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ON THE CONVERGENCE OF THE CONVECTIVELY FILTERED
BURGERS EQUATION TO THE ENTROPY SOLUTION OF THE

INVISCID BURGERS EQUATION∗

GREG NORGARD† AND KAMRAN MOHSENI‡

Abstract. This paper provides a proof that the solutions to the convectively filtered Burgers
equation will converge to the entropy solution of the inviscid Burgers equation when certain restric-
tions are put on the initial conditions. It does so by first establishing convergence to a weak solution
of the inviscid Burgers equation and then showing that the weak solution is the entropy solution.
Then the results are extended to encompass more general initial conditions.
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1. Introduction. Using a filtered velocity in fluid dynamics is not a new con-
cept. Filtered velocities have been used in turbulence modeling in large eddy sim-
ulation (LES) [1, 2, 3], Lagrangian averaged Navier–Stokes (LANS-α) [4, 5, 6, 7],
and Leray turbulence modeling [8, 9, 10]. Specifically in the LANS-α and Leray
approaches, a filtered velocity is used in the nonlinear term of the Navier–Stokes
equations. A form of the compressible Euler equations with a filtered velocity has
also been developed using the Lagrangian averaging [11]. In our earlier paper [12], it
was discussed that it should be possible to model both turbulence and shock forma-
tion using such a filtered velocity. This was motivated by realizing that turbulence
and shocks are both consequences of the nonlinear term and its resulting cascade of
energy into smaller scales. Thus it should be possible to capture both effects with
proper small scale modeling. It has been seen that some turbulent behavior has been
successfully modeled using a filtered velocity in the LANS-α and Leray approaches.
This paper, in conjunction with our previous paper [12], aims at showing that such a
technique can successfully model shock formation.

The investigation begins with the inviscid Burgers equation,

(1.1) ut + uux = 0.

The Burgers equation was chosen because it shares the same nonlinear term as the
Euler and Navier–Stokes equations. Additionally it is a conservation law, like the
Euler equations. It is known to form shocks, and it has been well studied.

It is well established that the inviscid Burgers equation forms discontinuities in
finite time, determined by initial conditions [13, 14]. To deal with these discontinu-
ities, weak solutions are introduced. However, when weak solutions are introduced,
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1812 GREG NORGARD AND KAMRAN MOHSENI

solutions are no longer necessarily unique [14, 15]. In order to choose the physically
relevant solution, an entropy condition is applied, which one and only one weak solu-
tion satisfies. This physically relevant solution is referred to as the entropy solution.
Lax, Oleinik, and Kruzkov have examined the entropy condition for conservation laws
and expressed it using different techniques [14, 15, 16]. Each of their entropy condi-
tions can be used in different classes of conservation laws, but all can be applied to
the inviscid Burgers equation with equivalent results [17]. This paper uses the Lax
entropy condition, which is explained in section 2.

Classically the inviscid Burgers equation is regularized by adding viscosity, re-
sulting in the equation

(1.2) ut + uux = νuxx.

This regularization has been proven to converge to the entropy solution of the inviscid
Burgers equation as ν → 0 [14, 15, 16].

This paper considers the equations

ut + ūux = 0,(1.3a)
ū = gα ∗ u,(1.3b)

u(x, 0) = u0(x),(1.3c)

where

(1.4) gα =
1
α

g
(x

α

)
,

where g is a chosen filter. These equations replace the convective velocity of the invis-
cid Burgers equation with a filtered velocity. Thus, (1.3a) and (1.3b) are referred to as
the convectively filtered Burgers (CFB) equation. While it has been proven that the
solutions to the CFB equations exist [12], previously it has only been proven that the
solutions for the Helmholtz filter converge to a weak solution of the inviscid Burgers
equation with attempts to show numerically convergence to the entropy solution [18].

This paper proves that for a specific set of initial conditions the solutions to the
CFB equations converge to the entropy solution of the inviscid Burgers equation.
Specifically we will look at bell shaped, continuously differentiable initial conditions,
rigorously defined in Definition 4.1. We then give a rationale and make a conjecture on
how the CFB equations will converge to the entropy solution for any continuous initial
conditions, and how to regain an entropy solution for discontinuous initial conditions.

The following section reviews established facts about the inviscid Burgers equation
and some of the recent work regarding the CFB equations. Section 3 proves that
solutions to the CFB equations converge to a weak solution of the inviscid Burgers
equation, and section 4 proves convergence to the entropy solution. Section 5 then
extends the results of section 4 and conjectures that they can be extended further.
Section 6 runs some numerical simulations and examines the results. Section 7 follows
with concluding remarks.

2. Background information on the Burgers equation and the CFB
equations. The Burgers equation has been thoroughly researched by many people
over the years. This section provides a review of some of the previously established
properties of the inviscid Burgers equation. Many of these will be used later on to
establish new results about the CFB equations. This section will also list some of the
previously established properties of the CFB equations, which are also crucial to the
analysis found in the following sections.
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CONVECTIVELY FILTERED BURGERS EQUATION 1813

2.1. Method of characteristics. The inviscid Burgers equation lends itself
well to examination with the method of characteristics. From Whitham [13], the
inviscid Burgers equation can be broken into two ODEs,

ut(ξ) = 0,(2.1)
∂

∂t
ξ = u(ξ).(2.2)

From this it is determined that along the characteristics

(2.3) ξ = x0 + u0(ξ)t,

u(x) is constant. Thus characteristics travel at the speed equal to the value of u along
those characteristics. This is true until characteristics cross, forming shocks. This is
equivalent to seeing that the material derivative is zero [19].

2.2. Weak solutions and entropy conditions. Lax [14] addresses weak so-
lutions and entropy solutions of conservation laws. From his work, much information
can be gained about the solutions to the inviscid Burgers equation.

The first thing we learn is that any weak solution to the inviscid Burgers equation
must satisfy the integral form of the conservation law, or

(2.4)
∫ h

g

u dx

∣∣∣∣∣
t2

t1

=
∫ t2

t1

−u2

2

∣∣∣∣h
g

dt,

which must hold for any g and h and every time interval (t1, t2). A consequence of
this are the Rankine–Hugoniot jump conditions. These dictate the speed at which
any discontinuity can propagate. If s is the position of a shock, then

(2.5)
d

dt
s(t) =

1
2
[
u(s−) + u(s+)

]
.

Lax also establishes the existence and uniqueness of a weak solution to the inviscid
Burgers equation which satisfies the so-called entropy condition

(2.6) u(s−) > u(s+),

where s is the location of a discontinuity. Thus the only discontinuities that are
allowed to exist in this “entropy solution” are decreasing jumps.

Lax also states that for solutions satisfying the entropy condition, “every point
can be connected by a backward drawn characteristic to a point on the initial line.”
Thus any value of the entropy solution, u(x, t), can be traced back to the initial
conditions. For discontinuous initial conditions, points traced back to the point of
discontinuity can take on values between the left and right limits of the discontinuity,
as is shown in subsection 5.1. For continuous initial conditions the entropy solution
can be written as u(x, t) = u0(φ(x, t)), where φ(x, t) is an increasing function of x for
any time, and φ(x, 0) = x.

Here we will define what will be referred to in this paper as a reparameterization
of a function.

