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Analysis of boundary slip in a flow with an oscillating wall
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Molecular dynamics (MD) simulation is used to study slip at the fluid-solid boundary in an unsteady flow
based on the Stokes’ second problem. An increase in slip is observed in comparison to the steady flow for shear
rates below the critical shear rate of the corresponding steady flow. This increased slip is attributed to fluid inertial
forces not represented in a steady flow. An unsteady mathematical model for slip is established, which estimates
the increment in slip at the boundary. The model shows that slip is also dependent on acceleration in addition
to the shear rate of fluid at the wall. By writing acceleration in terms of shear rate, it is shown that slip at the
wall in unsteady flows is governed by the gradient of shear rate and shear rate of the fluid. Nondimensionalizing
the model gives a time dependent yet universal curve, independent of wall-fluid properties, which can be used
to find the slip boundary condition at the fluid-solid interface based on the information of shear rate, gradient of
shear rate of the fluid, and the instant of time during the cycle. A governing nondimensional number, defined as
the ratio of phase speed to speed of sound, is identified to help in explaining the mechanism responsible for the
transition of slip boundary condition from finite to a perfect slip and determining when this would occur. Phase
lag in fluid velocity relative to wall is observed. The lag increases with decreasing time period of wall oscillation
and increasing wall hydrophobicity. The phenomenon of hysteresis is seen when looking into the variation of slip
velocity as a function of wall velocity and slip velocity as a function of fluid shear rate. The cause for hysteresis
is attributed to the unsteady inertial forces of the fluid. The rate of heat generated by viscous shear is compared
for an unsteady Stokes’ second problem and simple Couette flow and is shown to be higher for the unsteady flow.
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I. INTRODUCTION

The no-slip boundary condition at the interface of a fluid
and a solid wall has been the subject of many investigations
for more than a century [1–3]. Navier [4] was the first to
introduce the linear boundary condition, which was later
also proposed by Maxwell [5], and it remains the standard
characterization of slip even today. Slip at the boundary
although prevalent, is negligibly small in most continuum
and macroscale applications. Hence, the no-slip boundary
condition is widely accepted and has been shown to give
accurate results in such applications. However, in many
micro- and/or nanoscale applications the first breakdown of
continuum assumption often occurs at a solid boundary in the
form of velocity slip.

As transport in ever smaller scales is considered, surface
forces and effects start playing a more profound role on fluid
transport than the bulk forces. Results from various computer
simulations [6–15], which have been backed up by a number
of laboratory experiments [16–23], show the presence of slip
in fluids at the boundary. The advent of molecular dynamics
simulations proved to be a considerable aid in understanding
slip, as performing experiments at such scales is difficult.
Most MD simulations have been focused on steady flows.
MD simulations of a shear-driven steady flow by Thompson
and Robbins [14] showed dependence of slip on wall-fluid
properties such as density of the wall relative to fluid, the
strength of liquid-solid coupling, and the thermal roughness
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of the interface. They also observed layering of fluid normal
to solid walls [14]. Thompson and Troian [15] performed MD
simulation of the steady Couette flow. They observed that at
small shear rates the boundary condition is consistent with
the Navier model. However, as the shear rate is increased the
Navier condition breaks down and the slip length increases
rapidly with shear rate. They discovered that as the wall
velocity is increased the slip at the wall is nonlinearly increased
to infinity at a critical shear rate at which point the wall is
no longer able to impart any further momentum to the fluid.
They also went on to find a universal curve that gives the
slip length for a specific shear rate irrespective of wall-fluid
properties [15].

Boundary slip has been the subject of less investigation in
unsteady flows. A few exceptions are in unsteady gas flows
[24,25] and analytic solutions for continuum scale problems
[26–29]. However, to the authors’ knowledge, for liquids at
microscales the research has been limited to steady flows. To
this end, channel flows with oscillatory wall movement, the so-
called Stokes’ second problem, appears as a natural extension
of steady Couette flows investigated by Thompson and Troian.
Such a flow can be encountered in several microsystem
applications, such as microaccelerometers, inertial sensors,
and resonant filters [30]. The preliminary results of this work
were presented at APS DFD, 2011 [31] and at the AIAA
conference, June 2012 [32].

