the same as in Fig. 4.

of the experimental setup. In contrast, the results of Capp and Hussein et al. match well with
the current model because their continuous jets were designed to conserve momentum flux. This
suggests that Eq. (2) could serve as a criterion to evaluate momentum conservation for continuous
jet experiments. For synthetic jets, some cases show a slight offset from the model. According to the
above discussion, this offset could be caused by an overestimation of the far-field momentum flux.
This happened because those synthetic jets become very weak in the flow field further downstream,
where the hot-wire measurement encounters difficulty.

So far, we have validated this modeling approach in predicting the relationship between spreading
and decay behaviors for both continuous and synthetic jets. This result provides further support for
the eddy viscosity hypothesis that the momentum mixing of any jet is dictated by the effective eddy
viscosity ε, which includes any mixing effects beyond the laminar and turbulent viscosity. However,
Krishnan and Mohseni [26] found that ε for a synthetic jet has a strong dependence on the actuator
itself (L/d and d), which seems to contradict the eddy viscosity hypothesis in that jet mixing should
be a unified actuator-independent mechanism. In order to identify the true governing parameter, next
a dimensional analysis is performed to relate ε to other relevant parameters. As discussed previously,
ε serves as the overall mixing parameter between a jet and its ambient fluid, while the momentum
flux K could be considered as a source or driving force. To this end, ε controls how laterally the
momentum is transported, while K dictates the rate of axial momentum transport. Therefore, in
the far field of the jet where other influences become negligible, K and ε are the only intrinsic
parameters. Since the current model deals with the jet flow in a mean sense in the fully developed far
field, the time t and the actuator frequency f are not included in the final formulation of this model.
Nevertheless, these parameters could still affect the far field implicitly by affecting ε; basically, f

and L/d control the level of pulsation and the effective mixing represented by ε. Consequently, two
parameter sets corresponding to the spreading and decay behaviors are determined to be [K,ε,b,x]
and [K,ε,uc,x], respectively, which result in two scaling laws after applying the Buckingham π

theorem,

b/x = φ1(ε/
√

K), ucx/
√

K = φ2(ε/
√

K).

We immediately note that a scaled effective eddy viscosity ε/
√

K instead of ε should be the
governing parameter for the jet spreading and decay behaviors. Applying the definitions of spreading
and decay rates together with Eq. (1) for the Schlichting jet, the two scaling laws have the explicit
forms

Sb = k1
ε√
K

, Su

√
K = k2

ε√
K

, (3)

where k1 = [64π (
√

2 − 1)/3]1/2 and k2 = 8π/3. Now we use experimental data to validate the
performance of Eq. (3). Since the linear relation between Sb and Su

√
K has been demonstrated in

Fig. 4, we only plot Sb vs ε/
√

K for both continuous and synthetic jets in Fig. 5. Here Sb, Su, and
K are obtained directly from experimental data, while ε is estimated by ε = S2

b [8(
√

2 − 1)Su]−1,
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which is a by-product of the Schlichting jet solution [26]. The overall good agreement between
experiment and prediction demonstrates that ε/

√
K governs the spreading and decay behaviors of

both continuous and synthetic jets. Physically, ε/
√

K represents a competition between the radial
diffusion and the axial convection of the axial momentum of a jet. Therefore, a larger value of ε/

√
K

corresponds to stronger momentum diffusion in the radial direction, which is the result of enhanced
mixing due to turbulence, pulsation, or any other type of axisymmetric excitation.

Now the behaviors of different jets can be suggested from the different values of ε/
√

K . For
laminar jets, ε/

√
K is approximately 0.002 as estimated from previous studies [39,40]. From Fig. 5,

ε/
√

K for all continuous turbulent jets seems to be concentrated around the value of 0.018. For
synthetic jets, Fig. 5 shows that ε/

√
K for some cases grows slightly above 0.02, which is larger

than continuous turbulent jets. Clearly, the larger value of ε/
√

K for those synthetic jet cases reflects
the additional mixing source, analogous to the additional viscosity of turbulent jets over laminar jets.
Physically, this additional mixing effect should be caused by the pulsed vortices of a synthetic jet,
which is even more profound in the transitional region. Since ε/

√
K ∝ Sb, this pulsation mechanism

also explains why the spreading and decay rates are notably enhanced in the transitional region over
that in the far field, as shown in Figs. 2 and 3. Therefore, we conclude that the pulsation effect of the
vortices significantly enhances the effective eddy viscosity in the transitional region of a synthetic
jet, while the enhancement is less pronounced in the far field where the flow is primarily dominated
by the turbulent effect.

To summarize, experimental studies have shown that all continuous turbulent jets display
similar spreading and mixing features [4,6–9], which are significantly enhanced over laminar jets.
Schlichting [2] accounted for the enhanced spreading of turbulent jets by adding a turbulent eddy
viscosity to the laminar viscosity to form an effective eddy viscosity. More recent works have
demonstrated even stronger spreading and mixing features in synthetic jets [23–25]. Similar to
Schlichting, here we attributed the stronger mixing of synthetic jets to the combined effect of
pulsation and vortex roll-up and proposed to further add this contribution to the effective eddy
viscosity. Here we note that the effective eddy viscosity is fundamentally related to the natural
or forced (e.g., pulsation) instability of shear layers and the resulting vortices. Depending on the
stroke ratio, a synthetic jet could display different modes of instabilities. For L/d smaller than the
formation number [33], the jet flow is dominated by the forced roll-up and instability of the vortex
rings. For L/d larger than the formation number, the natural instability of the trailing vortices could
further increase jet mixing and spreading. This could be a topic of a future investigation. In this
study, the adaptation of the Schlichting jet for both continuous and synthetic jets is further justified
experimentally by the entangled relationship between spreading and decay behaviors. Through
dimensional analysis, a scaled effective eddy viscosity, independent of jet actuation parameters, is
identified as the governing parameter that dictates the spreading and decay rates of any jet. This
finding well explains why the spreading and decay rates of some synthetic jets are higher than
most continuous turbulent jets and why the spreading and decay rates of the transitional region of a
synthetic jet are significantly enhanced over the far field.
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