Definition 2.1. If φ(x, t) is an increasing function of x for any time, and
φ(x, 0) = x, the function f(φ(x, t)) will be called a reparameterization of the func-
tion f .
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1814 GREG NORGARD AND KAMRAN MOHSENI

It is clear that at any time t, a reparameterization of the function f cannot obtain
values that are not obtained by f . It can, however, lack values that are found in f ,
as it was not dictated that φ be onto for all time. Looking back to the previous
paragraph we can see that for continuous initial conditions, the entropy solution to
the inviscid Burgers equation will be a reparameterization of the initial conditions.

2.3. Properties of the CFB equations. From previous work by our group
[20, 21, 22, 12] the following theorem is established. It is presented here in its one-
dimensional form.

Theorem 2.2. Let g(x) ∈ W 1,1(R) and u0(x) ∈ C1(R); then there exists a
unique global solution u(x, t) ∈ C1(R, R) to the following initial value problem:

ut + ūux = 0,(2.7a)
ū = g ∗ u,(2.7b)

u(x, 0) = u0(x).(2.7c)

A sketch of the proof of the theorem is as follows. Examine the equations using
the method of characteristics. Due to the nature of the equations, the infinity norm of
u will be bounded for all time. By Young’s inequality, ||ūx||∞ can thus be bounded for
all time. The characteristics of the equations will not cross if their Jacobian remains
nonzero. The rate of change of the Jacobian can be directly related to ūx by

(2.8)
∂

∂t
J = ūx J.

Since ||ūx||∞ remains bounded, the Jacobian will remain nonzero, the characteristics
will not cross, and a unique solution will exist for any finite time.

In the course of proving the theorem, it was established that the solution take
the form u(x, t) = u0(φ(x, t)), where φ(x, t) is a continuous, invertible, and increasing
function of x for any time, and φ(x, 0) = x. Thus the solution is a reparameterization
of its initial conditions.

3. Weak solution. Regularizations of conservation laws do not necessarily have
to converge to weak solutions of those conservation laws. Take, for example, the
Korteweg–de Vries (KdV) equations,

(3.1) ut + u ux = −εuxxx.

This regularizes the inviscid Burgers equation in the sense that solutions are now
continuous; however, many oscillations form as ε → 0, requiring a weak limit for
convergence [23, 24]. This limit is not a weak solution of the inviscid Burgers equa-
tion [25], and thus is definitely not the entropy solution.

Thus the first step to proving convergence to the entropy solution is to prove
convergence to a weak solution. The following subsections prove this by showing that
a subsequence of the solutions to the CFB equations must converge to a function in
L1

loc. It is then shown that this function is, in fact, a weak solution to the inviscid
Burgers equation.

3.1. Convergence of solutions. In this subsection we show that the solutions
of the CFB equations (uα) converge to a function u. This subsection mirrors work
done by Bhat and Fetecau [18]. We begin by claiming the following properties of the
solutions uα.
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Lemma 3.1. The solutions to the initial value problem (1.3) have the following
properties:

||uα(·, t)||L∞ = ||uα(·, 0)||L∞ = ||u0||L∞ = A1,(3.2)
TV (uα(·, t)) = TV (uα(·, 0)) = TV (u0(·)) = A2,(3.3) ∫

R

|uα(x, t) − uα(x, s)| dx ≤ A3|t − s|,(3.4)

where A1, A2, and A3 are independent of α, and TV (f(·)) can be defined for a smooth
function f as

(3.5) TV (f(·)) =
∫

R

|f ′(x)| dx.

Proof. Property (3.2) is verified by the existence proof in earlier papers [21, 22, 12]
that ||uα(·, t)||L∞ = ||uα(·, 0)||L∞ .

To verify property (3.3), take the derivative of (1.3a), multiply by sign(ux), and
integrate over the real line to obtain

(3.6)
∂

∂t

∫
|ux| dx +

∫
sign(ux)(ūux)x dx = 0.

Break the second term into intervals where sign(ux) remains constant. ux and ū
are continuous due to previous existence theorems, so at the locations that sign(ux)
switches signs, the value of ux will be 0. Thus the second term is zero and we obtain
the result

(3.7) ||ux(·, t)||L1 = ||ux(·, 0)||L1 ,

and thus property (3.3) is established.
Property (3.4) can be proved by the following estimate:∫

R

|uα(x, t) − uα(x, s)| dx ≤
∫

R

∫ t

s

|uα
t | dt dx

=
∫

R

∫ t

s

|ūαuα
x | dt dx

=
∫ t

s

∫
R

|ūαuα
x | dx dt

≤ ||ūα||L∞

∫ t

s

||uα
x ||L1 dt

≤ A1A2|t − s|.
From Bressan [26] and Serre [27] we know that properties (3.2), (3.3), and (3.4)

are enough to guarantee that a subsequence of uα converges to a function u in L1
loc.

Furthermore, u shares the same infinity norm bound as that established in (3.2), and
it shares the same total variation bound as that in (3.3).

3.2. Convergence to a weak solution. To begin we look at a specific subset
of filters. The filters we examine are the functions whose Fourier transforms can be
written as

ĝ(k) =
1

1 +
∑n

j=1 Cjk2j
with n < ∞, Cj ≥ 0, Cn �= 0.
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Noting that ĝû = ˆ̄u, we can see that

û =

(
1 +

n∑
j=1

Cjk
2j

)
ˆ̄u

and

u =

(
1 +

n∑
j=0

(−1)iCj
∂2j

∂x2j

)
ū.

We will refer to a filter of this form as satisfying condition A. This class of filters
includes the Helmholtz filter, which has been of previous interest in turbulence mod-
eling.

Clearly g(x) and its derivatives up to g(2n−2)(x) are well defined and bounded as
(ik)2n−2

1+
∑n

j=1 Cjk2j is absolutely integrable.
If u and its derivative ux are absolutely integrable, then for a g satisfying condi-

tion A, the convolution

∂j

∂xj
ū =

∂j−1

∂xj−1
gα ∗ ux

is well defined. Furthermore, by Young’s inequality,∣∣∣∣
∣∣∣∣ ∂j

∂xj
ū

∣∣∣∣
∣∣∣∣
∞

≤
∣∣∣∣
∣∣∣∣ ∂j−1

∂xj−1
gα

∣∣∣∣
∣∣∣∣
∞

||ux||1 =
1
αj

∣∣∣∣∣∣g(j−1)
∣∣∣∣∣∣
∞

||ux||1 .

Thus there exists a constant A4 such that∣∣∣∣
∣∣∣∣ ∂j

∂xj
ū

∣∣∣∣
∣∣∣∣
∞

<
1
αj

A4 for j ≤ 2n − 1.

These criteria are used in the following lemma.
Lemma 3.2. Let uα be a sequence of functions that satisfy the following condi-

tions:

uα, ūα < A1,(3.8a) ∫
|uα

x | dx,

∫
|ūα

x | dx < A2,(3.8b) ∣∣∣∣
∣∣∣∣ ∂j

∂xj
ūα

∣∣∣∣
∣∣∣∣
∞

<
1
αj

A4 for j ≤ 2n − 1.(3.8c)

Let f ∈ C∞ be compactly supported on R. Then as α → 0, the quantity

(3.9) α2n

∫ ∞

−∞

(
∂2n

∂x2n
ūα

)
ūα

xf dx

limits to 0.
Proof. For convenience the uα shall be denoted u. Integrate (3.9) by parts to

obtain

(3.10) α2n

∫
ū(2n) ūxf dx = α2n

∫
ū(n) ∂n

∂xn
(ūxf) dx.
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Use the product rule to expand
(

∂n

∂xn ūxf
)
:

(3.11) α2n

∫
ū(n)

n∑
i=0

(
n

i

)
ū(1+i)f (n−i) dx.