In this paper the effects of unsteady flow on slip in simple
liquids at the solid interface are presented. The numerical
experiments conducted indicate that slip velocity is also
dependent on fluid acceleration, in addition to the shear rate of
the fluid. Previous studies on unsteady flows in microchannels
by Khaled and Vafai [24], and Matthews and Hill [25] have
used the Navier slip model, while Bahukudumbi et al. [33]
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used the Maxwell slip model for their analysis. Both Navier’s
and Maxwell’s models suggest the dependence of slip only
on shear rate. To confirm our hypothesis, Maxwell’s theory
for slip in rarefied gases [5] for a steady flow is extended to
an unsteady case. Although the original derivation is inspired
based on some characteristics of gases, we will verify here
that an analogous formulation is also valid for liquid flows.
The unsteady slip model developed shows the existence of an
additional acceleration term. Using the momentum equation
the acceleration term can be rewritten as gradient of shear
rate, hence showing that slip is dependent on shear rate
and its gradient. Scaling the model by wall velocity and
characteristic length for Stokes’ second problem, collapses the
data to give a time dependent yet universal curve, independent
of wall-fluid properties, which can be used to find the slip
boundary condition at the fluid-solid interface. It is seen that
at the limiting case when unsteady flow tends to steady flow
the model reduces back to Navier and Maxwell’s model.
We also introduce a nondimensional number that helps in
explaining the transition of slip boundary condition from finite
slip to perfect slip and determining when this would arise.
Furthermore, the occurrence of hysteresis in unsteady flows is
shown. Hysteresis is observed when comparing slip velocity
with shear rate and slip velocity with wall velocity. The rate of
heat generated by viscous shear is compared for an unsteady
Stokes’ second problem and simple Couette flow and has been
shown to be higher for the unsteady flow as a result of higher
shear stress in the flow. Our MD simulations reaffirm the
findings by Karniadakis [30] which were made for gases and
the experiments done by Alsten and Granick [34] that mention
the increased energy dissipation in oscillatory shear flows.

Details of numerical experiments and code validation are
specified in Secs. II and III. In Sec. IV an unsteady slip model
is derived. Nondimensionalization of the model is discussed
in Sec. V. Results and conclusion are presented in Secs. VI
and VII, respectively.

II. NUMERICAL SETUP

The molecular dynamics simulations presented in this paper
are performed using the LAMMPS package [35]. The problem
geometry used is similar to that of Stokes’ second problem
which is achieved by selecting the height of the fluid channel
to be greater than the Stokes’ penetration depth, as shown in
Fig. 1. The penetration depth as determined from the analytical
solution of the Stokes’ problem is given by δ = 6.51

√
ν/ω,

where ν is the kinematic viscosity of the fluid and ω is the
frequency of wall oscillation. The channel dimensions and
number of wall and fluid atoms for different wall densities
and various time periods are presented in Table I. The fluid’s
initial state is modeled as a face-centered cubic (fcc) structure
with the x direction of the channel being aligned along the
[112̄] orientation of the face-centered cubic lattice. The wall
comprises two layers of atoms oriented along the (111) plane
of fcc lattice. The wall atoms are fixed to their lattice sites. The
bottom wall is kept stationary, while the top wall is subjected
to an oscillatory motion, defined by

x = A sin(ωt), (1)

FIG. 1. Schematic of the problem geometry, where h is the height
of the fluid channel and U is the wall velocity.

where A is the amplitude of wall oscillation. Periodic boundary
conditions are imposed along the x and z directions.

The pairwise interaction of atoms separated by a distance r

is modeled by the Lennard-Jones potential

V LJ = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (2)

where ε and σ are the characteristic energy and length scales.
The cutoff radius rc is 2.2σ where the potential is zero for
r > rc.

The fluid is maintained in its equilibrium state having a
number density ρ = 0.81σ−3 and temperature T = 1.1kB/ε.
The temperature is regulated by a thermostat which simulates
the transfer of heat from the system to an external reservoir.
A Langevin thermostat with a damping coefficient of � =
1.0τ−1, where τ =

√
mσ 2/ε, is used here. The damping term

is only applied to the z direction to avoid biasing the flow. The
equation of motion of the fluid atom of mass m along the z

TABLE I. Dimensions of the fluid domain and the number of fluid
and wall atoms are enlisted for different values of time period. Time
period T , wall number density ρw , length x, height y, and width z

of the fluid channel, and the number of fluid Nf and wall Nw atoms
are the variables mentioned. Here τ is the characteristic time of the
Lennard-Jones potential and ρ is the fluid number density. The minor
changes in the dimensions with change in wall density are done to
make the problem geometry symmetric and periodic.

T/τ ρw/ρ x/σ y/σ z/σ Nf Nw

�120 1 11.95 50 1204.14 595 000 23 100
�120 4 12.14 50 1204.14 595 000 58 656
�400 1 11.95 100 1204.14 1190 000 23 100
�400 4 12.14 100 1204.14 1190 000 58 656
800 1 11.95 150 1204.14 1785 000 23 100
800 4 12.14 150 1204.14 1785 000 58 656
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component is therefore given as follows:

mz̈i =
∑
j �=i

∂Vij

∂zi

− m�żi + ηi. (3)

Here
∑

j �=i denotes the sum over all interactions with i and
ηi is a Gaussian distributed random force. The value of
dynamic viscosity used for the calculations is μ = 2.0ετσ−3.
The equations of motion were integrated using the Verlet
algorithm [36,37] with a time step τc = 0.002τ .

The simulation is initially run for a time of ∼600τ allowing
the flow to equilibrate, after which, an ensemble average of
required variables are taken in addition to spatial averaging.
The spatial averaging is done along the length and width of
the channel, with a bin height of 0.25σ .

