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SUMMARY

In this article, we propose a new approach for model reduction of parameterized partial differential equations
(PDEs) by a locally weighted proper orthogonal decomposition (LWPOD) method. The presented approach
is particularly suited for large-scale nonlinear systems characterized by parameter variations. Instead of using
a global basis to construct a global reduced model, LWPOD approximates the original system by multiple
local reduced bases. Each local reduced basis is generated by the singular value decomposition of a weighted
snapshot matrix. Compared with global model reduction methods, such as the classical proper orthogonal
decomposition, LWPOD can yield more accurate solutions with a fixed subspace dimension. As another
contribution, we combine LWPOD with the chord iteration to solve elliptic PDEs in a computationally
efficient fashion. The potential of the method for achieving large speedups while maintaining good accuracy
is demonstrated for both elliptic and parabolic PDEs in a few numerical examples. Copyright © 2016 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In many engineering applications, direct numerical simulations are so computationally intensive and
time-consuming that they cannot be performed as often as needed. Over the years, many efforts have
been put forward to develop reduced models for time-critical operations such as computing electrical
power grids [1, 2], structural dynamics [3], chemical reaction systems [4, 5], and computational fluid
dynamics-based modeling and control [6–9]. The main idea for model reduction is the following:
although the state of a complex system is represented by a large dimensional space in general, the
linear subspace spanned by solution snapshots actually has a much lower dimension. To this effect,
the proper orthogonal decomposition (POD) with the Galerkin projection [6, 10] has been developed
to generate lower-dimensional surrogates for the original large-scale systems. While POD always
looks for a linear subspace instead of its curved submanifold, it is computationally tractable and can
capture dominant patterns in a nonlinear system.

A typical application of the POD-Galerkin approach involves an offline-online splitting method-
ology. In the offline stage, full models corresponding to some sampled input parameters are solved
to obtain solution snapshots. POD can construct a low-dimensional subspace to fit these snapshots.
Afterward, a reduced system is constructed by projecting the original system onto the subspace.
In the online stage, an approximate solution is obtained by solving the reduced system. Because
this reduced system can be much more efficient than the original one, the offline-online splitting
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methodology is suited for real-time or multiple-query applications to achieve minimal marginal cost
per input-output evaluation.

To our knowledge, there are at least three approaches that have been widely used in the context
of POD: global POD, local POD, and adaptive POD. Global POD approximates the solution of
interest in a subspace spanned by a global basis [11]. In order to enhance global POD, several
model reduction methods have been proposed based on the idea of data weighting. In particular,
Christensen et al. suggest including multiple copies of an important snapshot in the data ensem-
ble [12]. Kunisch and Volkwein used the snapshot interval �tj D .tjC1 � tj�1/=2 to specify
the weight of the snapshot at tj [13]. In [14], Daescu and Navon determined the weight of each
snapshot to minimize a predefined cost function for data assimilation. Although global POD and
these variations can be directly applied to a wide range of problems, they cannot balance accuracy
and efficiency very well. To obtain an accurate model, a subspace with a relatively high dimension
should be used to construct the reduced system, especially when many solution modes exist for the
whole domain in interest. Thus, global POD inevitably keeps redundant dimensions, which can lead
to long online simulation times.

To improve computational efficiency with a fixed subspace dimension, the precomputed snapshots
can be clustered, either through time domain partitions [15, 16], space domain partitions [17–19],
or parameter domain partitions [20–23]. Either of these functionalities can be realized through
local POD. That is, local POD projects the original system onto a subspace, which corresponds to
snapshots in one subdomain. The snapshots in the selected subdomain contribute equally to form
the local subspace, while snapshots outside the subdomain are neglected.

To take advantage of all the precomputed snapshots, adaptive POD uses global data and forms
adaptive reduced bases through subspace interpolation methods, such as angle interpolation [24],
and geometric interpolation in the Grassmann manifold [25, 26]. Interpolation-based model reduc-
tion methods have been successfully applied in many areas of computational engineering including
frequency response analysis [27–29], structural vibrations [26, 30], and aeroelasticity [25, 31–33].
The interpolation approach can effectively construct a new subspace from precomputed subspaces
for each new parameter. However, the constructed subspace must have the same dimension as the
precomputed subspaces. There is thus no flexibility to change the new subspace dimension so that
the accuracy and computational speeds of reduced systems can be balanced. Moreover, adaptive
POD usually constructs a reduced system during the online stage rather than the offline stage.
Adaptive POD can therefore be less efficient compared with the global and local POD methods.

In this article, we present a new model reduction method, locally weighted POD (LWPOD),
that combines the strengths of the local and adaptive POD methods. On one hand, similar to local
POD, LWPOD divides the whole parameter/time domain into a series of subdomains. Because each
localized reduced system can be constructed during the offline stage, LWPOD is as efficient as local
POD. The dimension of LWPOD can be adaptively chosen to obtain a desired level of accuracy. On
the other hand, similar to adaptive POD, LWPOD can effectively extract information from global
data, because each local POD basis is obtained from a weighted snapshot matrix. Furthermore, the
proposed method can be combined with the discrete empirical interpolation method (DEIM) [34] to
handle nonlinearities that arise.

Another contribution of this article is the reduced chord iteration, which is a type of quasi-Newton
method that replaces the exact Jacobian with an approximation. The reduced chord iteration is
introduced to speed up the online computation of elliptic partial differential equations (PDEs) in
the context of model reduction. For nonlinear elliptic PDEs, most existing model reduction tech-
niques are focused on simplifying the Newton iteration [34–37]. In particular, the classical DEIM
framework allows for a relatively inexpensive computation of a reduced Jacobian operator [34].
However, there still exists computational redundancies to update the reduced Jacobian at each itera-
tion. On one hand, computing a Jacobian matrix is usually more expensive than computing a vector
field. This statement holds for both elliptic PDEs and their reduced versions, because an evaluation
of a Jacobian matrix is based on a series evaluations of reduced vector fields in general. On the
other hand, a reduced Jacobian based on the DEIM method is only an approximation of the original
Jacobian. Therefore, the reduced Newton iteration can only achieve a linear convergence rate,
rather than a quadratic convergence rate in the standard Newton iteration. By utilizing the chord
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iteration in the framework of the localized weighting method, we can save additional time of the
online computation by approximating a reduced Jacobian during the offline stage.

The remainder of this article is organized as follows: Section 2 presents an overview of model
reduction for parameterized PDEs and a general error analysis. Section 3 briefly reviews the classical
POD-Galerkin method and its DEIM extension. In Section 4, LWPOD is proposed for the model
reduction of elliptic PDEs based on the chord iteration. Section 5 extends LWPOD to parabolic
PDEs. Finally, conclusions are offered in Section 6.

2. FORMULATION OF PARAMETERIZED PARTIAL DIFFERENTIAL EQUATIONS

We consider both parabolic and elliptic PDEs in this section. Let D � Rd denote a predefined
parameter domain and � 2 D denote a particular parameter value. Let R � Rn denote a solu-
tion manifold and u 2 R denote a particular solution state. By discretization (for example, using
finite difference or finite element methods), a parameterized elliptic PDE can be expressed as an
algebraic equation

f .�; u/ D 0; (1)

where f W D � R ! Rn is a smooth function. For any fixed input parameter � 2 D, we seek a
solution u D u.�/ 2 R, such that (1) can be satisfied.

Let I D Œ0; T � 2 R denote a time domain. By spatial discretization, a parameterized parabolic
PDE for variable u 2 R becomes an ordinary differential equation (ODE)

Pu D f .t; �; u/; (2)

with an initial condition u.0; �/ D u0, where f W I � D �R! Rn denotes the discretized vector
field. For any fixed t 2 I and � 2 D, the state variable u D u.t; �/ satisfies (2). By definition,
u.t; �/ is a flow that gives an orbit in Rn as t varies over I for a fixed initial condition u0 and a
fixed input parameter � 2 D. The orbit contains a sequence of states (or state vectors) that follow
from u0.

For convenience, we shall respectively refer to (1) and (2) as discretized elliptic and parabolic
PDEs. These equations can represent more general discretized PDEs with parameter variations
though. To use the same framework to study (1) and (2), we use � to represent � in (1) and to
represent .t; �/ in (2). Let T denote the input space, and T D D or T D I �D. For both scenarios,
u.�/ and f .�; u/ can be used to represent the solution snapshot and the vector field corresponding
to � 2 T . It follows that (1) and (2) become f .�; u/ D 0 and Pu D f .�; u/, respectively.

To achieve minimal cost per input-output evaluation, an offline-online splitting methodology is
often used for the model reduction. Let N denote the ensemble size. In the offline stage, ¹�iºNiD1
are sampled in the parameter space, and the corresponding solution vectors, ui D u.�i /, can induce
a Lagrange subspace Sr of Rn, i.e. Sr D span¹uiºNiD1 � Rn. The subspace dimension r satisfies
r 6 min¹n;N º. Suppose that ¹'iºriD1 is an orthonormal basis of Sr , we can define a basis matrix by

ˆr WD Œ'1; : : : ; 'r �:

Here, we use the superscript T to denote the matrix transpose and I to denote an identity matrix
whose size is determined by context. Then, ˆr 2 Vn;r , where Vn;r D ¹A 2 Rn�r jATA D I º is the
Stiefel manifold of orthonormal r-frames in Rn.