Take the absolute value, separate the last two terms of the binomial expansion,
and apply the triangle inequality:

≤
∣∣∣∣α2n

∫
ū(n)ū(n+1)f dx

∣∣∣∣(3.12)

+
∣∣∣∣α2nn

∫
ū(n)ū(n)f (1) dx

∣∣∣∣(3.13)

+

∣∣∣∣∣α2n

∫
ū(n)

n−2∑
i=0

(
n

i

)
ū(1+i)f (n−i) dx

∣∣∣∣∣ .(3.14)

Begin by bounding the third term,

∣∣∣∣∣α2n

∫
ū(n)

n−2∑
i=0

(
n

i

)
ū(1+i)f (n−i) dx

∣∣∣∣∣︸ ︷︷ ︸
3rd term

≤ α2n
n−2∑
i=0

(
n

i

)
||ū(n)||∞||ū(1+i)||∞||f (n−i)||1.

(3.15)

By applying the bound on ||ū(i)||∞,

(3.16) 3rd term ≤
n−2∑
i=0

(
n

i

)
αn−i−1A4||f (n−i)||1,

which limits to 0 as α → 0.
Next, deal with the second term:∣∣∣∣α2nn

∫
ū(n)ū(n)f (1) dx

∣∣∣∣︸ ︷︷ ︸
2nd term

(3.17)

=
∣∣∣∣α2nn

∫
ū(1) ∂n−1

∂xn−1
(ū(n)f (1)) dx

∣∣∣∣(3.18)

=

∣∣∣∣∣α2nn

∫
ū(1)

n−1∑
i=0

(
n − 1

i

)
(ū(n+i)f (n−i)) dx

∣∣∣∣∣(3.19)

≤ α2nn

n−1∑
i=0

(
n − 1

i

)
||ū(1)||1||ū(n+i)||∞||f (n−i)||∞.(3.20)

Again, apply the bound on ||ū(i)||∞ to get

(3.21) 2nd term ≤ n

n−1∑
i=0

αn−i

(
n − 1

i

)
A4||ū(1)||1||f (n−i)||∞.

Since f and all its derivatives are bounded and ||ū(1)||1 < A2, the second term also
limits to zero.
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Now we show the first term:∣∣∣∣α2n

∫
ū(n)ū(n+1)f dx

∣∣∣∣ =
∣∣∣∣α2n

∫
1
2

∂

∂x
(ū(n))2f dx

∣∣∣∣(3.22)

=
∣∣∣∣α2n

2

∫
ū(n)ū(n)f (1) dx

∣∣∣∣ .(3.23)

This differs from the second term only by a constant, so it must limit to 0 as
α → 0.

Thus we obtain the result

(3.24) lim
α→0

α2n

∫ ∞

−∞

(
∂2n

∂x2n
ū

)
ūxf dx = 0.

The last piece needed is taken from Duoandikoetxea [28]. The following lemma
is a restatement of Duoandikoetxea’s Theorem 2.1 from [28, page 25].

Lemma 3.3. Let g be an integrable function on R such that
∫

g = 1. Define
gα = 1

αg( x
α ). Then

lim
α→0

||gα ∗ f − f ||p = 0

if f ∈ Lp, 1 ≤ p < ∞, and uniformly (i.e., when p = ∞) if f ∈ C0(R).
With Lemmas 3.3 and 3.2 we can now prove the following theorem regarding

convergence to weak solutions.
Theorem 3.4. For any g satisfying condition A, the solutions uα to the CFB

equations converge to a weak solution of the inviscid Burgers equation.
Proof. It was already shown that uα converges to a function u. To show this is

a weak solution of the inviscid Burgers equation, we need to prove that for any test
function f ∈ C∞ that has compact support on R × [0, T ] that

(3.25)
∫ T

0

∫
R

uft +
1
2
u2fx dx dt = 0.

Begin by rewriting (1.3a) as

(3.26) uα
t +

(
1
2
(ūα)2

)
x

= (ūα
x − uα

x)ūα.

Multiply by the test function f and integrate over R × [0, T ],

(3.27)
∫ T

0

∫
R

uα
t f +

(
1
2
(ūα)2

)
x

f dx dt =
∫ T

0

∫
R

(ūα
x − uα

x)ūαf dx dt.

Integrate by parts,∫ T

0

∫
R

uαft +
(

1
2
(ūα)2

)
fx dx dt =

∫ T

0

∫
R

(ūα − uα)ūαfx dx dt

+
∫ T

0

∫
R

(ūα − uα)ūα
xf dx dt.(3.28)

Taking the limit as α → 0 of the left-hand side, we obtain∫ T

0

∫
R

uft +
(

1
2
(u)2

)
fx dx dt.
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Clearly, if the right-hand side limits to zero, then we have that u is a weak solution
to the Burgers equation.

Begin with the first term on the right-hand side of (3.28). The first term can be
shown to limit to zero by noting that ||uα||∞ has a uniform bound of A1, and that
since f ∈ C∞ with compact support, there exists an F ∈ R

+ such that ||f ||∞ ≤ F
and ||fx||∞ ≤ F . Additionally let f be supported on the compact set Ω. This leads
to the bound

(3.29)
∫ T

0

∫
R

(uα − ūα)uαfx dx dt ≤ F A1 T ||uα − ūα||L1(Ω).

Take the limit of ||uα − ūα||L1(Ω). Break apart the norm with the triangle in-
equality to get

lim
α→0

||uα − uα ∗ gα|| ≤ lim
α→0

||uα − u|| + ||u − u ∗ gα|| + ||gα ∗ (u − uα)||
≤ lim

α→0
||uα − u|| + ||u − u ∗ gα|| + ||gα|| ||u − uα||,

where the norms are all || · ||L1(Ω). The first and third terms limit to zero as uα

converges to u in L1
loc. The second term limits to zero by Lemma 3.3.

Now deal with the second term from (3.28). Since g satisfies condition A,

(ūα − uα) =
n∑

j=1

Ciα
2j ∂2j

∂x2j
ūα,

the second term can be rewritten as
n∑

j=1

Ci

∫ T

0

∫
R

α2j ∂2j

∂x2j
ūαūα

xf dx dt.

By Lemma 3.2 every term in the sum limits to zero. Hence the sum limits to
zero.

Therefore the limit as α → 0 of (3.28) becomes

(3.30)
∫ T

0

∫
R

uft +
1
2
u2fx dx dt = 0,

proving u is a weak solution of the inviscid Burgers equation.

4. Convergence to the entropy solution. In this section we will first examine
some of the properties of nonentropic solutions, that is, solutions that are a weak
solution to the inviscid Burgers equation but do not satisfy the entropy condition. By
examining these properties, it will be shown that the solutions to the CFB equation
lack certain properties found in all nonentropic solutions. Thus it will be shown that
the solutions to the CFB equations converge to the entropy solution of the inviscid
Burgers equation.

This examination will be limited to a class of initial conditions. Specifically,
we intend to examine initial conditions that are continuously differentiable and are
bell shaped, i.e., have an interval where the functions are increasing, followed by an
interval where the functions are decreasing. Functions that satisfy this condition will
be referred to as satisfying condition B. It is for these functions as initial conditions
that we will prove convergence to the entropy solution.