III. VALIDATION OF SIMULATION

Before going ahead with our present experiment we
validated our code by reproducing Thompson and Troian’s
results [15]. The problem consisted of a Couette flow geometry.
Simulation was run for different cases having varying wall-
fluid properties. For each case, slip length was computed for
an increasing shear rate of fluid which in turn is governed
by the wall velocity. The slip length is calculated from the
linear Navier boundary condition �V = Lsγ̇ , which can be
simplified for Couette flow to (U/γ̇ − h)/2 [15], where �V

is the slip velocity, Ls is the slip length, and γ̇ is the fluid
shear rate. The shear rate is computed as the slope of the
velocity profile. The reproduced results of Thompson and
Troian [15] are shown in Fig. 2. Considerable agreement was
found with their results. The nonlinear dependence of slip
length with shear rate is illustrated. Also we were able to
duplicate the universal curve [15], which is a plot of slip
length normalized by its limiting value Lo

S versus the shear
rate which is normalized by the critical shear rate γ̇c. This
primarily ends up collapsing the data onto one curve given
by Ls = Lo

s (1 − γ̇ /γ̇c)−1/2. The universal curve shows that
for a given shear rate the nondimensionalized slip length is
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FIG. 2. (Color online) Universal curve describing the flow bound-
ary condition. Ls and γ̇ are scaled by L0

s and γ̇c, respectively.
The curve fit is given by Ls = L0

S(1 − γ̇ /γ̇c)−1/2 in agreement with
Thompson and Troian’s results [15].

independent of the fluid wall properties of the problem being
considered.

IV. UNSTEADY SLIP MODEL

The two widely used models, namely, Navier’s and
Maxwell’s slip models, are in essence the same. Both show that
the slip velocity at the fluid-solid interface is proportional to the
shear rate of the fluid. Here we aim to capture the functionality
associated with slip in fluids in unsteady flow by expanding
Maxwell’s theory. One of the reasons we resort to it is because
of the lack of a widely accepted kinetic model for liquids.
Even though Maxwell’s model [5,38,39] was established for
rarefied gases, we illustrate here that an analogous formulation
can be made for slip in liquids. This is because the mechanism
of slip at the wall is expected to have some similar features for
both liquids and gases.

Maxwell’s theory states that the reflection of fluid atoms
after colliding with wall atoms can be categorized into two
types: specular reflection and diffusive reflection, as shown in
Fig. 3.

Diffusive reflection (Uf,diff
w ). In this case the incident fluid

atoms exhibit no slip and the velocity of the atom attained
after collision is the same as that of the velocity of the wall
during collision. This can be imagined as fluid atoms being
adsorbed by the wall and then put back into the fluid in a
random direction. Hence, the aggregate velocity of the atom
after collision being equal to the velocity of wall atom at the
instant of collision (relative velocity with wall being zero),

Uf,diff
w (t+c ) = Uw(tc). (4)

Here tc is the instantaneous time of collision and Uw is the
wall velocity.

Specular reflection (Uf,spec
w ). The atoms undergo perfect

slip and the velocity after collision is the same as that before
collision:

Uf,spec
w (t+c ) = Uf

w (t−c ), (5)

where U
f
w is the fluid velocity at the wall. Furthermore, the

velocity of the atom before collision with wall is deemed to
have been obtained by collision with fluid atoms located at a
distance equal to λ from the wall, this being the location of
the first fluid layer and τc the time it takes for the fluid atom to
travel this distance. Here we make an assumption that during
the motion of the fluid atom in reference it is subjected to a
net zero force during its journey from the first fluid layer to

FIG. 3. (Color online) Schematic of diffusively and specularly
reflected fluid atom.
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the wall. Thereby, it has a constant velocity

Uf
w (t−c ) = U

f

λ (tc − τc). (6)

Performing a Taylor series expansion in space at the wall the
velocity at a distance λ from it can be written as

U
f

λ (tc − τc) = Uf
w (tc − τc) − λ

dUf (tc − τc)

dy

∣∣∣∣
w

. (7)

Discretizing in time and ignoring all second and higher order
terms we obtain

Uf
w (t−c ) = U

f

λ (tc − τc)

= Uf
w (tc) − τc

dU
f
w (tc)

dt
− λ

dUf (tc)

dy

∣∣∣∣
w

. (8)

Now, the average velocity after collision U
f
w (t+c ) is given

by

Uf
w (t+c ) = σdU

f,diff
w (t+c ) + (1 − σd ) Uf,spec

w (t+c ), (9)

where σd is called the tangential momentum accommodation
coefficient (TMAC), which gives the fraction of atoms under-
going diffusive reflection. Substituting from Eqs. (4) and (5)
in the above equation we obtain

Uf
w (t+c ) = σdU

w (tc) + (1 − σd ) Uf
w (t−c ). (10)

The net instantaneous fluid velocity at the wall is given as
the mean of the velocity before and after collision

Uf
w (tc) = U

f
w (t+c ) + U

f
w (t−c )

2
. (11)

By substituting U
f
w (t+c ) from (10), one obtains

2Uf
w (tc) = σdU

w (tc) + (2 − σd ) Uf
w (t−c ). (12)

Now U
f
w (t−c ) could be replaced from Eq. (8) to give

2Uf
w (tc) = σdU

w (tc) + 2Uf
w (tc) − σdU

f
w (tc)

+ (2 − σd )

[
− τc

dU
f
w (tc)

dt
− λ

dUf (tc)

dy

∣∣∣∣
w

]
.