When r � n, a reduced equation constructed in Sr cannot obtain significant speedups for the
original system that defined on Rn. One often seeks a k.� r/-dimensional linear subspace Sk � Sr
where most solution vectors approximately reside. Moreover, there exists an n � k orthonormal
matrix

ˆ D Œ�1; : : : ; �k�
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whose column space is Sk . Once the subspace is specified, a reduced system can be constructed by
several approaches, such as Galerkin projection [38], Petrov–Galerkin projection [35], symplectic
Galerkin projection [39], and empirical interpolation [37, 40].

Regardless of the techniques applied for model reduction, a key consideration is how to approxi-
mate the original system with high accuracy. The projection of a state variable u 2 Rn onto Sr and
Sk can be respectively presented by Qur WD ˆrˆ

T
r u, and Quk WD ˆˆT u. Let er WD u � Qur denote

the difference between a solution vector u and its projection on Sr and ek WD u � Quk denote the
difference between u and its projection on Sk . In addition, we define eo WD Qur� Quk as the difference
between these two projections of u.

Suppose that the reduced system has a unique solution, Ou, and Ou D Ou.�/ 2 Sk . Usually,
Quk ¤ Ou, and we use ei WD Quk � Ou to represent their difference. Numerical simulation inevitably
introduces additional error et , which is due to the discretization of time integration and round-
off error. This type of error exists for both high-dimensional and low-dimensional simulations.
However, for simplicity, we assume that the solution to the reduced system Ou is obtainable by an
accurate numerical scheme and neglect et . The total error e of the approximate solution Ou from a
reduced equation can be decomposed into three components, e D erCeoCei , which are orthogonal
to each other with respect to the Euclidean inner product. Appendix contains the proof of this claim.

Decreasing the magnitude of the projection error ek.D er C eo/ is the key to decrease the
total error. On one hand, ek provides a lower bound for the reduced system, as kekk 6 kek
is always satisfied. On the other hand, for both elliptic PDEs [41] and parabolic PDEs [16, 42]
with a fixed time domain, if the Galerkin method is used to produce the reduced equation, then
there respectively exists a constant C such that kek 6 C kekk. Therefore, an upper bound of e
is also related to ek . The first component er of ek is directly related to sampling input parameters
during the offline stage. One can either use a uniform sampling process in the parameter space or use
a nonuniform sampling process through a greedy algorithm [37, 40]. The second component eo of ek
comes from the truncation error of dimensionality reduction. If global POD is used, then eo is related
to the truncation of singular value decomposition (SVD). In this article, we discuss a weighted
version of a local POD approach to form a reduced subspace Sk such that keok can reach a lower
value with fixed k. We will begin with a brief review of POD, which paves a way to introduce our
proposed method.

3. PROPER ORTHOGONAL DECOMPOSITION

In a finite dimensional space, POD is essentially the same as SVD. Let X D Œu1; : : : ; uN � be a
n�N snapshot matrix, where each column ui D u.�i / represents a solution snapshot corresponding
to input parameters �i . The POD method constructs a basis matrix ˆ that solves the following
minimization problem

min
ˆ2Vn;k

��.I �ˆˆT /X��
F
: (3)

Thus, the basis matrix ˆ minimizes the Frobenius norm of the difference between X with its pro-
jection QX WD ˆˆTX onto Sk . Because the dimension of the Lagrange subspace Sr is r , it follows
that rank.X/ D r . Thus, the SVD of X gives

X D VrƒrW
T
r ; (4)

where Vr 2 Vn;r , Wr 2 VN;r and ƒr D diag.�1; : : : ; �r/ 2 Rr�r with �1 > �2 > : : : >
�r > 0. The �s are called the singular values of X . In many applications, the truncated SVD is
more economical, where only the first k column vectors of Vr and the first k column vectors of
Wr corresponding to the k largest singular values are calculated and the rest of the matrices are not
computed. Then the projection of X is given by

QX D VƒW T ; (5)
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and the solution ofˆ in (3) is given byˆ D V . Moreover, the projection error of (3) in the Frobenius
norm by the POD method is given by

E D
��.I �ˆˆT /X��

F
D

vuut rX
iDkC1

�2i : (6)

The key notion of POD is to find a k-dimensional subspace Sk to fit the snapshot matrix
X . Although the truncated SVD is no longer an exact decomposition of X , it provides the best
approximation QX of X with the least Frobenius norm under the constraint that dim. QX/ D k.

Once the POD basis matrix ˆ is constructed, the Galerkin projection can be used to construct a
reduced system.

3.1. Galerkin projection

Let v 2 Rk denote the state variable in the subspace coordinate system. Projecting the system (1)
onto Sk , one obtains the reduced system of an elliptic PDE,

ˆT f .�;ˆv/ D 0; (7)

where � D � 2 D denotes the input parameter. Analogously, a reduced system of a parabolic PDE
can be obtained by projecting the system (2) on to Sk ,

Pv D ˆT f .�;ˆv/; (8)

and � D .t; �/ 2 I �D is used to identify the solution trajectory corresponding to � at time t . Once
v is solved, an approximate solution for u is given by Ou D ˆv in the original coordinate system.

3.2. Discrete empirical interpolation method

Equations (7) and (8) are reduced equations formed by the Galerkin projection. In fact, they can
achieve fast computation only when the analytical formula of the reduced vector field ˆT f .�;ˆv/
can be significantly simplified, especially when it is a linear (or quadratic) function of v. Otherwise,
one will need to compute the state variable in the original coordinate systemˆv, evaluate the nonlin-
ear vector field f at each element, and then project f onto Sk . In this case, the reduced systems (7)
and (8) are more expensive than the correspondingly full models. Many variants of POD–Galerkin
have been developed to reduce the complexity of evaluating the nonlinear term of vector field,
such as trajectory piecewise linear and quadratic approximations [43–46], missing point estimation
[47, 48], the gappy POD method [35, 49–52], the empirical interpolation method [37, 40], and
DEIM [34, 53]. Because LWPOD can be combined with DEIM to solve nonlinear systems, we
briefly review this method in this section.

The original vector field, f .�; u/ can be written as a combination of a linear term and a nonlinear
term, i.e.,

f .�; u/ D LuC fN .�; u/: (9)

where L 2 Rn�n is a linear operator and fN .�; u/ denotes the nonlinear vector term.
Using the Galerkin projection, the reduced vector field is given by

ˆT f .�;ˆv/ D QLv CˆT fN .�;ˆv/; (10)

where QL D ˆTLˆ is the reduced linear operator. Unless the nonlinear term ˆT fN .�;ˆv/ can be
analytically simplified, the computational complexity of (10) still depends on n. An effective way to
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overcome this difficulty is to compute the nonlinear term at a small number of points and estimate
its value at all the other points. Using DEIM, the reduced vector field can be approximated as

Of .�;ˆv/ WD QLv C ŒˆT�.P T�/�1�ŒP T fN .�;ˆv/�; (11)

where � is an n � m matrix that denotes the collateral POD basis of the nonlinear term snap-
shot fN .�; u/ and P T is an m � n index matrix that projects a vector of dimension n onto its
m entries. For example, if fN D ŒfN;1; : : : ; fN;4�

T and P D ŒŒ1; 0; 0; 0�T ; Œ0; 0; 1; 0�T �, then
P T fN D ŒfN;1; fN;3�

T . In the offline stage, P can be obtained by a greedy algorithm [34]. Notice
that ˆT�.P T�/�1 is calculated only once at the outset and P T fN .�; u/ is only evaluated on m
entries of fN .�; u/. The computational complexity of a DEIM reduced system can therefore be
independent of n.

In general, the choice of Lu and fN .�; u/ is not unique. If we let Lu D 0, then fN .�; u/ D
f .�; u/. In this scenario, one can even avoid computing the linear term and save some computational
cost in the online stage. However, because DEIM is only an approximation of the standard Galerkin
projection, it inevitably introduces extra error to evaluate the linear term when Lu is absorbed
in fN .u/. Therefore, it is desirable to separate the reduced vector field and explicitly compute
the linear term without the DEIM approximation, especially when the linear term dominates the
nonlinear term.

Based on POD and DEIM, we will respectively study nonlinear elliptic and parabolic PDEs in
the next two sections.

4. PARAMETERIZED ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

In this section, we focus on model reduction of parameterized elliptic PDEs. After introducing
LWPOD and the chord method, we apply LWPOD to construct the reduced chord method, which
can be used to solve elliptic PDEs efficiently.