Definition 4.1. Let u(x) ∈ C1(R) and ux ≥ 0 over (−∞, p) and ux ≤ 0 over
(p,−∞) for some p. Additionally let u(x) have finite limits as x → ±∞. Then u(x)
is said to have satisfied condition B.
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(a) (b)

Fig. 4.1. Here a discontinuity is introduced in the initial conditions and remains. The shock
must travel at the speed dictated by the Rankine–Hugoniot jump conditions to be a weak solution.

4.1. Nonentropic weak solutions. There are three classic types of entropy vi-
olating weak solutions to the inviscid Burgers equation. This subsection shows exam-
ples of each type. The first starts with an increasing shock in the initial conditions, and
then that shock remains, propagating at the speed dictated by the Rankine–Hugoniot
jump conditions. An example of this is

u(x, t) =

{
0 if x < 1

2 t,

1 if 1
2 t ≤ x,

taken from Lax [14] and illustrated in Figure 4.1.
The second case is when a shock already exists and then splits into multiple

shocks, one of which is an entropy violating shock. All the shocks move with the
speed dictated by the Rankine–Hugoniot conditions. For a ≥ 1 the following is a
weak solution to the Burgers equation. This example was taken from Oleinik [15] and
is illustrated in Figure 4.2:

u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x < 1−a
2 t,

−a if 1−a
2 t ≤ x < 0,

a if 0 ≤ x < a−1
2 t,

−1 if a−1
2 t ≤ x.

Another example is spontaneous shock formation with shocks forming out of a
continuous interval. For a > 0 the following is a weak solution to the Burgers equation.
This example was taken from Serre [27] and is illustrated in Figure 4.3:

u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x < −a
2 t,

−a if −a
2 t ≤ x < 0,

a if 0 ≤ x < a
2 t,

0 if a
2 t ≤ x.

In the next subsection it is shown that these three cases exemplify the only type
of entropy violating behavior possible.
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(a) (b)

Fig. 4.2. A shock can split into multiple shocks and still remain a weak solution. (a) The initial
conditions. (b) The solution after the shock splitting has occurred.

(a) (b)

Fig. 4.3. A shock can form from a continuous interval. (a) The initial conditions. (b) The
solution after spontaneous shock formation has occurred.

4.2. Decreasing slope along characteristics. By examining the inviscid
Burgers equation, it is possible to see that a nonentropic solution cannot form through
the steepening of the solution. With this information we can then limit the ways a
nonentropic solution can form. Begin with the inviscid Burgers equation,

(4.1) ut + uux = 0.

In section 2 it was seen that along the characteristics,

(4.2) ξ = x0 + u0(ξ)t,

the value of u remains constant. This is true until characteristics cross, at which point
a shock is formed.

Here a similar approach is taken, but on the derivative of the inviscid Burgers
equation. Differentiate the inviscid Burgers equation to get

(4.3)
d

dt
(ux) + u

d

dx
(ux) = −(ux)2.
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Now if we examine this equation, we find that along the same characteristics
ξ = x0 + u0(ξ)t the quantity ux is governed by

(4.4)
d

dt
ux = −(ux)2.

Thus for piecewise differentiable solutions, ux is always decreasing along characteris-
tics and an increasing shock cannot form from the steepening of the solution.

Now consider a solution that begins with initial conditions satisfying condition B.
That solution is a continuously differentiable solution to the inviscid Burgers equation
and is thus an entropy solution. It will remain an entropy solution until an increasing
jump is formed. An entropy solution for initial conditions satisfying condition B
will be piecewise continuous, and thus from above will not steepen into an increasing
shock. From this we conclude that an increasing shock can occur only if it exists in the
initial conditions or must form instantaneously as it cannot form from the steepening
of the solution. It can either form at existing points of discontinuity or form at points
of continuity, which this paper refers to as shock splitting and spontaneous shock
formation, respectively.

4.3. Entropy violating solutions are not reparameterizations of initial
conditions. In section 2 it was established that the entropy solution of the inviscid
Burgers equation is a reparameterization of initial conditions when the initial condi-
tions are continuous. This subsection shows that a nonentropic solution cannot be
both a weak solution and a reparameterization of initial conditions satisfying condi-
tion B.

We first begin be examining some consequences of being both a weak solution and
a reparameterization of initial conditions satisfying condition B. Then we assume that
there is a nonentropic solution that is both a weak solution and a reparameterization
and show that this is a contradiction.

If a function is a reparameterization of initial conditions satisfying condition B, it
is easy to see that the reparameterization will have one interval, where it is increasing,
followed by an interval where it is decreasing. It is also clearly bounded. However, it
need not be continuous. As a direct consequence of the monotone convergence theorem
for sequences, every point on the reparameterization will have a well-defined left- and
right-sided limit. Since the left- and right-sided limits are well defined, the only type
of discontinuity allowed is a jump discontinuity. If a more rigorous explanation is
desired, we refer the reader to section 5.7 in Davidson and Donsig [29].

Additionally any function satisfying condition B will have bounded variation.
Thus any function that is a reparameterization will have variation bounded by the
original function’s variation. Thus if a solution is a reparameterization of initial
conditions satisfying condition B, then it is of bounded variation.

From Theorem 1.8.1 on pages 21 and 52 in Dafermos [30] we know that a function
u that is of class BVloc and is a weak solution will satisfy the Rankine–Hugoniot jump
conditions at every jump discontinuity. This means that if χ is the location of a
discontinuity, then

(4.5)
d

dt
χ =

u(χ−, t) + u(χ+, t)
2

.

Thus if the solution is a weak solution and a reparameterization of initial conditions
satisfying condition B, all of its discontinuities must be jump discontinuities satisfying
the Rankine–Hugoniot jump conditions.
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(a) (b)

Fig. 4.4. Wavemass is created in shock splitting or spontaneous shock formation if the middle
area is greater than the outer area’s values at the shocks. (a) The conditions of u(x, t) before shock
splitting. (b) The extra wavemass created when a shock splits and the middle area has higher values
than its surroundings. Here χl and χr are the left- and rightmost shocks as used in Lemma 4.2.
The extra wavemass is indicated.

To show that a function is not a reparameterization of initial conditions satisfying
condition B, it is sufficient to find three points x1 < x2 < x3 such that u(x1) > u(x2)
and u(x2) < u(x3). Essentially a function satisfying condition B is bell shaped,
and finding these three points finds an upsidedown bell, which cannot happen in a
reparameterization. This is precisely the method used to show that a nonentropic
solution cannot be a reparameterization of the initial conditions.

Since we are considering only initial conditions satisfying condition B, we are
beginning only with continuous initial conditions. Thus from subsection 4.2 the only
possibility of having a nonentropic solution is through either spontaneous shock for-
mation or shock splitting. It will be shown that if either of these occurs, then the
nonentropic solution fails to be a reparameterization of the initial conditions.

Lemma 4.2 following is used later on when dealing with spontaneous shock forma-
tion and shock splitting. Because a nonentropic solution must still be a weak solution,
spontaneous shock formation and shock splitting must behave in certain ways. The
inviscid Burgers equation can be considered as a conservation law of wavemass,

∫
u.

Lemma 4.2 uses this fact to place restrictions on how spontaneous shock formation
and shock splitting can occur.

Lemma 4.2 addresses the area between the leftmost and the rightmost shock,
when spontaneous shock formation or shock splitting occurs. Essentially it says that
if the area between the shocks has a higher value than the value on the outside of the
shocks, then wavemass has been created, and it is no longer a weak solution to the
inviscid Burgers equation. Figure 4.4 shows an illustration of this.