(13)

Rearranging this equation results in

Uw (tc) − Uf
w (tc) = (2 − σd )

σd

[
τc

dU
f
w (tc)

dt
+ λ

dUf (tc)

dy

∣∣∣∣
w

]
.

(14)

Slip velocity is given as

Us = Uw − Uf
w . (15)

Using the definition of slip velocity Eq. (14) can be written as

Us (tc) = (2 − σd )

σd

[
τc

dU
f
w (tc)

dt
+ λ

dUf (tc)

dy

∣∣∣∣
w

]
. (16)

Finally writing dU/dy in terms of shear rate γ̇ we get

Us (tc) = (2 − σd )

σd

[
τc

dU
f
w (tc)

dt
+ λγ̇

∣∣∣∣
w

]
. (17)

Hence, we see that slip velocity has an additional dependence
on the fluid acceleration at the wall in the case of unsteady
flows.

The simplified Navier-Stokes equation is used in order to
rewrite the acceleration term in the above expression in terms
of shear rate. Writing down the two-dimensional momentum
equation in x, with no external force or pressure gradient:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂x2 + ∂2u

∂y2

)
. (18)

In addition since the velocity of fluid in the x direction is
uniform, the rate of change of velocity along the x direction
goes to zero. Hence the Navier-Stokes equation reduces to

∂u

∂t
= ν

(
∂2u

∂y2

)
. (19)

Now considering that γ̇ = ∂U
f
w

∂y
one can rewrite the above

equation as

∂U
f
w

∂t
= ν

∂

∂y

(
∂U

f
w

∂y

)
= ν

(
∂γ̇

∂y

)
. (20)

Substituting this in the equation for slip velocity, Eq. (17),
results in

Us (tc) = (2 − σd )

σd

[
τcν

(
∂γ̇

∂y

)
+ λγ̇

]
w

. (21)

For steady flow, slip velocity is seen to be proportional
to the shear rate of the fluid as hypothesized by Navier and
Maxwell. But here, we show that for an unsteady problem we
have an additional contribution from the gradient of shear rate.
Hence it is seen that the slip velocity for an unsteady case is
proportional to the linear sum of shear rate and gradient of
shear rate of the fluid at the wall.

In the limiting case when the flow approaches steady state
and the acceleration goes to zero the unsteady slip model
reduces back to that given by Maxwell:

Us =
(

2 − σd

σd

)
λγ̇ . (22)

Comparing this to Navier’s slip boundary condition

Us = Ls γ̇ |w , (23)

one can write the slip length, Ls = (2−σd )
σd

λ. A σd value of
one can be compared to a no-slip boundary condition in fluids
where there is no relative velocity between the wall and fluid,
while σd equal to zero corresponds to a boundary condition
exhibiting perfect slip.

V. NONDIMENSIONALIZING THE UNSTEADY
SLIP MODEL

Nondimensionalization of the slip model is performed with
an attempt to simplify and parametrize the equation. It is
also aimed at identifying a nondimensional parameter that
could characterize unsteady slip. The unsteady slip model
established in the previous section is scaled by the wall velocity
Uw and the length scale associated with Stokes’ second
problem,

√
2ν/ω. Nondimensionalizing using this velocity
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and length scale, one obtains

U ∗
s =

(
2 − σd

σd

) ⎡
⎣(τcν)

1
2ν
ω

(
∂2Uf ∗

∂y∗2

)
+ λ√

2ν
ω

∂Uf ∗

∂y∗

⎤
⎦

w

,

(24)

where (·)∗ represents nondimensional quantities. Notice that,
τc = λ

c̄
, where c̄ is the speed of sound in the fluid at a given

temperature. Therefore

U ∗
s =

(
2 − σd

σd

)
λ∗

[
Cnd

∂2Uf ∗

∂y∗2
+ ∂Uf ∗

∂y∗

]
w

. (25)

This could also be written as

U ∗
s = L∗

s

[
Cnd

∂2Uf ∗

∂y∗2
+ ∂Uf ∗

∂y∗

]
w

, (26)

which is the same as

U ∗
s = L∗

s

[
Cnd

∂γ̇ ∗

∂y∗ + γ̇ ∗
]

w

, (27)

where L∗
s = ( 2−σd

σd
)λ∗ and Cnd =

√
2νω
2c̄

is the nondimensional
parameter that controls the unsteady term based on the type of
flow. As the fluid being used is liquid argon, slip length cannot
be calculated from σd and λ directly, and hence Eq. (26) must
be used. One can see that for a limiting case of ω = 0, which
corresponds to a steady flow problem, the equation reduces
back to Maxwell’s slip equation.