The general form of elliptic PDEs, after discretization, is given by the algebraic equation (1).
In the offline stage, ¹�iºNiD1 are sampled in the parameter space, and we solve the corresponding
solutions ¹uiºNiD1. If ui D u.�i / satisfies (1) and the Jacobian matrix Ji WD Duf .�i ; ui / is non-
singular, then by the implicit function theorem, there exists a neighborhood of �i such that, for any
new input parameter �� in the neighborhood, the equation,

F.u/ D 0; (12)

has a unique solution, where F.u/ WD f .��; u/.

4.1. Locally weighted proper orthogonal decomposition

To solve (12) via a reduced system, we consider three SVD-based approaches to construct a
subspace Sk from precomputed snapshots.

The first approach is the standard POD, or global POD, which constructs a global POD basis
from all the precomputed snapshots. By defining a matrix of N snapshots

X D Œu1; : : : ; uN �; (13)

the POD basis matrix ˆ can be constructed from the SVD of X . The projection error of X
in the Frobenius norm is given by (6). If either the original PDE depends on many parameters
or the solution shows a high variability with the parameters, then a relatively high-dimensional
subspace is needed in order to represent all possible solution variations well. This effect is con-
siderably increased when treating dynamical systems with significant solution variations in time.
Another aspect is the fact that projection-based model reduction techniques, such as the POD–
Galerkin approach, usually generate small but full matrices. Comparatively, common discretization
techniques, such as the finite difference method, can lead to large but sparse matrices. Unless the
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reduced system has significantly lower dimension, it is possible that the reduced system is more
time-consuming to evaluate than the full system.

The second approach is local POD, which partitions the parameter domain D into some disjoint
subdomains Di and forms a local snapshot matrix for each subdomain. Let 	.�i ; �j / denote the
distance between �i and �j in D. Without additional information about the metric of D, 	.�i ; �j /
can be the squared Euclidean distance. To describe the local neighborhood relationships between
precomputed data points, one can construct either the "-neighborhood graph or the k-nearest neigh-
bor graph for the vertices ¹�iºNiD1. In the "-neighborhood graph, we connect all vertices whose
pairwise distances are smaller than ". In the k-nearest neighbor graph,�i and �j are connected with
an edge, if �i is among the k-nearest neighbors of �j or if �j is among the k-nearest neighbors of
�i . Let l input parameters ¹�i1 ; : : : ; �il º be the neighbors of �i in the neighbor graph, then a local
snapshot matrix is defined by

XLi D Œui1 ; : : : ; uil �: (14)

The domain partitioning can be obtained by the Voronoi diagram, i.e., Di D ¹� 2 Dj	.�;�i / 6
	.�;�j / for all j ¤ iº. Thus, each �i is the reference point of Di . For each new parameter ��, if
�i is the nearest neighbor of�� among ¹�iºNiD1, then�� 2 Di . Let u� be the solution corresponding
to the input parameter ��, i.e., f .��; u�/ D 0. If u� approximately resides on a subspace spanned
by the neighbors of ui , the local POD basis can be constructed by the SVD of XLi .

Local POD is usually referred to as local principal components analysis (PCA) in many fields of
computer science, including web-searching, information retrieval, data mining, pattern recognition,
and computer vision. The idea of local neighborhood graphs mentioned earlier is also widely used
in other techniques for nonlinear dimensionality reduction, such as locally linear embedding [54],
Laplacian eigenmaps [55], and Isomap [56]. All these techniques can be used to successfully dis-
cover local structures when there are a large number of vertices in each neighborhood. However,
for the model reduction of PDEs, it is usually very expensive to obtain many solution snap-
shots because they require the solving of full models during the offline stage. Without a large
number of data points for each neighborhood, local POD, as well as any other reduction tech-
niques, may not yield accurate solutions without taking advantage of the information from other
partitioned subdomains.

By using a fully connected graph, we propose a new approach for model reduction, locally
weighted POD (LWPOD), to compute the local POD basis. Here, all pairwise points are connected
with a weighting matrix. Because the graph should emphasize the local neighborhood relationships,
the element aij of the weighting matrix has a large value when �i and �j are close. Hence, the
weighting matrix should be diagonally dominant, i.e., ai i D 1 and 0 6 aij 6 1. An example for
such a weighting function is the Gaussian function

aij D exp.�	.�i ; �j /=
/; (15)

where 	.�i ; �j / is the distance between �i and �j and 
 controls the kernel width. Using the
superscript W to denote the proposed LWPOD method, a weighted snapshot matrix for the i th
subdomain can be defined as

XWi D Œai1u1; : : : ; aiNuN �: (16)

When rank.XWi / > k, SVD can be used to extract the first k dominant modes from XWi and
obtain a POD basis matrix. In particular, LWPOD degenerates to global POD if 
 ! 1 or aij D
1 for each i; j . The Gaussian weighting function can also be replaced by a compact weighting
function, in which case, LWPOD degenerates to local POD if aij D 1 for 	.�i ; �j / < " and aij D 0
otherwise. Let the column vectors of ˆWi 2 Vn;k span the POD subspace of XWi . As an analogy of
E in (6), the projection error of XWi onto the range of ˆWi in the Frobenius norm is given by

EWi D
����I �ˆWi �ˆWi �T

�
XWi

���
F
D

vuut rX
jDkC1

�
�Wj

�2
; (17)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 106:372–396
DOI: 10.1002/nme



NONLINEAR MODEL REDUCTION VIA A LOCALLY WEIGHTED POD METHOD 379

where �Wj is the j th singular value of XWi .
When rank.XWi / 6 k, either SVD or the Gram–Schmidt process can be used to obtain rank.XWi /

orthonormal basis vectors. One can arbitrarily choose any additional k � rank.XWi / vectors to form
an n � k matrix ˆWi 2 Vn;k . Then, (17) yields EWi D 0. However, the inequality rank.XWi / 6 k
does not hold if aij > 0 for all j ; in this case, we always have rank.XWi / D rank.X/ D r .

Next, we study the SVD truncation error eWo based on LWPOD. If �� 2 Di , the direct projection
QuWr .u�/ of u.��/ onto the induced subspace spanned by ¹uj ºNjD1 can be written as a linear
combination of aijuj ,

QuWr .��/ D

NX
jD1

�jaijuj : (18)

Here, the weighting coefficient satisfies aij > 0 for each j , and the constant �� is defined by
�� WD maxNjD1 j�j j. In particular, if �� D �i and �j D 1=

PN
kD1 aik for all j , then the right-hand

side of (18) represents the radial basis function interpolation. Now, we have

��eWo �� D �� QuWr � QuWk �� D
������
NX
jD1

�jaijuj � �jaij

�
ˆWi

�
ˆWi

�T �
uj

������
6

NX
jD1

����I �ˆWi �
ˆWi

�T �
�jaijuj

��� 6 ��
NX
jD1

����I �ˆWi �
ˆWi

�T �
aijuj

���

6 ��
p
N

0
@ NX
jD1

����I �ˆWi �
ˆWi

�T �
aijuj

���2
1
A
1
2

D ��
p
NEWi :

(19)

Thus, keWo k is bounded by EWi multiplied by a constant.

4.2. Chord iteration

The Newton method and its reduced version are widely used to solve nonlinear elliptic
PDEs [34–37]. At each iteration, the most expensive procedure of the reduced Newton method is to
compute a k � k reduced Jacobian matrix QJ . To save even more computational resources, we can
directly apply model reduction techniques to simplify the chord iteration.

The original chord iteration computes J D F 0.u.0// at the outset and uses J to approximate the
Jacobian at each iteration. Specifically, for iteration j , we first compute the vector F.u.j //. Then,
we solve

J .j / D �F.u.j // (20)

for .j /. After that, we update the approximate solution,

u.j C 1/ D u.j /C .j /: (21)

The chord iteration can converge to the true solution of (12) if the starting point is close to the
solution, as given by the following lemmas.

Lemma 1
Suppose that (12) has a solution u�. As well, suppose that F 0 is Lipschitz continuous with Lipschitz
constant � and F 0.u�/ is nonsingular. Then there are positive constants NK, ı, and ı1 such that as
long as u.j / 2 Bu�.ı/ and k�.u.j //k < ı1, the equation

u.j C 1/ D u.j / � .F 0.u.j //C�.u.j ///�1.F.u.j //C �.u.j /// (22)
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is well-defined and satisfies

ke.j C 1/k 6 NK.ke.j /k2 C k�.u.j //kke.j /k C k�.u.j //k/; (23)

where e.j / WD u� � u.j / denotes the error for iteration j .

For the chord iteration, �.u.j // D 0, �.u.j // D F 0.u.0// � F 0.u.j //. If u.0/; u.j / 2 Bu�.ı/,
k�.u.j //k 6 �ku.0/ � u.j /k 6 �.ke.0/k C ke.j /k/. Using Lemma 1, the following lemma is
obtained, where KC WD NK.1C 2�/.

Lemma 2
Let the assumptions of Lemma 1 hold. Then, there areKC > 0 and ı > 0 such that if u.0/ 2 Bu�.ı/
the chord iteration converges linearly to u� and

ke.j C 1/k 6 KC ke.0/kke.j /k: (24)

We suggest readers to refer to [57] for the details of the proof and additional discussion.