The lemma proves that if the area between the leftmost and rightmost shock has
values greater than those on its borders, then u(x, t) cannot be a weak solution of
the inviscid Burgers equation and a reparameterization of initial conditions. This is a
proof by contradiction, so we assume that u(x, t) is a weak solution and a reparame-
terization of initial conditions satisfying condition B, which places several constraints
on u(x, t). Such a weak solution to the inviscid Burgers equation must satisfy the
Rankine–Hugoniot jump conditions (4.5).

Additionally, weak solutions must satisfy the integral form of the conservation
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law,

(4.6)
∫ h

g

u dx

∣∣∣∣∣
t2

t1

=
∫ t2

t1

−u2

2

∣∣∣∣h
g

dt,

or if g and h are moving boundaries, then

(4.7)
∫ h(t)

g(t)

u dx

∣∣∣∣∣
t2

t1

=
∫ t2

t1

−u2

2

∣∣∣∣h(t)

g(t)

+
(

d

dt
h(t)

)
u(h(t), t) −

(
d

dt
g(t)

)
u(g(t), t) dt.

The second definition, equation (4.7), is used in the following lemma.
Lemma 4.2. Assume that u(x, t) takes the form

(4.8) u(x, t) =

⎧⎪⎨
⎪⎩

a(x, t) if x < χl(t),
b(x, t) if χl(t) ≤ x < χr(t),
c(x, t) if χr(t) ≤ x,

where χl(t) and χr(t) are locations of discontinuities and χl(t1) = χr(t1) = x∗. At
time t1 let a(x∗−, t1) ≥ c(x∗+, t1). If for some period of time after t1 and all x ∈
(χl, χr), b(x, t) > a(χl(t)−, t) and b(x, t) > c(χr(t)+, t), then u(x, t) cannot be a weak
solution of the inviscid Burgers equation.

Proof. Begin by assuming that u(x, t) is a weak solution of the inviscid Burgers
equation and thus must satisfy (4.7) for any g(t) and h(t). We will start by considering
the left-hand side of (4.7) with selected moving boundaries and show that it is strictly
greater than the right-hand side, proving that u(x, t) cannot be a weak solution by
contradiction. The moving boundaries will be defined by the positions of the leftmost
and rightmost shocks.

With the moving boundaries established, begin with the left-hand side of (4.7)
for the given boundaries. By putting a bound on the integrand, we transform the
spatial integral into a temporal integral:

∫ χr(t)

χl(t)

u dx

∣∣∣∣∣
t2

t1︸ ︷︷ ︸
LHS

≥ min
x∈(χlχr)

b(x, t2) (χr − χl)(4.9)

= min
x∈(χlχr)

b(x, t2)
∫ t2

t1

∂

∂t
χr − ∂

∂t
χl dt.(4.10)

Now manipulate the equation to begin resembling the right-hand side of (4.7):

LHS ≥
∫ t2

t1

min
x∈(χlχr)

b(x, t2)
(

∂

∂t
χr − ∂

∂t
χl

)
dt

=
∫ t2

t1

(
min

x∈(χlχr)
b(x, t2) − c(χr, t)

)(
∂

∂t
χr − ∂

∂t
χl

)

+ (a(χl, t) − c(χr, t))
∂

∂t
χl

+ c(χr, t)
∂

∂t
χr − a(χl, t)

∂

∂t
χl dt.
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Use (4.15) to substitute in the speed of χl dictated by the Rankine–Hugoniot jump
conditions:

LHS ≥
∫ t2

t1

(
min

x∈(χlχr)
b(x, t2) − c(χr, t)

)(
∂

∂t
χr − ∂

∂t
χl

)

+ (a(χl, t) − c(χr, t))
(

b(χl, t) + a(χl, t)
2

)

+ c(χr, t)
∂

∂t
χr − a(χl, t)

∂

∂t
χl dt

=
∫ t2

t1

(
min

x∈(χlχr)
b(x, t2) − c(χr, t)

)(
∂

∂t
χr − ∂

∂t
χl

)
︸ ︷︷ ︸

L

+ (a(χl, t) − c(χr, t))
(

b(χl, t) − c(χr, t)
2

)
︸ ︷︷ ︸

M

+ (a(χl, t) − c(χr, t))
(

c(χr, t) + a(χl, t)
2

)
+ c(χr, t)

∂

∂t
χr − a(χl, t)

∂

∂t
χl dt.

Consider term L. The value of b(x, t) for all x and some period of time after t1 was
designated to be higher than c(χr, t). Additionally, for at least a short period of time,
∂
∂tχr > ∂

∂tχl; otherwise the interval (χl, χr) cannot have a nonzero measure. Thus for
values t2 close to t1, term L is strictly positive.

Now consider term M. Again the value of b(x, t) for all x and some period of time
after t1 was designated to be higher than c(χr, t). It was designated that at time t1,
a(x∗−, t1) ≥ c(x∗+, t1). If a(x∗−, t1) > c(x∗+, t1), then for values t2 close to t1 term M
is strictly positive. If a(x∗−, t1) = c(x∗+, t1), then by choosing t2 close to t1, term M
can be made arbitrarily small.

As t2 approaches t1, term L is approaching a strictly positive number, and term M
is approaching a nonnegative number. Thus it is possible to choose a t2 where∫ t2

t1
L + M dt > 0. Using this we see that

(4.11) LHS >

∫ t2

t1

a(χl, t)2 − c(χr, t)2

2
+ c(χr, t)

∂

∂t
χr − a(χl, t)

∂

∂t
χl dt.

The right-hand side of (4.11) is the right-hand side of (4.7) with our chosen boundaries.
Since with our moving boundaries the left-hand side of (4.7) is strictly greater than
the right-hand side, u(x, t) cannot be a weak solution.

This result is now used to show that if there is spontaneous shock formation or
shock splitting, then u(x, t) cannot be both a weak solution and a reparameterization
of initial conditions.

4.3.1. Spontaneous shock formation. Assume that u(x, t) is the entropy so-
lution to the inviscid Burgers equation up to time t1 where an increasing shock is
formed spontaneously at point x∗. For such a discontinuity to form at least one other
discontinuity must form in response. Thus we say after time t1,

(4.12) u(x, t) =

⎧⎪⎨
⎪⎩

a(x, t) if x < χl(t),
b(x, t) if χl(t) ≤ x < χr(t),
c(x, t) if χr(t) ≤ x,
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Fig. 4.5. With two decreasing shocks, u(x, t) cannot be a reparameterization. The circles
represent the points chosen to prove that u(x, t) cannot be a reparameterization of initial conditions.

where a(x, t), b(x, t), and c(x, t) are weak solutions to the inviscid Burgers equation,
and χl(t) and χr(t) give the position of the leftmost and rightmost discontinuities
formed during the shock splitting. There may be more than two shocks formed, as
seen in subsection 4.1, but we need to examine just the leftmost and rightmost.

For u(x, t) to be a weak solution we note that several things must be true. The
speed of χl(t) and χr(t) is dictated by the Rankine–Hugoniot jump conditions to be

(4.13)
d

dt
χl =

a(χ−
l ) + b(χ+

l )
2

,
d

dt
χr =

b(χ−
r ) + c(χ+

r )
2

.

For there to be spontaneous shock forming, there must be some interval (t1, t2), where
d
dtχr > d

dtχl. Thus for some interval (t1, t2), if a(χ−
l ) ≥ c(χ+

r ), then b(χl(t)+, t) <
b(χr(t)−, t). Assume that t ∈ (t1, t2) for the remainder of the subsection.