VI. RESULTS

The primary information that is extracted from the sim-
ulations is the fluid velocity. The following steps are taken
before the data from the simulations is used for any analysis.
First, a reference plane is defined at a distance of 0.5σwf away
from the wall lattice site. This is the location at which the fluid
variables at the wall are computed. Secondly, in order to obtain
a well resolved velocity profile the Levenberg-Marquardt
method [40,41] is used to fit the analytical solution of the
Stokes’ second problem to the data. This is done so as to limit
the noise resulting from taking the derivatives of the velocity
profile. Different cases of wall-fluid properties considered are
listed in Table II.

Thompson and Troian [15] observed that the slip length
for fluid shear rates much lower than the critical shear rate is
constant. But for shear rates in the vicinity of the critical value
it becomes highly nonlinear [15]. As we are here considering
an unsteady problem the various fluid and wall variables are
time varying, and so is the slip length if the shear rate is in the

TABLE II. Four different cases with varying wall-fluid properties
were considered. εwf and σwf are the Lennard-Jones parameters for
fluid-wall interaction.

Case εwf /ε σwf /σ ρw/ρ

1 0.6 1.0 1
2 0.1 1.0 1
3 0.4 0.75 4
4 0.2 0.75 4

vicinity of its critical value. The details of how the slip length
is calculated are described in the following section.

A. Verification of slip model

Several numerical simulations were conducted in order to
verify the unsteady slip model established in the previous
section. As the first test case the variation of slip length with
time period while having a fixed wall amplitude is considered.
This is presented for two different cases of wall-fluid properties
in Fig. 4(a). These two cases correspond to cases 1 and 2
of Thompson and Troian [15] with the difference being that
instead of a steady problem an unsteady problem is considered
here. The slip length corresponding to each run can be
calculated by fitting the data using the Levenberg-Marquardt
method [40,41] and the slip model given in Eq. (26). In these
plots we assume that the slip length is constant over a given
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σ
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x
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(a)

FIG. 4. (Color online) (a) Slip length versus time period. As
the time period of the unsteady problem tends to a corresponding
steady problem the steady state value of slip length is recovered. (b)
Nondimensional slip length versus sum of the nondimensional shear
rate and the product of nondimensional number Cnd and the gradient
of shear rate. Here y = L∗

s and x = Cnd ( ∂γ̇ ∗
∂y∗ ) + γ̇ ∗. The curve fitting

parameters are computed to be a = 0.64, b = 1.16. It is seen that
all the data for various cases considered collapse onto a single curve
given by the fit for an instant of time.
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cycle. This approach provides a single average value of slip
length for each run. For runs with high time periods the
maximum shear rate is below its critical value. It is shown by
Thompson and Troian that for values below the critical shear
rate the slip length is constant. Hence, we obtain quantitatively
consistent results for high time periods, while for low time
periods the average value helps in capturing the trend.

In Fig. 4(a) it is seen that the slip length approaches
infinity as the wall oscillation frequency tends to infinity. This
implies that the wall is oscillating at such a high frequency
that no information can be passed on by the wall atoms to
the underlying fluid atoms, thereby giving a perfect slip. As
we increase the time period we observe that the slip length
decreases and approaches an asymptotic finite value which
corresponds to those shown by Thompson and Troian in the
steady state Couette flow problem [15].

As a second test case the nondimensionalized slip length
L∗

s , also mentioned as y, is plotted against x which is given
as [Cnd ( ∂γ̇ ∗

∂y∗ ) + γ̇ ∗]w, where x is a sum of the parameters that
influence unsteady slip as seen in Fig. 4(b). In this plot the data
considered correspond to an instant of time of maximum slip
velocity in the cycle. The instantaneous value of slip length
can be calculated from Eq. (26). The data for different cases of
wall-fluid properties and different wall velocities collapse onto
a single curve of the form y = a/xb. In Fig. 4(b) it is shown that
the curve can be described by the coefficients a = 0.6 and b =
1.0, given by the dashed line. The exact fitting coefficients to
our experimental data were calculated to be a = 0.64 and b =
1.16, given by the solid line which fairly matches the dashed
line. Hence, it is seen here that, similar to Thompson and
Troian, proper scaling leads to a time dependent but universal
curve (independent of the wall-fluid properties). This verifies
the scaling parameters used for nondimensionalizing the slip
model. The variation of nondimensional slip length is covered
in more detail in Sec. VI E.

B. Relevance of nondimensional number

In the nondimensional number Cnd ,
√

2νω is the phase
velocity of the propagating velocity profile in the y direction,
whereas c̄ is the speed of sound through the medium. The
ratio can be physically seen as the ratio of propagation of
momentum through the medium to the speed of propagation
of sound through the medium. The maximum speed at which
momentum can be transferred through a medium is at the speed
of sound. Hence, when the phase speed is of the order of the
speed of sound for the medium, the fluid will exhibit perfect
slip as the wall would not be able to transfer momentum on
to the fluid. The number can be used to determine when the
boundary condition would change to perfect slip from a finite
or no-slip condition.