4.3. Locally weighted proper orthogonal decomposition based on the chord iteration

The chord iteration can be combined with LWPOD to solve elliptic PDEs more efficiently. In
the offline stage, for each input �i , the solution snapshot ui , the nonlinear snapshot gi , and the
corresponding Jacobian matrix Ji are recorded to form an ensemble ¹�i ; ui ; gi ; JiºNiD1. In the
online stage, for the new input parameter ��, we seek an approximate solution Ou by solving a
reduced system.

As described in Section 4.1, for each input parameter ��, we must first determine one subdomain
where �� resides. We choose the subdomain i such that 	.��; �i / obtains a minimal value. If the
minimal value for 	.��; �i / is reached for multiple indices, then we can select a value i from these
indices such that the Jacobian matrix Ji , or its reduced version, has the lowest conditional number.
If ¹�iºNiD1 represents an integer lattice in the parameter domain, then we can immediately find the
index i based on the value of ��. Otherwise, searching the optimal i is based on the data structure
of the precomputed data ensemble. This process is usually not computationally expensive as long
as d � n.

Next, we can obtain the POD basis matrix ˆWi by LWPOD. Let v.j / 2 Rk be the reduced state
at iteration j , v.0/ D vi D .ˆWi /

T ui be the starting point and QJi D .ˆWi /
T Jiˆ

W
i 2 Rk�k be the

reduced Jacobian. The Galerkin projection can be used to form reduced equations for (20) and (21),

QJi O.j / D �
�
ˆWi

�T
F
�
ˆWi v.j /

�
; (25)

v.j C 1/ D v.j /C O.j /: (26)

As mentioned in the previous section, the POD–Galerkin approach cannot effectively reduce the
complexity for high-dimensional systems when a general nonlinearity is present. This is because the
cost of computing .ˆWi /

TF.ˆWi v/ depends on the dimension of the original system, n. To lower
the cost of evaluating a general nonlinear system, DEIM can be used to approximate the right-hand
side of (25).

When Ji is a symmetric positive definite (SPD) matrix, QJi is a nonsingular matrix and (25) is
always well-defined [58]. Unfortunately, the Jacobians of nonlinear systems are not SPD matrices
in general. If QJi is singular, then one can choose a nonsingular reduced Jacobian of a neighboring
subdomain to replace QJi in (25).

Algorithm 1 lists all the procedures of the reduced chord iteration based on LWPOD. In the
offline stage, the POD basis and the collateral POD basis are computed in step 1. Some matrices
involving the DEIM approximation are obtained in step 2. Steps 3 and 4 involve computing the
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reduced Jacobian QJi and starting point vi for each subdomain. In the online stage, step 5 determines
the subdomain i where the new input parameter �� resides. Steps 5 and 6 are carried out only once.
Steps 7–9 form the main loop of the online computation using the subspace coordinates, and their
temporal complexity is independent of n.

Algorithm 1 Solving elliptic partial differential equations using the locally weighted proper
orthogonal decomposition and the reduced chord method

Require: A precomputed ensemble ¹�i ; ui ; gi ; Ji /ºNiD1, and the kernel width 
 .
Ensure: An approximate solution Ou D Ou.��/ for (12).

Offline:
for subdomain i D 1 to N do

1: Use SVD to compute the local POD basis matrix ˆWi for the weighted snapshot matrix XWi
and the collateral basis matrix �Wi for the weighted matrix of the nonlinear vector term.
2: Use the DEIM approximation to compute QL.�i / D .ˆWi /

TLˆWi for the linear operator and
.ˆWi /

T�Wi .P
T�Wi /

�1 for the nonlinear vector term.
3: Compute the reduced Jacobian QJi . If it is singular, label the subdomain i as ‘singular’.
4: Compute solution snapshots in the reduced coordinate system vi D .ˆ

W
i /

T ui .
end for
Online:
5: From the subdomains that are not labeled as ‘singular’, choose a subdomain i such that the
distance 	.�� ��i / obtains the minimal value. If the minimal value for 	.��; �i / is reached for
multiple indices, choose i from these indices such that the reduced Jacobian matrix QJi has the
lowest conditional number.
6: Set vi as the starting point v.0/ in the reduced coordinate system.
for j D 0; : : : ; (until convergence) do

7: Compute the DEIM approximation OF .v.j // of the reduced vector field .ˆWi /
TF.ˆWi v.j //.

8: Solve QJi O.j / D � OF .v.j //, as (25).
9: Update v.j C 1/ D v.j /C O.j /, as (26).

end for
10: Obtain the approximate solution in the original coordinate system Ou.��/ D ˆWi v.j /.

Next, we shall consider the error of the DEIM approximation in Algorithm 1. For a fixed � in (7),
the reduced algebraic equation formed by the Galerkin projection is given by

.ˆWi /
TF.ˆWi v/ D 0: (27)

Usually, the reduced chord iteration cannot converge to the solution, v�, of (27), because DEIM
introduces additional error for the approximation of the vector field. Nevertheless, if the DEIM
approximation gives a uniform error bound, "F , of the reduced vector field, the following lemma
can give an error bound of the DEIM approximation in terms of "F .

Lemma 3
Suppose (27) has a solution v�, F 0 is Lipschitz continuous with Lipschitz constant � and F 0.ˆWi v�/
is nonsingular. Suppose the DEIM approximation gives a uniform error bound k.ˆWi /

TF.ˆWi v/�
OF .v/k < "F for any v 2 Bv�.ı/. Let e.j / WD v� � v.j / denote the error for iteration j . There

are positive constants NK, KC , and ı, such that if ui 2 B.ˆW
i
/.v�/

.ı/ and "F < .1 �Kcı/ı= NK, then

the reduced chord iteration approaches v� with an upper bound of ke.j /k given by NK"F =.1�KC ı/
as j !1.

Proof
In Algorithm 1, a sequence ¹v.j /º is obtained by the following iteration rule,

v.j C 1/ D v.j / � QJ�1i
OF .v.j //; (28)
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where QJi D .ˆWi /
T Jiˆ

W
i for Ji D F 0.ui /. The aforementioned equation can be rewritten in the

form similar to (22),

v.jC1/Dv.j /�
��
ˆWi

�T
F 0
�
ˆWi v.j /

�
ˆWi C�.v.j //

��1 ��
ˆWi

�T
F
�
ˆWi v.j /

�
C�.v.j //

�
;

(29)

where �.v.j // D OF .v.j // � .ˆWi /
TF.ˆWi v.j // and �.v.j // D QJi � .ˆWi /

TF 0.ˆWi v.j //ˆ
W
i .

If ui 2 B.ˆW
i
/.v�/

.ı/ and v.j / 2 Bv�.ı/, one obtains k�.v.j //k < "F , and

k�.v.j //k 6 kF 0.ui / � F 0
�
ˆWi v.j /

�
k 6 �kui �ˆWi v.j /k

6 �
�
kui �ˆ

W
i v�k C kˆ

W
i v� �ˆ

W
i v.j /k

�
6 2�ı:

Using Lemma 1 and defining KC WD NK.1C 2�/, one obtains

ke.j C 1/k < NK.ke.j /k2 C 2�ıke.j /k C "F / 6 KC ı ke.j /k C NK"F : (30)

If "F < .1 �Kcı/ı= NK, ke.j /k < ı yields ke.j C 1/k < ı. Thus, ui 2 B.ˆW
i
/.v�/

.ı/ implies that
v.j / 2 Bv�.ı/ for all j . Let ı be small enough such that KC ı < 1. Thus, ke.j /k is bounded by
NK"F =.1 �KC ı/ as j !1. �

Notice that if the error bound of the DEIM approximation, "F in (30), approaches zero, then the
reduced chord iteration converges linearly to v�. Moreover, because the DEIM approximation is
bounded by a constant multiplied by the SVD truncation error k.I � ��T /F k [34], a small SVD
truncation error can effectively reduce the value of "F .

Although the standard Newton iteration has a quadratic convergence rate, its reduced version only
has a linear convergence rate. This is because the DEIM approximation can introduce errors to both
the reduced Jacobian and the reduced vector field. On the other hand, because the reduced chord
iteration is more computationally efficient, it is more suited for model reduction of parameterized
elliptic PDEs. The complexity analysis is discussed in the next section.

4.4. Computational complexity

In this section, we compare the temporal complexity of the offline computation for global POD, local
POD, and LWPOD. In addition, we compare the temporal complexity of the online computation for
the reduced chord iteration and the reduced Newton iteration.

Assuming a precomputed ensemble ¹�i ; ui ; gi ; Ji /ºNiD1 is given initially, andN � n. The offline
computation of LWPOD (Algorithm 1) involves the following procedures: In step 1, from an n�N
weighted snapshot matrix, XWi , the POD basis matrix ˆWi is obtained in 2N 2nC 2N 3 operations
by SVD [59]. Meanwhile, we need another 2N 2nC 2N 3 operation to compute the collateral basis
matrix �Wi . In steps 2–4, several reduced matrices are computed based on DEIM. For simplicity, let
�.k; n/ denote the computational cost in these steps. Because both POD and DEIM processes are
carried out for each subdomain, the total cost of the offline computation isN.4N 2nC4N 3C�.k; n//
for N subdomains.