The shocks located at χl(t) and χr(t) must be either increasing or decreasing
shocks. We will examine each of the possibilities and show that each leads to u(x, t)
not being a reparameterization of the initial conditions.

Case 1. Assume that the shock at χl(t) is a decreasing shock and the shock
at χr(t) is a decreasing shock. Then a(χl(t)−, t) > b(χl(t)+, t) and b(χr(t)−, t) >
c(χr(t)+, t). If b(χl(t)+, t) ≥ b(χr(t)−, t), then by the transitive property a(χl(t)−, t)
> c(χr(t)+, t) and this violates the Rankine–Hugoniot condition, as was mentioned
above, and u(x, t) is not a weak solution. If b(χl(t)+, t) < b(χr(t)−, t), then a(χl(t)−, t)
> b(χl(t)+, t) < b(χr(t)−, t) shows u(x, t) is not a reparameterization of initial condi-
tions. See Figure 4.5.

Case 2. Assume that the shock at χl(t) is a decreasing shock and the shock
at χr(t) is an increasing shock. Then a(χl(t)−, t) > b(χl(t)+, t) and b(χr(t)−, t) <
c(χr(t)+, t). Let b2 = min (b(χl(t)+, t), b(χr(t)−, t)); then a(χl(t)−, t) > b2 < c(χr(t)+, t)
shows u(x, t) is not a reparameterization of initial conditions. See Figure 4.6.

Case 3. Assume that the shock at χl(t) is an increasing shock and that the
shock at χr(t) is an increasing shock. Since a(χl(t1)−, t1) = c(χr(t1)−, t1), for at
least a short period of time after t1, the left value of b(x, t) will be greater than
a(χl(t), t) and c(χl(t), t), and the right value of b(x, t) will be less than a(χl(t), t) and
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Fig. 4.6. With a decreasing and an increasing shock, u(x, t) cannot be a reparameterization.
The circles represent the points chosen to prove that u(x, t) cannot be a reparameterization of initial
conditions.

Fig. 4.7. With two increasing shocks, u(x, t) cannot be a reparameterization. The circles
represent the points chosen to prove that u(x, t) cannot be a reparameterization of initial conditions.

c(χl(t), t). By choosing the points b(χl(t)+, t) > b(χr(t)−, t) < c(χr(t)+, t), u(x, t) is
not a reparameterization of the initial conditions. See Figure 4.7.

Case 4. Assume that the shock at χl(t) is an increasing shock and that the shock
at χr(t) is a decreasing shock. This case will be divided into two subcases. The first
is that for all x ∈ (χl(t), χr(t)), b(x, t) > a(χl(t)−, t) and b(x, t) > c(χr(t)+, t). If this
is the case, then u(x, t) is proven to not be a weak solution by Lemma 4.2.

The second case is that there exists an x1 ∈ (χl(t), χr(t)) such that b(x1, t) ≤
a(χl(t)−, t) or b(x1, t) ≤ c(χr(t)−, t). Since χl(t) is an increasing shock and χr(t)
is a decreasing shock, and a(χl(t1)−, t1) = c(χr(t1)−, t1), for at least a short period
of time after t1, the left and right values of b(x, t) will be greater than a(χl(t), t)
and c(χl(t), t). Thus if b(x1, t) ≤ a(χl(t)−, t) or b(x1, t) ≤ c(χr(t)−, t), the points



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1828 GREG NORGARD AND KAMRAN MOHSENI

Fig. 4.8. With a decreasing and an increasing shock, u(x, t) cannot be a reparameterization.
The circles represent the points chosen to prove that u(x, t) cannot be a reparameterization of initial
conditions.

b(χl(t)+, t) > b(x1, t) < b(χr(t)+, t) show that u(x, t) is not a reparameterization of
initial conditions. See Figure 4.8.

Thus if u(x, t) is a weak solution of the inviscid Burgers equation and a reparam-
eterization of initial conditions, it cannot engage in spontaneous shock formation.

4.3.2. Shock splitting. Assume that u(x, t) is the entropy solution to the in-
viscid Burgers equation up to time t1, where an existing decreasing shock splits into
two or more at point x∗. Thus we say after time t1,

(4.14) u(x, t) =

⎧⎪⎨
⎪⎩

a(x, t) if x < χl(t),
b(x, t) if χl(t) ≤ x < χr(t),
c(x, t) if χr(t) ≤ x,

where a(x, t), b(x, t), and c(x, t) are weak solutions to the inviscid Burgers equation
and χl(t) and χr(t) give the position of the leftmost and rightmost discontinuities
formed during the shock splitting. As there is assumed to be an already existing
decreasing shock at time t1, a(χl(t1)−, t1) > c(χr(t1)+, t1). There may be more than
two shocks formed, as seen in subsection 4.1, but we just need to examine the leftmost
and rightmost.

For u(x, t) to be a weak solution we note that several things must be true. The
speed of χl(t) and χr(t) are dictated by the Rankine–Hugoniot jump conditions to be

(4.15)
d

dt
χl =

a(χ−
l ) + b(χ+

l )
2

,
d

dt
χr =

b(χ−
r ) + c(χ+

r )
2

.

For there to be shock splitting, there must be some interval (t1, t2), where d
dtχr > d

dtχl.
Thus for some interval (t1, t2), a(χ−

l ) > c(χ+
r ), and thus b(χl(t)+, t) < b(χr(t)−, t).

Assume that t ∈ (t1, t2) for the remainder of the subsection.
The shocks located at χl(t) and χr(t) must be either increasing or decreasing

shocks. We will examine each of the possibilities and show that each leads to u(x, t)
not being a reparameterization of the initial conditions.
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Fig. 4.9. With two decreasing shocks, u(x, t) cannot be a reparameterization. The circles
represent the points chosen to prove that u(x, t) cannot be a reparameterization of initial conditions.

Fig. 4.10. With a decreasing and an increasing shock, u(x, t) cannot be a reparameterization.
The circles represent the points chosen to prove that u(x, t) cannot be a reparameterization of initial
conditions.

Case 1. Assume that the shock at χl(t) is a decreasing shock and the shock
at χr(t) is a decreasing shock. Then a(χl(t)−, t) > b(χl(t)+, t) and b(χr(t)−, t) >
c(χr(t)+, t). We know that b(χl(t)+, t) < b(χr(t)−, t), and thus a(χl(t)−, t) > b(χl(t)+, t)
< b(χr(t)−, t), shows u(x, t) is not a reparameterization of initial conditions. See Fig-
ure 4.9.

Case 2. Assume that the shock at χl(t) is a decreasing shock and the shock
at χr(t) is an increasing shock. Then a(χl(t)−, t) > b(χl(t)+, t) and c(χr(t)+, t) >
b(χr(t)−, t) > b(χl(t)+, t). Thus the points a(χl(t)−, t) > b(χl(t)+, t) < c(χr(t)+, t)
shows u(x, t) is not a reparameterization of initial conditions. See Figure 4.10.

Case 3. Assume that the shock at χl(t) is an increasing shock and that the shock
at χr(t) is an increasing shock. Then a(χl(t)−, t) < b(χl(t)+, t) and c(χr(t)+, t) >
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Fig. 4.11. With a decreasing and an increasing shock, u(x, t) cannot be a reparameterization.
The circles represent the points chosen to prove that u(x, t) cannot be a reparameterization of initial
conditions.

b(χr(t)−, t). From the Rankine–Hugoniot jump conditions, for the interval (t1, t2),
a(χ−

l ) > c(χ+
r ), and thus b(χl(t)+, t) < b(χr(t)−, t). This is a contradiction, so u(x, t)

is not a weak solution.
Case 4. Assume that the shock at χl(t) is an increasing shock and that the shock

at χr(t) is a decreasing shock. This case will be divided into two subcases. The first
is that for all x ∈ (χl(t), χr(t)), b(x, t) > a(χl(t)−, t). If this is the case, then u(x, t)
is proven to not be a weak solution by Lemma 4.2.