C. Effects of acceleration on slip

In order to analyze the effect of acceleration on slip a wall-
fluid property is chosen which is shown to exhibit no slip at the
fluid-solid interface for steady flow by Thompson and Troian
[15]. This corresponds to case 1 in Table II. Wall oscillation
having an amplitude of 10σ and time period of 40τ is chosen
such that the shear rate is considerably below its critical value.
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FIG. 5. (Color online) Velocity profile obtained from simulation
with Stokes’ analytical solution for the no-slip boundary condition is
compared. The profile is for case 1 of wall-fluid properties and for an
instant of time equal to the time period of wall oscillation. A distinct
presence of slip at the wall is seen.

In Fig. 5, comparison of the velocity profile obtained from
simulation is made with Stokes’ analytical solution with the
no-slip boundary condition. This is done for an instantaneous
time t = 40τ for which distinct slip at the wall is observed.

1. Phase lag of fluid velocity due to wall acceleration

The presence of fluid slip at the wall indicates the existence
of a lag of fluid velocity with respect to the wall. This is
investigated by comparing fluid velocity for varying time
periods of wall oscillation with the wall velocity as shown
in Fig. 6. This is done to see the effects of acceleration on the
fluid velocity. The comparison is made for case 1 of wall-fluid
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FIG. 6. (Color online) Comparison of wall velocity and fluid
velocities at time periods 40τ and 200τ for a cycle of wall oscillation
having wall-fluid properties corresponding to case 1. Amplitudes of
10σ and 50σ corresponding to the time periods of 40τ and 200τ

are chosen in order to achieve the same amplitude of wall velocity
in both cases. An increase in wall-fluid phase lag and a decrease in
the amplitude of fluid velocity adjacent to the wall are observed by
decreasing time period.
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FIG. 7. (Color online) Velocities of wall and adjacent fluid in
one wall oscillation cycle. The wall oscillation has an amplitude of
10σ and time period 40τ . An increase in wall-fluid phase lag and a
decrease in the amplitude of fluid adjacent to the wall are observed
by increasing the wall-fluid hydrophobicity.

properties. The amplitude of wall oscillation is calculated such
that the amplitude of wall velocity remains constant. It is seen
that the phase lag reduces and the amplitude of fluid velocity
increases with increasing time period relative to the wall. An
increase in time period results in a decrease in fluid inertia.
Hence, it can be said that as we approach a steady state,
by increasing time period, we recover the no-slip boundary
condition for case 1, leading to the conclusion that inertia
affects the slip of fluid at the wall, thereby confirming the
general slip model derived in the previous section.

2. Phase lag of fluid velocity due to wall hydrophobicity

The variation of fluid velocity with time for different cases
mentioned in Table II is shown in Fig. 7. This is done for a fixed
time period of 40τ and wall amplitude of 10σ , the purpose
being to see how the fluid velocity behaves with varying
hydrophobicity. The fluid velocities lag with respect to the
wall velocity. There is an increase in phase lag with increasing
hydrophobicity. Also, a reduction in the amplitude of the fluid
velocity is noticed. The phase lag and amplitude reduction
are a result of the increase in slip. Matthews and Hill [25] in
their analytical solution using the Navier slip model also see
phase lag. Tang et al. [29] also observed similar phase lag of
fluid velocity for different Stokes numbers and TMAC in their
lattice Boltzmann simulation of oscillatory gas flows.

D. An explanation for the occurrence of slip

In this section a possible explanation for the occurrence
of slip at the wall and increase in slip seen in unsteady
flows as compared to steady flows is given. Increase in
hydrophobicity leads to an increase in slip at the wall,
which has been observed by several researchers for the
steady case [6–15]. Strictly speaking, the no-slip boundary
condition is only valid if the flow adjacent to a solid surface
is in thermodynamic equilibrium [25,26]. For fluid flow in
small-scale systems, the collision frequency is not high enough
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FIG. 8. (Color online) Variation of fluid density along the height
of fluid channel. Layering of fluid is observed close to the wall. The
red dashed line marks the reference plane 0.5σwf away from the wall
lattice site. The plot corresponds to case 1 with an amplitudes of 10σ

and 40τ . As the layering is symmetric about the x-z plane only the
top half is shown. The ordering is prevalent up to a distance of 5–6σ

from the reference plane with decreasing amplitude beyond which
the bulk density of the fluid is obtained.

to ensure thermodynamic equilibrium, thus a certain degree
of tangential velocity slip must be allowed [25]. Also, these
collisions should occur during a time interval smaller than
that of the smallest time scale for flow changes. Harris and
Rice calculated the relaxation time for liquid argon at 90 K
as 0.5τ , while for gaseous argon at 300 K to be of the order
of 100τ [42]. The relaxation time required for bulk liquid
argon is small in comparison to the time scale of molecular
collisions. However, as shown in Fig. 8, fluid layering is
observed close to the wall. This leads to the reduction of
liquid density and hence reduces the number of fluid atoms
interacting and undergoing momentum transfer with the wall
thereby increasing the required relaxation time [29]. Its also
been shown by Granick that the relaxation time is prolonged
for confined liquids [43]. Therefore, the fluid atoms adjacent
to the wall do not have sufficient time to equilibrate and the
transfer of momentum from the wall is only partial, therefore
resulting in slip.