A similar complexity analysis can also be applied to the global and local POD methods. Because
global POD only has one domain to be considered, the total cost of the offline computation is
4N 2nC4N 3C�.k; n/. For local POD, suppose each subdomain uses l snapshots near the reference
point �i , then we need 4l2nC 4l3C �.k; n/ operations for each subdomain. Thus, the total cost of
local POD is N.4l2nC 4l3 C �.k; n// for N subdomains. Table I compares the cost of the offline
computation for global POD, local POD, and LWPOD.

Notice that LWPOD requires more computational cost than the global and local POD methods. If
N � 1, there are two approaches to reduce the computational cost of LWPOD. First, one can choose
fewer reference points and construct a smaller number, say N 0 � N , of subdomains. Second, one
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Table I. Offline complexity of global POD, local POD,
and locally weighted POD.

Offline computation Complexity

Global POD 4N 2nC 4N 3 C �.k; n/

Local POD N.4l2nC 4l3 C �.k; n//

Locally weighted POD N.4N 2nC 4N 3 C �.k; n//

Table II. Per iteration cost in the reduced chord and the reduced Newton methods.

Online computation Complexity

Per iteration cost in the reduced Newton method ˛.m/C 4mk C 2
3k
3 C k

Per iteration cost in the reduced chord method 2˛.m/C 6mk C 2bmk C 2mk2 C 2
3k
3 C k

can use a compact weighting function so that each SVD process only requires l � N neighboring
snapshots. With these modification, LWPOD requires N 0.4l2nC 4l3 C �.k; n// operations in the
offline stage.

Next, we consider the complexity of the online computation in Algorithm 1. If the dimension of
the parameter space is significantly smaller than n, the computational cost in step 5 is negligible.
Because vi is obtained during the offline stage, step 6 does not involve any real computations. In
step 7, the reduced chord iteration inherits one advantage of the standard chord iteration: it does
not compute the Jacobian at each iteration. The per-iteration cost of the reduced chord iteration is
therefore lower than the per-iteration cost of the reduced Newton iteration. Specifically, if ˛.m/
denotes the cost of evaluating m components of F , then the cost of approximating the reduced
vector field is ˛.m/C 4mk via DEIM [34]. Let b denote the average number of nonzero entries per
row of the Jacobian. In the simple case when J is sparse, we have b � n. If the reduced Jacobian
is also computed during the online stage, additional ˛.m/C 2mk C 2bmk C 2mk2 operations are
needed via DEIM [34]. Thus, the reduced Newton iteration requires 2˛.m/C6mkC2bmkC2mk2

operations for the DEIM approximation. In the worst case when J is dense, the complexity of
computing QJ would still depend on n. Step 7 is the most expensive part for the online computation.
In step 8, the cost of solving a linear equation is 2

3
k3 operations [59], for both the reduced chord

and the reduced chord and the reduced Newton methods. The cost in step 9 is k operations for both
methods. Thus, the per iteration cost in the reduced chord method is ˛.m/C 4mk C 2

3
k3 C k, and

the per iteration cost in the reduced Newton method is 2˛.m/C 6mkC 2bmkC 2mk2C 2
3
k3C k

(Table II).

4.5. Numerical example

In this section, LWPOD is applied to an elliptic PDE (from [37] and [34]),

� r2u.x; y/C
�1

�2
.e�2u � 1/ D 100 cos.2�x/ cos.2�y/; (31)

with homogeneous Dirichlet boundary conditions, u.0; y/ D u.1; y/ D u.x; 0/ D u.x; 1/ D 0.
The spatial variables satisfy .x; y/ 2 � D Œ0; 1�2 and the parameters satisfy � D .�1; �2/ 2 D D
Œ0:5; 10:5�2. The benchmark solution is solved by the Newton iteration resulting from a finite dif-
ference discretization. The spatial grid points .xi ; yj / are equally spaced in � for i; j D 1; : : : ; 51.
The full dimension of state variable u is then n D 2601. In the offline stage, the parameter domain D
is uniformly partitioned into 10� 10 subdomains. For each subdomain, we solve the full model and
obtain one solution snapshot that corresponds to the input parameter in the center of the subdomain.
To create a POD basis for the subdomain, the weighted snapshot matrix is constructed according
to (16), where 	.�i ; �j / is the squared Euclidean distance in the parameter domain and the kernel
width is given by 
 D 1.
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In the online stage, the DEIM approximation is used to construct reduced systems. We set the
subspace dimension of nonlinear term fN D �1=�2.exp.�2u/�1/ to be twice the subspace dimen-
sion of solution state u for each individual test, so that the DEIM approach can provide a good
approximation of the original POD. Therefore, the number of POD modes, k, is 2; 4; : : : ; 20, and
the number of the nonlinear-term modes is 4; 8; : : : ; 40. Besides LWPOD, the global and local POD
methods are also used to construct reduced systems as comparisons. For the local POD case, we
choose nine solution snapshots and nine nonlinear-term snapshots for each local basis.

Figure 1(a) shows the solution corresponding to the input parameters �1 D 4:5, and �2 D 8:5.
The reduced system from the LWPOD-chord approach has a good approximation of the original
system with k D 10. The solution profile is given in Figure 1(b), while the total error u� Ou is given
in Figure 1(c).

Based on 200 randomly selected parameters that were not used to obtain the sample snapshots,
Figure 2(a) plots the relative projection error, kek.�/k = ku.�/k, and the relative computational
error, ke.�/k = ku.�/k, solved by different reduced systems for the elliptic PDE (31). Three findings
can be gleaned from this figure. First, the reduced chord iteration can obtain the same accuracy
as the reduced Newton iteration, for all global POD, local POD, and LWPOD cases. Because the
reduced chord iteration is more efficient than the reduced Newton iteration (which will be shown in
Figure 2(b)), the reduced chord iteration is more suited for model reduction of parameterized elliptic
PDEs. Second, compared with the global and local POD methods, LWPOD needs fewer modes to
represent the original system in order to obtain the same level of accuracy. Equivalently, the DEIM

(a) (b) (c)

Figure 1. Simulation results of the elliptic PDE (31) with � D .�1; �2/ D .4:5; 8:5/. (a) The benchmark
solution solved by the full model with 2601 grid points. (b) The approximate solution solved by the locally
weighted POD-chord reduced system with k D 10. (c) The total error, e D u � Ou, of the locally weighted

POD-chord reduced system with k D 10.

(a) (b)

Figure 2. (a) The relative projection error, ku.�/ � Quk.�/k = ku.�/k, and the relative error,
ku.�/ � Ou.�/k = ku.�/k, solved by different reduced systems for the elliptic PDE (31). (b) The average
running time for each reduced Newton iteration and each reduced chord iteration based on global POD,
local POD, and locally weighted POD, which are normalized by the average running time for each Newton

iteration in the full model.
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reduced system formed by LWPOD has a smaller error e than the reduced system formed by the
global and local POD methods for the same dimension. Third, the DEIM reduced system formed by
LWPOD has a smaller projection error ek than the other two methods, where the projection error is
given by ek D u � Quk D eo C er . When k is relatively small, the SVD truncation error eo is the
dominant term of ek . As k increases, eo diminishes, and er dominates ek . Hence, local POD yields
a more accurate solution in comparison with global POD when k 6 10, but a less accurate solution
in comparison with global POD when k > 10. Moreover, because local POD has a larger er than
the other two methods, it cannot obtain a very accurate solution even when k is very large. For the
local POD case with k > 10, the total error, e, of the reduced Newton method and the reduced chord
method is one magnitude higher than ek , which implies that the DEIM approximation error, ei , is
the dominant term in e. Compared with the global and local POD methods, LWPOD has smaller
eo and er components for a wide range of subspace dimensions. Therefore, LWPOD has the least
projection error with the same subspace dimension.

Figure 2(b) shows the normalized running times for the reduced Newton method and the reduced
chord method. Both approaches achieve speedups of more than 200 times when k 6 20. At each
iteration, the reduced chord iteration only updates k entries in the reduced vector field, while the
reduced Newton iteration updates extra k diagonal entries in the reduced Jacobian matrix. Thus, one
can expect that the reduced chord iteration is at least twice as fast as the reduced Newton iteration.
This expectation is also verified by the simulation.

Furthermore, we study the relative error of the LWPOD-chord approximation with different
subspace dimensions k and kernel widths 
 . Table III indicates that the LWPOD error is not sensi-
tive to 
 ; with a large range of 
 (1 6 
 6 8), the relative error for each k is no greater than twice
the minimal error with the optimal 
 . As k increases, the optimal value of 
 tends to increase. When

 !1, LWPOD degenerates to global POD.