The second case is that there exists an x1 ∈ (χl(t), χr(t)) such that b(x1, t) ≤
a(χl(t)−, t). Since χl(t) is an increasing shock, b(χl(t)+, t) > a(χl(t), t) and thus
b(χl(t)+, t) > b(x1, t). Since b(χl(t)+, t) < b(χr(t)−, t), the points b(χl(t)+, t) >
b(x1, t) < b(χr(t)−, t) show that u(x, t) is not a reparameterization of initial condi-
tions. See Figure 4.11.

Thus if u(x, t) is a weak solution of the inviscid Burgers equation and a reparam-
eterization of initial conditions, it cannot engage in spontaneous shock formation or
shock splitting.

4.3.3. Entropy violating solutions are not reparameterizations of initial
conditions. From the previous subsections the following lemma can be established.

Lemma 4.3. Let u(x, t) be a weak solution of the inviscid Burgers equation where
the initial conditions satisfy condition B. If u(x, t) is a reparameterization of initial
conditions, then it is the entropy solution.

Proof. Clearly this follows from the results in subsections 4.2, 4.3.1, and
4.3.2.

4.4. Convergence to the entropy solution. Based on Lemma 4.3, the fol-
lowing theorem regarding the CFB equations converging to the entropy solution can
be established.

Theorem 4.4. The solutions uα of the CFB equations converge to the entropy
solution of the inviscid Burgers equation for initial conditions satisfying condition B.

Proof. It has already been established that uα converges to a weak solution of
the inviscid Burgers equation, u, in L1

loc. In the existence and uniqueness proof, it
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was established that uα is a reparameterization of initial conditions. Clearly if every
uα is a reparameterization, then its limit u will also be a reparameterization of initial
conditions. Since u is a reparameterization of initial conditions and a weak solution
to the inviscid Burgers equation, by Lemma 4.3, u must be the entropy solution.

We have established that the solutions of the CFB equations converge to the
entropy solution of the inviscid Burgers equation for initial conditions satisfying con-
dition B. The following section deals with how to regain the entropy solution for
discontinuous initial conditions and why we believe that this result holds true for
more general cases.

5. Extension into discontinuous initial conditions. Section 4 proves that
the CFB equations will converge to the entropy solution for a specific set of initial
conditions. This section explains the intuitive reasoning of why it is suspected that
the CFB equations will converge to the entropy solution for any continuous initial
conditions and why it will not for discontinuous initial conditions. It then shows how
the equations can be changed slightly to incorporate discontinuous initial conditions.
We begin with a commonly examined problem for the inviscid Burgers equation.

5.1. Example of entropic and nonentropic behavior for the inviscid
Burgers equation. Consider the initial conditions

(5.1) u0(x) =

{
0 if x < 0,

1 if x ≥ 0.

The method of characteristics does not provide the value of u in the wedge 0 <
x < t, as seen in Figure 5.1. The entropy solution fills this wedge with the function
u(x, t) = x

t with characteristics fanning out from the original discontinuity, as seen
in Figure 5.2(a). This creates a rarefaction wave and eliminates the discontinuity
after time t = 0. A nonentropic solution will allow the discontinuity to continue to
exist. It will fill the wedge with new characteristics which continuously originate from
the discontinuity as time progresses, as seen in Figure 5.2(b). Thus the nonentropic
solution creates new “information” as time progresses.

This problem embodies the essential behavior of entropic and nonentropic solu-
tions and provides the basis for our reasoning in the following subsections.

5.2. Convergence to entropy solution for all continuous initial condi-
tions. In section 4, it was proven that for initial conditions satisfying condition B, the
solutions to the CFB equations converge to the entropy solution. It is the conjecture
of this paper that the solutions to the CFB equations converge to the entropy solu-
tion for all continuous initial conditions. As mentioned above, a nonentropic solution
will create new characteristics, or new information, as time progresses. The solutions
to the CFB equation do not. The existence and uniqueness theorem proven in our
previous paper [12], and restated here as Theorem 2.2, established that the solution
takes the form u(x, t) = u0(φ(x, t)), where φ(x, t) is an increasing function of x for
any time, and φ(x, 0) = x. This shows that no new information is being created in the
CFB equations. Since the solutions to the CFB equations are converging to a weak
solution to the inviscid Burgers equation and no new information is being created, it
is reasonable to expect the solutions to converge to the entropy solution.

5.3. Nonconvergence for discontinuous initial conditions. Consider initial
conditions that have an increasing discontinuity in them. The entropy solution to the
inviscid Burgers equation creates a rarefaction wave from the discontinuity which takes
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Fig. 5.1. The area 0 < x < t is not filled by characteristics.

(a) (b)

Fig. 5.2. This is how entropic and nonentropic solutions fill the empty wedges. (a) The
entropic solution fills the wedge with a rarefaction wave. (b) The nonentropic solution maintains
the discontinuity by creating new characteristics.

on all the values spanned by the discontinuity. No new characteristics are formed, as
all originate from the discontinuity at time t = 0, but u(x, t) now has values that did
not originally exist in u0. As shown in the existence and uniqueness theorem for the
CFB equations, the solutions to the CFB equations must have only the values found in
u0. Thus for initial conditions containing an increasing discontinuity, the CFB equa-
tions will not converge to the entropy solution. An example of this can be found in our
previous paper [12], in section 6, where a traveling wave solution to the CFB equations
can be seen to converge to a nonentropic weak solution. For this reason, we eliminate
discontinuous initial conditions from the admissible class of initial conditions.

5.4. Conjecture. Based on the reasoning in the previous two subsections, we
present the following conjecture.

Conjecture 5.1. The solutions uα of the CFB equations converge to the entropy
solution of the inviscid Burgers equation for continuous initial conditions as α → 0.

Assuming this conjecture is true, there is still the matter of discontinuous initial
conditions. The following subsection creates a new system that, if the conjecture is
true, will converge to the entropy solution for all bounded initial conditions.

5.5. Regaining discontinuous initial conditions. In regarding discontinuous
initial conditions, begin by assuming that for all C1 initial conditions the solutions to
the CFB equations converge to the entropy solution. Then if the C1 initial conditions
limit to the discontinuous initial conditions in L1

loc, at the same time as α → 0,
then the solutions will converge to the entropy solution for the discontinuous initial
conditions. To prove this we use a theorem proven by Oleinik [15].
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Theorem 5.2. Let un(x, t) be the entropy solution for the inviscid Burgers equa-
tion with initial conditions un(x, 0) = un

0 (x) and un
0 (x) ≤ m for all n. Let∫ ∞

−∞
f(x) [un

0 (x) − u0(x)] dx → 0

for n → ∞ for any compactly supported continuous function f(x). Then the sequence
un(x, t) converges for n → ∞ to the entropy solution u(x, t) in L1

loc with initial con-
ditions u(x, 0) = u0(x).