E. Boundary condition for an unsteady flow

One of the main aims of the studies pertaining to slip length
is to find the boundary condition at the wall. As mentioned
in Sec.VI A, the instantaneous value of the nondimensional
slip length when plotted against the sum of shear rate and
its gradient collapse onto a single curve, thereby providing
a solution independent of wall-fluid properties similar to
Thompson and Troian’s result, the difference being that in
the unsteady case there is a separate curve for a given instant
in a cycle, as shown in Fig. 9. Here t = 0 corresponds to the
maximum slip velocity during a cycle in a run. This is done
in order to remove the phase shifts between different runs. It
is observed that the data at various instants can be described
by a curve of the form y = a/xb. With the knowledge of
shear rate, its gradient, and the instant in the cycle we can
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FIG. 9. (Color online) Data for different cases collapse onto a
single curve defined by y = a

xb , where y = L∗
s and x = Cnd ( ∂γ̇ ∗

∂y∗ ) +
γ̇ ∗ for a given instant in the cycle. Here the curves from the first
quarter and fourth quarter in the cycle are presented. The other two
quarters are symmetric to these. The fitting coefficients are mentioned
in Table III.

determine the slip length. This helps in eliminating the need
to perform extensive molecular dynamics simulations which
are computationally expensive. On closely observing the fitted
coefficients listed in Table III we see that the coefficients in
the first quarter of the wall oscillation cycle match closely
with those in the third quarter of the cycle and similarly the
second matches with the fourth. This shows the dependence
on whether the slip velocity is decreasing or increasing. Also
in a typical sinusoidal curve the time instants of 0.1T and
0.9T would give the same exact value of x, hence giving the
same value of slip length. But, we see that this is not the case
here in the unsteady problem, thereby hinting the presence of
hysteresis.

TABLE III. Fitting coefficients for collapsed data for various time
instants over a time period. The time t = 0 corresponds to time of
maximum slip velocity. This is done in order to remove the phase
shifts between different runs. From the coefficients it can be seen that
the first quarter coefficients match closely with the third quarter and
similarly the second with the fourth.

t/T a b

0 0.64 1.0
0.1 0.46 1.22
0.2 0.14 1.23
0.25 0.02 1.32
0.3 0.03 1.77
0.4 0.43 1.22
0.5 0.64 1.15
0.6 0.47 1.22
0.7 0.15 1.22
0.75 0.01 1.37
0.8 0.04 1.6
0.9 0.44 1.2

F. Hysteresis

The lagging of fluid velocity due to fluid inertia suggests
the presence of hysteresis and forms the motivation to explore
it in unsteady oscillating flows. In Fig. 10(a) the slip velocity
at the wall is plotted against the wall velocity, and in Fig. 10(b)
the change in slip velocity is plotted against the fluid shear rate.
Two different time periods of wall oscillation, 40τ and 200τ ,
are considered in each figure to study the effects of inertia
on hysteresis. A hysteresis loop is formed in both the figures,
and the area confined within the loop is seen to decrease with
increasing time period.

The effect of inertia in developing hysteresis as seen
in Fig. 10 is explained here. This could be described by
visualizing fluid layers in the vicinity of the wall during the
time when the wall is approaching an extreme location in the
cycle and then changing direction. As the wall approaches
the extreme point in the oscillation all the fluid atoms are
moving in the same direction as the wall. But, when the wall
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FIG. 10. (Color online) Slip velocity as a function of (a) wall
velocity and (b) fluid shear rate exhibiting hysteresis is shown. The
plots are for case 1 and amplitudes of 10σ and 50σ corresponding to
time periods of 40τ and 200τ were chosen in order to maintain the
same maximum wall velocity. All the curves are for a complete cycle
of oscillations. It is seen that the area confined by the hysteresis loop
decreases with increase in time period.
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changes its direction the fluid adjacent to the wall does not
change direction instantaneously as a result of inertia of fluid
atoms in this and the neighboring layers. This leads to a change
in the magnitude of fluid velocity, depending on the direction
of motion of the wall, although they are evaluated at the same
location of the wall in the cycle.

While there is a distinct loop observed in Fig. 10(a) at
a time period of 200τ the loop in Fig. 10(b) collapses into
a single curve. The area formed by slip velocity and wall
velocity has the dimensions of energy per unit mass, while
that formed by slip velocity and fluid shear rate has the
dimensions of acceleration. Hence, the area in Fig. 10(a) could
be possibly interpreted as the additional amount of energy
the wall needs to transfer to the fluid below it in order to
attain thermal equilibrium. This can be related to the lack of
thermal equilibrium of fluid atoms adjacent to the wall which
leads to slip. The area in Fig. 10(b) having the dimensions of
acceleration can be correlated to inertia in the fluid. As the time
period is increased from 40τ to 200τ we essentially reduce the
inertia in the flow thereby getting closer to steady state which
leads to the collapse of the loop.