Finally, if �� lies on the boundary of multiple subdomains, then different LWPOD reduced
systems will provide different approximations in general. Now, suppose that both i1 and i2 reach
the minimum for k�� ��ik; the corresponding approximations for u.��/ are given by Ou1.��/ and
Ou2.��/, respectively. If the reduced Jacobian matrix QJi1 has a smaller conditional number than QJi2 ,
then Algorithm 1 uses Ou1.��/ as the approximate solution Ou.��/. To measure the discontinuity of
Ou.�/ at � D ��, we define the sensitivity parameter as

�.��/ D
k Ou1.��/ � Ou2.��/k

k Ou1.��/ � u.��/k
: (32)

In our numerical simulation, with k D 10 and 
 D 1, we randomly select 20 different input param-
eters � on boundaries, and the average value of � is 31.5%. Thus, the Ou.�/ given by Algorithm 1
is not continuous on the boundary of different subdomains. However, considering that the denom-
inator k Ou1.��/ � u.��/k has a magnitude of 10�7, we can estimate that k Ou2.��/ � u.��/k also
has a magnitude of 10�7. Moreover, when 
 increases or the size of each subdomain decreases, the
sensitivity parameter � can decrease systematically.

Table III. The relative error of the locally weighted POD-chord approximation with
different subspace dimensions k and kernel widths 
 .




k 0.25 0.5 1 2 4 8 1

2 1.27E-03 1.27E-03 1.27E-03 1.36E-03 1.64E-03 2.41E-03 1.59E-02
4 2.54E-05 2.23E-05 2.08E-05 3.71E-05 7.70E-05 1.59E-04 1.35E-03
6 7.99E-06 3.20E-06 3.05E-06 5.48E-06 1.01E-05 1.83E-05 1.46E-04
8 1.76E-06 1.57E-06 9.64E-07 7.03E-07 1.27E-06 2.63E-06 2.89E-05
10 5.74E-07 3.15E-07 1.99E-07 1.68E-07 2.43E-07 6.49E-07 1.13E-05
12 3.24E-07 6.77E-08 5.33E-08 5.70E-08 9.27E-08 1.90E-07 3.03E-06
14 3.27E-07 4.80E-08 2.72E-08 2.09E-08 4.16E-08 9.46E-08 1.23E-06
16 4.05E-07 3.11E-08 1.15E-08 8.40E-09 8.76E-09 1.98E-08 2.18E-07
18 3.15E-07 9.51E-08 6.12E-09 4.29E-09 4.24E-09 6.21E-09 8.79E-08
20 3.85E-07 2.35E-08 2.46E-09 1.71E-09 1.46E-09 2.91E-09 4.56E-08
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5. PARAMETERIZED PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

In this section, we extend the LWPOD approach to solve parameterized parabolic PDEs. We first
introduce the methodology, then discuss its computational complexity, and finally demonstrate its
performance in the numerical simulation of the Navier–Stokes equation.

5.1. Methodology

The general form of parabolic PDEs, after discretization, is given by (2). We still follow the offline-
online splitting computational strategy. In the offline stage, for each input parameter �i , the solution
trajectory gives a snapshot matrix

Xi D Œu.t1; �i /; : : : ; u.tT ; �i /�:

In the truncated SVD Xi � ViƒiW
T
i , ƒi is a diagonal matrix with the first ki singular values of

Xi on the diagonal. The columns of Vi are basis vectors for the corresponding singular values. The
matrix Vi minimizes the truncation error ofXi and its projection onto the column space of Vi , which
is given by Ei D

��.I � ViVi T /Xi��F .
As an analogy to (16), a locally weighted snapshot matrix for subdomain i can be defined by

XWi D Œai1X1; : : : ; aiNXN �; (33)

where ¹aij ºNjD1 are the weighting coefficients for the subdomain i . Similar to the method for ellip-
tic PDEs, we implicitly partition the whole parameter domain into subdomains and precompute the
local POD basis for each subdomain in the offline stage. If each aij equals 1, then LWPOD degener-
ates to global POD. If each aij is formed by a Gaussian function, then LWPOD has less truncation
error compared with global POD.

The direct SVD of XWi can be employed to obtain a reduced basis, but it is not the most efficient
approach. When the trajectories exhibit fast variations over the whole time domain, a great deal of
memory must be allocated to record XWi . Suppose we sample T snapshots from each trajectory.
The total size of XWi is n � NT . If NT is a large number, then the SVD of XWi could be very
expensive. To save memory and improve the computational efficiency, the POD basis matrix ˆi for
a localized reduced model can be constructed from a few basis matrices Vj of the corresponding
trajectories, rather than the original snapshots. In the context of the locally weighted approach, we
define a compressed snapshot matrix as

X 0i WD Œai1V1ƒ1; : : : ; aiNVNƒN �: (34)

If each Vj in (34) is an n � k matrix, then the size of X 0i is n �Nk. For parabolic PDEs with large
time domains, we have k � T . Therefore, the SVD of X 0i is more efficient than the SVD of XWi .

Next, we consider the truncation error of the LWPOD method for parameterized parabolic PDEs.
As an analogy to (18), the direct projection QuWr .t; ��/ of u.t; ��/ onto the induced subspace
spanned by u.t; �j / can be written as

QuWr .t; ��/ D

NX
jD1

�j .t/aiju.t; �j /: (35)

Here, for each j , the weighting coefficient satisfies aij > 0. The constant �� is defined by �� WD
maxNjD1 supt�I j�j .t/j. Similar to (19), the truncation error eWo .t/ satisfies

��eWo .t/�� 6 ��
NX
jD1

���I �ˆiˆTi � aiju.t; �j /�� :
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If ¹tlºTlD1 are evenly sampled in the whole time domain with equally spaced intervals of length
�t , then one can estimate the L1 norm of keWo .t/k by

��eWo ��1 D
Z tT

t0

��eWo .t/�� dt � �t
TX
lD1

��eWo .tl/��

6 �t��
TX
lD1

NX
jD1

���I �ˆiˆTi � aiju.tl ; �j /��

6 �t��
p
NT

0
@ TX
lD1

NX
jD1

���I �ˆiˆTi � aiju.tl ; �j /��2
1
A
1
2

D �t��
p
NT

���I �ˆiˆTi �XWi ��F :
LetE 0i WD

��.I �ˆiˆTi /XWi ��F denote the projection error of the original weighted snapshot matrix
XWi that is defined in (33), we have

keWo k1 6 �t��
p
NTE 0i : (36)

The next lemma gives an upper bound for E 0i .

Lemma 4
Let ˆi 2 Vn;k0 denote the POD basis matrix of X 0i and E0 D

��.I �ˆiˆTi /X 0i��F denote the
SVD truncation error of X 0i . Let Vj 2 Vn;k denote the POD basis matrix of Xj and Ej D��.I � VjVj T /Xj��F denote the SVD truncation error of Xj . Then, the projection error E 0i of the
original weighted snapshot matrix XWi is bounded by

E 0i 6 E0 C

vuut NX
iD1

a2ijE
2
j : (37)

Proof
Because the non-truncated SVD gives Xj D Vr;jƒr;jW

T
r;j , by the definition of XWi in (33), we

have XWi D Œai1Vr;1ƒr;1W
T
r;1; : : : ; aiNVr;Nƒr;NW

T
r;N �. We construct a new matrix

QXWi WD
�
ai1Vr;1 Qƒr;1W

T
r;1; : : : ; aiNVr;N

Qƒr;NW
T
r;N

�
;

where Qƒi has the same size as ƒi , but only contains the first ki nonzero singular values of ƒi , i.e,
Qƒi D diag¹�1.�i /; : : : ; �ki .�i /; 0; : : : ; 0º. Because Wr;j are orthonormal,

�
XWi �

QXWi
� �
XWi �

QXWi
�T
D

NX
jD1

a2ijVr;j .ƒr;j �
Qƒr;j /

2V Tr;j :

It follows that

��XWi � QXWi ��2F D tr
��
XWi �

QXWi
� �
XWi �

QXWi
�T �
D

NX
jD1

tr
�
a2ijVr;j

�
ƒr;j � Qƒr;j

�2
V Tr;j

�

D

NX
jD1

a2ij tr
��
ƒr;j � Qƒr;j

�2�
D

NX
jD1

a2ijE
2
j

(38)
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The last equity holds because Ej D
��.I � VjVj T /Xj��F D

q
tr..ƒr;j � Qƒr;j /2/. On the other

hand,

���I �ˆiˆTi � QXWi ��F D
���I �ˆiˆTi � Œai1Vr;1 Qƒr;1; : : : ; aiNVr;N Qƒr;N �diag

®
W T
r;1; : : : ; W

T
r;N

¯��
F

D
���I �ˆiˆTi � Œai1Vr;1 Qƒr;1; : : : ; aiNVr;N Qƒr;N ���F
D
���I �ˆiˆTi � Œai1V1ƒ1; : : : ; aiNVNƒN ���F
D
���I �ˆiˆTi �X 0i��F D E0:

(39)

Therefore, by using (38) and (39), we obtain

���I �ˆiˆTi �XWi ��F 6
����I �ˆiˆTi � QXWi

���
F
C
����I �ˆiˆTi �

�
XWi �

QXWi

����
F

6
����I �ˆiˆTi � QXWi

���
F
C
���XWi � QXWi

���
F

D E0 C

vuut NX
iD1

a2ijE
2
j :

�

By (36) and (37), we can conclude that keWo k1 is bounded by the SVD truncation errors E0 and
Ej , i.e.,

keWo k1 6 �t��
p
NT

0
@E0 C

vuut NX
iD1

a2ijE
2
j

1
A : (40)

Thus, we can adaptively choose the number of modes for ˆi and Vj , such that keWo k1 is smaller
than any given number.