This theorem is employed in proving the following theorem.
Theorem 5.3. Let un,α be solutions to the CFB equations with initial conditions

un,α(x, 0) = un
0 (x). Let un

0 (x) converge to u0(x) in L1 as n → ∞. Let ue be the
entropy solution to the inviscid Burgers equation with initial conditions ue(x, 0) =
u0(x). If Conjecture 5.1 holds true, then un,α converges to ue(x, t) in L1

loc as n → ∞
and α → 0 for any u0(x) ∈ L∞.

Proof. Let Ω be a compact subset of R × [0, T ]. For un,α to converge to ue(x, t)
in L1

loc,

(5.2) lim
n→∞ α→0

∫∫
Ω

|un,α − ue| = 0.

Let un(x, t) be the entropy solution to the inviscid Burgers equation with initial
conditions un(x, 0) = un

0 (x). We have assumed that

(5.3) lim
α→0

∫∫
Ω

|un,α − un| = 0.

From Theorem 5.2 we know that

(5.4) lim
n→∞

∫∫
Ω

|un − ue| = 0.

Thus employing the triangle inequality we find

lim
n→∞ α→0

∫∫
Ω

|un,α − ue| ≤ lim
n→∞ α→0

∫∫
Ω

|un,α − un|

+ lim
n→∞ α→0

∫∫
Ω

|un − ue| = 0.(5.5)

Using Theorem 5.3 it is easy to see that for the initial value problem

ut + (u ∗ gα)ux = 0,(5.6)
u(x, 0) = u0 ∗ gα(5.7)

the solutions will converge to the entropy solution of the inviscid Burgers equation
with any initial condition u0(x) as α → 0. This scheme can handle discontinuous
initial conditions, providing a greater usefulness.

6. Numerics. Section 5 proposes that (5.6) and (5.7) are a new system for the
convectively filtered Burgers equation that is expected to converge to the entropy solu-
tion of the inviscid Burgers equation as α → 0 for all bounded initial conditions. This
section runs some numerical simulation of the proposed system and shows evidence
of convergence to the entropy solution.

6.1. The entropy solution. The specific initial condition being examined is
the indicator function for the interval (1, 2) or

(6.1) u0(x) =

{
1 if x ∈ (1, 2),
0 otherwise.
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For the entropy solution to the inviscid Burgers equation, the right-hand side of the
initial pulse will form the standard right traveling shock and the left-hand side will
form a rarefaction wave. At time t = 2, the rarefaction wave meets with the shock
front, and then the shock front begins to decrease in amplitude and speed. For time
t < 2 the entropy solution for the given initial conditions is

(6.2) u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ≤ 1,
x−1

t if x ∈ (1, 1 + t),
1 if x ∈ (1 + t, 2 + .5t),
0 if x ≥ 2 + .5t.

For time t ≥ 2 the entropy solution is

(6.3) u(x, t) =

⎧⎪⎨
⎪⎩

0 if x ≤ 1,
x−1

t if x ∈ (1, (2t)
1
2 + 1),

0 if x ≥ (2t)
1
2 + 1.

It is to this solution that the CFB equations’ solutions are compared.

6.2. Description of numerical methods. Holm and Staley performed suc-
cessful simulations of the CFB equations with the Helmholtz filter using a pseudospec-
tral method [31]. For this paper a very similar method is used. With the Helmholtz
filter, (5.6) and (5.7) can be written as

∂

∂t
ū +

∂

∂x

ū2

2
= −3

2
α2

(
I − α2

(
∂

∂x

)2
)−1

∂

∂x
(ūx)2,(6.4)

ū(x, 0) = (u0 ∗ gα) ∗ gα.(6.5)

It is these equations that are numerically simulated.
Equation (6.4) is advanced through time with an explicit, Runge–Kutta–Fehlberg

predictor/corrector (RK45). The initial timestep is chosen low enough to achieve
stability and is then varied by the code using the formula

(6.6) hi+1 = γhi

(
εhi

||ūi − ûi||2

) 1
4

.

Thus the new timestep is chosen from the previous timestep and the amount of error
between the predicted velocity ū and the corrected velocity û. The relative error
tolerance was chosen at ε = 10−4 and the safety factor at γ = 0.9.

Spatial derivatives and the inversion of the Helmholtz operator were computed in
the Fourier domain. The velocity was converted into the Fourier domain using a fast
Fourier transform, multiplied by the appropriate term and then converted back into
the physical domain. This pseudospectral method of calculating the derivative was
chosen to reduce artificial viscosity.

In Holm and Staley’s method, spatial derivatives were conducted using a fourth-
order finite difference, and an artificial viscosity was applied to the high wave modes
to prevent aliasing errors [31]. Because the simulations are addressing convergence to
the entropy solution, as little artificial and numerical viscosity as possible is desired.
For this reason derivatives were done in the Fourier domain and no artificial viscosity
was introduced.
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(a) (b)

(c) (d)

Fig. 6.1. This figure compares the entropy solution with the solution to the CFB equations for
α = 0.02. It is easy to see that the CFB equations’ solution is capturing both the rarefaction wave
and the shock front behavior.

The simulations were done at the resolution of 212 = 4096 grid points, thus being
able to resolve 2048 Fourier modes. The two-thirds rule was utilized to prevent alias-
ing, thus reducing the effective resolution to 1364 Fourier modes. Despite this, there
still appeared to be some long-term instability in the high wave modes. To control this
instability, every 15 timesteps the higher two-thirds Fourier modes were zeroed which
eliminated the instability and further reduced the effective resolution to 682 Fourier
modes, which was acceptable for our purposes. It should be noted that simulations
with the artificial viscosity have been also conducted and produce the same general
results presented in the following sections. Additionally, simulations were conducted
with a much higher resolution (216), where aliasing errors occurred, but remained
small for the approximately 100,000 timesteps considered. These simulations also
produced similar results.

6.3. Results. Nine different simulations were conducted with α = 0.02, 0.03, . . . ,
0.10. The CFB equations showed behavior mirroring that of the entropy solution. A
traveling shock front and a rarefaction wave was seen. Figure 6.1 compares the CFB
simulations for α = 0.02 to the entropy solution at times t = 0, 1, 2, 3. In Figure 6.1(a)
the difference in initial conditions can be seen with the entropy solution beginning
with discontinuities and the CFB simulation having smoothed initial conditions.

To evaluate the convergence of the CFB equations’ solutions to the entropy
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Fig. 6.2. The L1 norm of the error between the CFB equations’ solution and the entropy
solution. The error is displayed for four different values of t. t = 0 , t = 1 , t = 2

, and t = 3 . The error approaches zero roughly linearly as α → 0.

solution, the L1 norm of the error between the CFB equations’ solution and the
entropy solution was taken. Figure 6.2 plots α versus the error at times t = 0, 1, 2, 3.
At each time the error appears to be approaching zero linearly. Thus numerical evi-
dence suggests that (5.6) and (5.7) will converge to the entropy solution of the inviscid
Burgers equation for initial conditions with discontinuities.

7. Conclusion. Conservation laws can often have multiple weak solutions of
which there is one physically relevant solution, known as the entropy solution. It
is important that any regularization of these conservation laws reflect the physical
phenomenon they are meant to address. Thus it is important that the solutions
to such regularizations converge to the entropy solution. The convectively filtered
Burgers equation has been shown to regularize the inviscid Burgers equation. This
paper now shows that for a certain class of initial conditions this regularization will
converge to the entropy solution. It has also provided a method for extending this
convergence to a large class of initial conditions including discontinuities. These
results are a crucial step in extending the convectively filtered method into popular
use and perhaps into the Euler equations.
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