The hysteresis here can be seen to be analogous to the com-
monly known magnetic hysteresis [44]. When a ferromagnetic
material is subjected to magnetic field the atomic dipole aligns
itself with the field but when the field is reduced to zero, partial
alignment is retained. In order to demagnetize it a field must be
applied in the opposite direction. This results in the difference
in the path taken by the two legs in the hysteresis loop.

G. Energy dissipation in shear-driven flows

Understanding of the energy dissipation in shear-driven
flows at small scales is important in designing some microsys-
tem components, such as microcomb drive mechanism [30].
The dissipation may also lead to changes in fluid temperature
which must be accounted for while performing experiments.
The heat generation is a result of the viscous shearing
of the fluid. As the temperature of fluid in the numerical
experiments presented in this paper are maintained constant
using a thermostat, the heat removed by the thermostat helps
in determining the viscous heat generated by the system.
In Fig. 11 the heat removed by the thermostat over time is
plotted for steady and unsteady cases. The cases compared
have identical wall-fluid properties and maximum velocity. It
can be seen that the unsteady flow similar to that of the Stokes’
second problem has a higher rate of energy dissipation than
the steady Couette flow. This is due to the fact that the shear
stress which is determined by the velocity gradient is higher
for unsteady flow because of the presence of bounded Stokes’
layers.

Our results from MD simulations performed on liquid argon
reaffirm those presented by Karniadakis et al. [30]. They com-
pare the shear stress and energy dissipation between simple
Couette shear flow and oscillatory Couette flow for gases. They
demonstrated that for flows beyond the quasisteady regime and
for low Knudsen number values there is a significant increase
in the magnitude of shear stress for oscillatory Couette flow
as compared to simple Couette flow, consequently leading to
increased energy dissipation. The increased energy dissipation
in oscillatory shear flow has also been mentioned by Alsten

0 100 200 300 400 500 600
0

1

2

3

4

5

time(units of τ )

cu
m

ul
at

iv
e

he
at

(u
ni

ts
of

) steady
unsteady

FIG. 11. (Color online) Cumulative heat removed by the thermo-
stat versus time, for steady and unsteady cases with constant velocity
amplitude of 1.57σ/τ . For the unsteady case the velocity is calculated
for the wall displacement amplitude of 10σ and wall time period of
40τ . The wall-fluid properties used correspond to case 1. The rate of
heat removed for the steady case is 0.002ε/τ and for the unsteady
case is 0.008ε/τ .

and Granick [34], who conducted experiments on ultrathin
liquid film.

VII. CONCLUSION

A series of numerical experiments with different wall-fluid
interaction properties and varying amplitudes and time periods
were performed for a time-periodic oscillatory Couette flow
problem. An increase in slip is observed as compared to the
steady Couette flow problem. This increased slip was attributed
to fluid inertial forces not represented in a steady flow. A case
having wall-fluid properties that showed no slip for Thompson
and Troian’s steady Couette flow experiment is chosen. For
this case when the fluid is subjected to an oscillatory flow a
distinct slip is observed which confirms the increase in slip
in an unsteady flow. To gain a deeper insight into the cause
of the increased slip an unsteady slip model is established
based on Maxwell’s slip boundary condition. The dependence
of slip on acceleration in addition to shear rate is shown.
By writing acceleration in terms of shear rate, it is shown
that slip at the wall depends on the gradient of shear rate
and the shear rate of fluid at the wall. For the limiting case
of steady flow the model reduces back to Maxwell’s model.
This provides a more accurate prediction of slip for unsteady
flow problem rather than simply using the steady Navier’s
or Maxwell’s slip model. Nondimensionalizing the model by
scaling the problem by the wall velocity and the characteristic
length of Stokes’ second problem leads to the collapse of
data onto a time dependent yet universal curve independent of
wall-fluid properties. Thereby with the knowledge of shear
rate of fluid and time instant in a cycle, slip length can
be calculated using the universal curve without having to
perform any computationally expensive MD simulations. A
key nondimensional number, defined as the ratio of phase
speed to speed of sound, helps in explaining and characterizing
the transition of slip boundary condition from finite to perfect
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slip is also identified from this nondimensionalization. Phase
lag in fluid velocity relative to wall is observed. The lag
increases with decreasing time period of wall oscillation and
increasing hydrophobicity.

Hysteresis is observed while comparing slip velocity with
wall velocity and shear rate. The cause for hysteresis can be
attributed to the inertia of fluid. It is seen that the area formed
by the loop decreases with increase in time period of wall
oscillation. For the case of slip velocity versus the shear rate
the loop collapses to a curve as the flow tends to a steady flow
at an increased time period. In the case of slip velocity versus
the wall velocity the area inside the hysteresis loop can be

related to the loss of energy transfer from the wall to the fluid.
For the loop formed by slip velocity and shear rate the area
can be said to be equivalent to inertia of the flow. The rate of
heat generated by viscous shear is compared for the unsteady
Stokes’ second problem and simple Couette flow and has been
shown that it is higher for the unsteady flow as a result of
higher shear stress in the flow.
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