In the online stage, for each new input parameter ��, one must first determine a single subdomain
where �� resides. For parabolic PDEs, we choose the subdomain i such that 	.��; �i / derives
a minimal value. If the minimal value for 	.��; �i / is reached for multiple indices, then we can
choose i from these indices so that the Lipschitz constant �i of the vector field (or the reduced
vector field) along this trajectory attains the minimal value. Here, the Lipschitz constant �i can
be approximated by the maximal value of kDvˆTi f .t; �i ; ˆiv/k for some sampled points at t D
t1; : : : ; tT . Algorithm 2 lists the complete procedure of the LWPOD approach for solving parabolic
PDEs.

Furthermore, hyperbolic PDEs can also be represented by (2) after spatial discretization. As
a consequence, LWPOD can yield reduced systems for hyperbolic PDEs as well. However, POD
(and LWPOD) reduced systems can be unstable, even if the corresponding original systems are
stable [42, 60, 61]. If a hyperbolic PDE can be written as a Hamiltonian form, we can combine the
locally weighted approach with the proper symplectic decomposition (PSD) to obtain a structure-
preserving reduced system [61]. Because PSD (and its locally weighted version) preserves the
symplectic structure, it also preserves stability and system energy [39]. Thus, it is more desired
to replace POD by PSD in Algorithm 2 for model reduction of hyperbolic PDEs, especially when
long-time integration is required.

5.2. Computational complexity

In this section, we discuss the temporal complexity of Algorithm 2 for solving parabolic PDEs
and compare the temporal complexity of the offline computation for global POD, local POD,
and LWPOD.
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Algorithm 2 Solving parabolic partial differential equations using the locally weighed proper
orthogonal decomposition.

Require: A series of precomputed solution trajectories ¹�i ; ui .t/ºNiD1 at t D t1; : : : ; tT and the
kernel width 
 .

Ensure: An approximate solution Ou.t; �/ of (2) with the initial condition u.0/ D u0 and input
� D ��.
Offline:
for trajectory i D 1 to N do

1: Use SVD to compute the POD basis matrix Vi and the singular values ƒi for the snapshot
matrix Xi D Œu.t1; �i /; : : : ; u.tT ; �i /�.

end for
for subdomain i D 1 to N do

2: Use SVD to compute the POD basis matrix ˆi for the compressed snapshot matrix X 0i
defined in (34).
3: Project the original system onto the subspace spanned by the column vectors of ˆi , and
obtain a reduced system Pv D ˆTi f .t; �i ; ˆiv/ with the initial condition v.0/ D .ˆi /T u0.

end for
Online:
4: Choose the index i 2 ¹1; : : : ; N º so that the distance 	.�� � �i / obtain the minimal value. If
the minimal value for 	.��; �i / is reached for multiple indices, choose i from these indices such
that the Lipschitz constant �i obtains the minimal value.
5: Solve the reduced system and obtain a solution trajectory v.t/ in the reduced coordinate system.
6: Obtain the approximate solution in the original coordinate system Ou.t; ��/ D ˆiv.t/.

For simplicity, we assume that N � n and T � n. The offline computation involves the
following procedures: In step 1, for each solution trajectory, the POD basis matrix Vi and the singu-
lar values ƒi are obtained in 2T 2nC 2T 3 operations by SVD of an n� T snapshot matrix Xi [59].
In step 2, we need 2.Nk/2n C 2.Nk/3 operations to compute the POD basis matrix ˆi from the
compressed snapshot matrix X 0i . In step 3, we assume �.k; n/ operations are required to build a
reduced system based on the Galerkin projection. Therefore, with N different precomputed trajec-
tories, the total cost of the offline computation for LWPOD is N.2T 2n C 2T 3/ C N.2.Nk/2n C
2.Nk/3 C �.k; n//.

The global and local POD approaches can also use step 1 to process the raw data for each solution
trajectory. Because global POD only has one domain to be considered, the total cost of the
offline computation is N.2T 2n C 2T 3/ C 2.Nk/2n C 2.Nk/3 C �.k; n/. For local POD,
suppose l neighboring trajectories are used for each subdomain, then the total cost of local POD is
N.2T 2nC 2T 3/CN.2.lk/2nC 2.lk/3C �.k; n// for N subdomains. Table IV compares the cost
of the offline computation for global POD, local POD, and LWPOD.

Although LWPOD requires more computational cost than the global and local POD methods, if
N � 1, we can reduce the cost to N.2T 2nC 2T 3/C N 0.2.lk/2nC 2.lk/3 C �.k; n//. This can
be achieved by choosing a smaller number, say N 0 � N , of subdomains and by using a compact
weighting function so that step 2 only requires l � N neighboring trajectories.

Furthermore, if the original system has significant solution variations in time, a large value of
T is required in order to represent the original trajectory. In this case, the offline computation is
very expensive, because the complexity of Algorithm 2 depends on T 3. To reduce the cost, one

Table IV. Offline complexity of global POD, local POD, and locally weighted POD.

Offline Computation Complexity

Global POD N.2T 2nC 2T 3/C 2.Nk/2nC 2.Nk/3 C �.k; n/

Local POD N.2T 2nC 2T 3/CN.2.lk/2nC 2.lk/3 C �.k; n//

Locally weighted POD N.2T 2nC 2T 3/CN.2.Nk/2nC 2.Nk/3 C �.k; n//
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can partition the whole time domain into a few segments with fixed length and construct reduced
systems for each segment. With this modification, the cost of the offline computation can be linearly
dependent on T .

Notice that the reduced system in Algorithm 2 is constructed by the Galerkin projection. It is
very suited for parabolic PDEs that contain only linear and quadratic terms. If the original parabolic
PDE contains a general nonlinear term, one can also use the DEIM approximation to form a reduced
system. With this modification, the complexity of the LWPOD approach is still independent of n for
the online computation.

5.3. Cavity flow problem

In this section, the performance of LWPOD is illustrated through the numerical simulation of
the Navier–Stokes equation in a lid-driven cavity flow problem. We focus on demonstrating the
capability of LWPOD to deliver accurate solutions with significant speedups.

Mathematically, the cavity-flow problem can be represented in terms of the stream function and
vorticity ! formulation of the incompressible Navier–Stokes equation. In non-dimensional form,
the governing equations are given as

 xx C  yy D �!; (41)

!t D � y!x C  x!y C
1

Re

�
!xx C !yy

�
; (42)

where Re is the Reynolds number and x and y are the Cartesian coordinates. The space domain
� D Œ0; Lx� � Œ0; Ly � is fixed in time for each test. The velocity field is given by u D @ =@y,
v D �@ =@x. No-slip boundary conditions are applied on all nonporous walls including the top
wall moving at speed U D 1. Using Thom’s formula [62], these conditions are then written in terms
of stream function and vorticity. For example, on the top wall, one might have

 B D 0; (43)

!B D
�2 B�1

h2
�
U

h
; (44)

where the subscript B denotes points on the moving wall, subscript B�1 denotes points adjacent to
the moving wall, and h denotes grid spacing. Expressions for  and ! at remaining walls with U D
0 can be obtained in an analogous manner. The initial condition is set as u.x; y/ D v.x; y/ D 0. The
discretization is performed on a uniform mesh with second-order central finite difference approxi-
mations for second-order derivatives in (41) and (42). The convective term in (42) is discretized via
a first-order upwind difference scheme. For the time integration of (42), we use the implicit Crank-
Nicolson scheme to handle the diffusion term and the explicit two-step Adams–Bashforth method
to handle the advection term. Because the governing equation contains only linear and quadratic
terms, we apply the Galerkin projection to construct reduced systems.

In the numerical simulation, the full model uses 129 � 129 grid points and ıt D 2 � 10�3

as a fixed time step. The offline computation varies the Reynolds number from 600 to 1600 with
equally spaced intervals of length 200. The horizontal length is given by a fixed value Lx D 1,
while the vertical length Ly varies from 0.8 to 1.2 with equally spaced intervals of length 0.1.
For convenience, each input parameter (Re, Ly) is used as a reference point for the parameter
domain Œ500; 1700� � Œ0:75; 1:25�. The Gaussian function (15) is used for weighting coefficients in
the weighted snapshot matrix, where the distance 	.�i ; �j / in the parameter domain is defined as

	.�i ; �j / D

	
Rei �Rej

1000


2
C .Lyi � Lyj /

2 (45)

such that the variations of the Reynolds number and the aspect ratio are measured on a similar scale.
The kernel width is given by 
 D 0:1. For the online testing, we randomly select 100 parameters
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in the parameter domain. Meanwhile, we also partition the whole time domain Œ0; 50� into 10 seg-
ments, and each local reduced basis is constructed from all the data from one segment and partial
data from its neighbors. For example, the first segment takes solution snapshots from the time
domain [0,6], and the second segment takes solution snapshots from the time domain [4, 11]. Con-
sidering that the states of the Navier–Stokes equation show high time dependencies, compared
with the elliptic PDE that solved in the previous section, more modes are required in order to
present the entire solution trajectory with high accuracy. In this example, the first 80 modes with the
corresponding singular values of solution snapshots are restored for each trajectory segment.

Figure 3(a) shows streamline contours for Re D 1050, Ly D 1:05, and t D 50 that are solved
by the full model. LWPOD provides an approximate solution O with k D 20 modes, as shown in
Figure 3(b). In both Figure 3(a) and Figure 3(b), contour values for the stream function plots are
set to �1 � 10�10, �1 � 10�7, �1 � 10�5, �1 � 10�4, �0:01, �0:03, �0:05, �0:07, �0:09, �0:1,
�0:11, �0:115, �0:1175, 1� 10�8, 1� 10�7, 1� 10�6, 1� 10�5, 5� 10�5, 1� 10�4, 2:5� 10�4,
1 � 10�3, 1:3 � 10�3, and 3 � 10�3. The total error, e D  � O , of the LWPOD approximation is
shown in Figure 3(c).

Figure 4 illustrates the velocity profiles for u along the vertical lines and v along the horizontal
lines passing through the geometric center of the cavity. Global POD provides a poor approx-
imation with 20 modes. In contrast, LWPOD can yield more accurate solutions with the same
subspace dimension.

(a) (b) (c)

Figure 3. Streamline contours for the lid-driven cavity problem with Re=1050 and Ly D 1:05 at t D 50. (a)
The benchmark solution solved by the full model with 129 � 129 grid points. (b) The approximate solution
solved by the locally weighted POD reduced system with k D 20. (c) The total error, e D  � O , of the

locally weighted POD reduced system with k D 20.

(a) (b)

Figure 4. (a) Comparison of the velocity component u.x D 0:5; y/ along the y-direction passing though the
geometric center of the domain between the full model, global POD, and locally weighted POD at t D 50.
(b) Comparison of the velocity component v.x; y D 0:5025/ along the x-direction passing through the
geometric center of the domain between the full model, global POD, and locally weighted POD at t D 50.
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(a) (b)

Figure 5. (a) The total error, kek D k � O k, of the global and locally weighted POD approximations and
the corresponding projection error, kekk D k � Q kk. (b) The average running times of reduced systems
formed by global POD and locally weighted POD, which are normalized by the average running time of the

full model.

Table V. The total error of the locally weighted proper orthogonal decomposition method
with different subspace dimensions k and kernel widths 
 .




k 0.001 0.005 0.01 0.05 0.1 0.5 1 1

20 7.92E-4 4.42E-4 3.72E-4 8.86E-4 1.41E-3 3.21E-3 3.60E-3 4.92E-2
40 1.92E-4 1.29E-4 1.11E-4 1.72E-4 1.36E-4 1.85E-4 1.86E-4 9.48E-3
60 8.73E-5 6.57E-5 6.31E-5 6.78E-5 7.70E-5 1.11E-4 1.14E-4 7.09E-3

Based on N D 100 randomly selected parameters with t D 50, Figure 5(a) plots kek and kekk of
global POD and LWPOD for (41). Global POD has higher values of kek and kekk than LWPOD
for any fixed dimension k. Figure 5(b) shows that the online running times of global POD and
LWPOD are almost the same for the same k. When the subspace dimension is low, say k 6 30, both
approaches can obtain significant speedups. However, to obtain a highly accurate representation
for the entire trajectory, global POD needs a large value of k to build a reduced system. Thus, the
reduced system based on global POD cannot always provide significant speedups for a dynamical
system, especially when high accuracy is required. In contrast, using the domain decomposition
approach, the LWPOD reduced system can yield an accurate solution based on a low-dimensional
subspace, and therefore, obtain a significant speedup.

Furthermore, we study the total error of the LWPOD method with different subspace dimen-
sions k and kernel widths 
 . Table V indicates that the LWPOD error is not very sensitive with 
 .
The subspace dimension k is the dominant factor that determines the total error. When 
 ! 1,
LWPOD degenerates to global POD.

Finally, suppose that �� lies on the boundary of two subdomains with indices i1 and i2. The
corresponding approximations for  .t; ��/ are given by O 1.t; ��/ and O 2.t; ��/, respectively. To
represent the discontinuity at ��, we measure the sensitivity parameter �.��/ defined in (32) with
the fixed time at t D 50. In our numerical simulation, with k D 20 and 
 D 0:1, we randomly select
20 different input parameters � on boundaries of parameter subdomains, and the average value of �
is 21.7%. When 
 increases, the sensitivity parameter � decreases.

6. CONCLUSION

In this article, we have proposed a new technique, LWPOD, for model reduction of parameterized
PDEs. The method can be applied to both elliptic and parabolic PDEs based on POD and DEIM.
Compared with global POD, LWPOD can approximate the original system with a much lower
dimension. Compared with local POD, LWPOD can more efficiently extract the information from
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all the precomputed snapshots, and therefore yield more accurate solutions with the same subspace
dimension. Thus, LWPOD is very suited for model reduction of large-scale systems with parameter
variations, especially when the data snapshots are very expensive to obtain. For elliptic PDEs, the
LWPOD basis can be constructed by the SVD of a weighted snapshot matrix. Furthermore, the
reduced chord iteration can be used in the context of LWPOD to save additional computational cost.
For parabolic PDEs, a compressed snapshot matrix for the local reduced basis can be constructed
from a set of weighted empirical eigenvectors, which has a smaller size compared with a matrix that
is directly constructed from data snapshots. The numerical simulations demonstrate the capability
of LWPOD to solve both elliptic and parabolic PDEs with high accuracy and good efficiency.

APPENDIX: ORTHOGONALITY OF DIFFERENT ERROR COMPONENTS

In Section 2, we claim that different components of the total error e are orthogonal to each other
with respect to the Euclidean inner product. Here, we give a formal proof.

Lemma 5
The total error e of the approximate solution Ou from a reduced equation can be decomposed into
three components: e D er C eo C ei , and these components are orthogonal to each other.

Proof
By the definitions of e, er , eo, and ei , we immediately obtain

e D u � Ou D .u � Qur/C . Qur � Quk/C . Quk � Ou/ D er C eo C ei : (46)

Because Qur 2 Sr , Quk 2 Sk � Sr , we have eo D Qur � Quk 2 Sr . It follows that there exists a vector
a 2 Rr such that eo D ˆra. On the other hand,

er D u � Qur D
�
I �ˆrˆ

T
r

�
u:

The inner product gives

heo; eri D a
TˆTr

�
I �ˆrˆ

T
r

�
u D aT

�
ˆTr �ˆ

T
r

�
u D 0: (47)

Because Quk; Ou 2 Sk , one can write ei D Quk � Ou D ˆb for a vector b 2 Rk . Because Sk � Sr , it
follows that .ˆrˆTr /ˆ D ˆ. Then the inner product gives

hei ; eri D b
TˆT

�
I �ˆrˆ

T
r

�
u D bT

�
ˆT �

�
ˆrˆ

T
r ˆ

�T �
u D 0: (48)

Similarly, by the definition of Quk , we have

ek D u � Quk D .I �ˆˆ
T /u:

The inner product gives

hei ; eki D b
TˆT .I �ˆˆT /u D bT .ˆT �ˆT /u D 0: (49)

On the other hand, we have

ek D u � Quk D u � Qur C Qur � Quk D er C eo: (50)

Thus, eo can be considered as the projection of ek onto the orthogonal complement of Sk as a
subspace of Sr . Using (48), (49) and rewriting (50) as eo D ek � er , one obtains

hei ; eoi D hei ; ek � eri D hei ; eki � hei ; eri D 0: (51)

A combination of (47), (48), and (51) permits us to conclude that er , eo, ei are orthogonal to each
other. Moreover, ek and ei are orthogonal to each other. �

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 106:372–396
DOI: 10.1002/nme



394 L. PENG AND K. MOHSENI

(a) (b)

Figure 6. (a) Illustration of the actual solution u of the original system, the projection Qur of u on Sr , the
projection Quk of u on Sk , and the approximate solution Ou computed by a reduced system. (b) The error
component orthogonal to Sr is given by er D u � Qur , the difference of two projections of u is given by

eo D Qur � Quk , and the error component parallel to Sk is given by ei D Quk � Ou.

Using S?r and S?
k

to represent the orthogonal complement of subspaces Sr and Sk of Rn,
Figure 6(a) shows u, its projections Qur , Quk , and its approximation from a reduced system Ou.
Figure 6(b) shows three different components, er , eo, ei , of the total error e.
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