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EQUATIONS∗
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Abstract. This paper examines an averaging technique in which the nonlinear flux term is
expanded and the convective velocities are passed through a low-pass filter. It is the intent that this
modification to the nonlinear flux terms will result in an inviscid regularization of the homentropic
Euler equations and Euler equations. The physical motivation for this technique is presented and
a general method is derived, which is then applied to the homentropic Euler equations and Euler
equations. These modified equations are then examined, revealing that they share conservative
properties, shock speeds, and traveling wave solutions with the original equations. If compactness
of the solutions is assumed, then it can be proven that as the averaging is diminished the solutions
converge to weak solutions of the original equations. Finally, numerical simulations are conducted
showing that the modified equations appear regularized and converge to the entropy solution in shock
tube simulations.
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1. Introduction. This paper examines a modification of the homentropic Euler
and Euler equations where the flux term is expanded and the convective velocities are
passed through a low-pass filter. It is the intent that this modification to the nonlinear
flux terms will result in an inviscid regularization of the homentropic Euler equations
and Euler equations. The ultimate goal with this regularization is to develop a proper
modeling of small scale behavior so that both shocks and turbulence can be captured
in one comprehensive technique.

This paper first describes the proposed regularizing method and investigates
the shock speeds and the conservative effects of the modified equations. Then this
method is applied to the one-dimensional homentropic Euler equations and the one-
dimensional Euler equations. Preliminary analytical results are established regarding
the modified Euler equations. Then using numerical techniques we demonstrate the
convergence of the solutions of the regularized equations to the entropy solution of a
shock tube problem.

The inspiration for this new technique comes from recent work done on a similarly
modified Burgers equation. The Burgers equation, ut + uux = 0, is considered a
simplistic model of compressible flow which forms shocks readily. Classically, this
equation is regularized with a dissipative term, such as viscosity or hyperviscosity.
Additionally, Burgers equation can be regularized with linear dispersion resulting in
the KdV equations; however, this regularization will not result in a convergence to an
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POTENTIAL REGULARIZATION OF THE EULER EQUATIONS 1213

entropy solution. Recently, work has been done by our group and others investigating
a regularization of the Burgers equation where the nonlinear term is manipulated by
averaging the convective velocity [1, 2, 3, 4, 5, 6, 7],

ut + ūux = 0,(1.1a)

ū = gα ∗ u,(1.1b)

gα =
1

α
g
(x
α

)
,(1.1c)

where g is an averaging kernel, with emphasis on the Helmholtz filter. In this paper
we extend this technique to the homentropic Euler and Euler equations.

1.1. History of α-regularization of Burgers equations. The technique used
on the Burgers equations has been thoroughly investigated and established as a valid
shock regularization technique. Bhat and Fetecau proved using the Helmholtz filter
that solutions to equations (1.1) exist and are unique [3]. They went on to show
that a subsequence of the solutions will converge to a weak solution of the Burgers
equation and presented numerical evidence that it converges to the entropy solution.
Pavlova also demonstrated numerical evidence for the convergence to the entropy
solution for equations (1.1) equipped with a Helmholtz filter [7]. Norgard and Mohseni
went on to establish the existence and uniqueness of the solutions to a multiple-
dimensional version of the equations for a wide variety of filters, and that when
the initial conditions are C1, the solution remains C1 for all time [2]. Later they
were able to prove that for bell-shaped initial conditions, converging subsequences
of the solutions to equations (1.1) converge to the entropy solution of the inviscid
Burgers equation as α → 0 [5, 8], also providing evidence that this holds true for all
continuous initial conditions. These analytical results, along with multiple numerical
results, regarding shock thickness and energy decay results have shown that this is a
valid shock regularization technique.

1.2. Other α-regularizations. Work on the regularization of the Burgers equa-
tion was inspired by and related to work done on the Lagrangian averaged Navier–
Stokes (LANS-α) equations [9, 10, 11, 12, 13, 14, 15, 16, 17]. The LANS-α equations
also employ an averaged velocity in the nonlinear term and have been successful in
modeling some turbulent incompressible flows.

Additional α-regularizations also appear in incompressible Euler equations and
vortex regularization [18, 19], magnetic hydrodynamics [20], Schrödinger’s equations
[21], and trajectory attractors in the Navier–Stokes equations [22]. These types of
regularizations are appearing to be quite beneficial.

It is thought that a similar regularization could be accomplished for equations that
describe compressible flow. Encouraged by the results for the Burgers equation, the
next step is to attempt to introduce averaging into the one-dimensional homentropic
Euler equations, a simplified version of the full Euler equations, where pressure is
purely a function of density. There have been several attempts at such a regularization.

Inspired by the existence and uniqueness proofs from the averaged Burgers equa-
tions [2, 3], Norgard and Mohseni [23] averaged the characteristics of the homentropic
Euler equations to derive the equations

ρt + ūρx + ρ
ā

a
ux = 0,(1.2a)

ut + ūux +
aā

ρ
ρx = 0,(1.2b)
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1214 GREG NORGARD AND KAMRAN MOHSENI

ū = g ∗ u,(1.2c)

ā = g ∗ a,(1.2d)

with a2 = γργ−1. While these equations were proven to have a convenient existence
and uniqueness proof, they were ultimately found to have significant departures in
behavior from the homentropic Euler equations, specifically for the Riemann problem.
It was discovered that when the characteristics are averaged, there was no creation or
destruction of characteristics. A shock in homentropic Euler equations can produce
new characteristics in one of the Riemann invariants. The new equations do not
capture this behavior and result in departures from the desired behavior.

Using a Lagrangian averaging technique, Bhat and Fetecau [24] derived the fol-
lowing equations:

ρt + (ρu)x = 0,(1.3a)

wt + (uw)x − 1

2
(u2 + α2u2

x)x = −px
ρ
,(1.3b)

ρw = ρv − α2ρxux,(1.3c)

v = u− α2uxx.(1.3d)

While the solutions to the system remained smooth and contained much structure,
it was found that the equations were “not well-suited for the approximation of shock
solutions of the compressible Euler equations” [24].

Another attempt by Bhat, Fetecau, and Goodman used a Leray-type averaging
[25] leading to the equations

ρt + ūρx + ρux = 0,(1.4)

ut + ūux +
px
ρ

= 0,(1.5)

u = ū− α2ūxx,(1.6)

with p = κργ . They then showed that weakly nonlinear geometrical optics (WNGO)
asymptotic theory predicts that the equations will have global smooth solutions for
γ = 1 and form shocks in finite time for any other value of γ; namely, γ �= 1, again
not representing the behavior of the compressible Euler equations.

Additionally in 2005, Bhat et al. [26] applied the Lagrangian averaging approach
to the full compressible Euler equations. Their approach successfully derived a set
of Lagrangian averaged Euler (LAE-α) equations. However, these equations were
quite long and complicated, and it seemed that numerical simulations involving these
equations would be impractical for real-world applications.

This paper proposes a new technique that appears to regularize the homentropic
Euler and Euler equations and begins a preliminary investigation of the proposed
method that yields various analytic and numerical results that are, thus far, encour-
aging. We show that the original conserved quantities are preserved and that shock
speeds are consistent with the original equations. While the existence of smooth
solutions is not proven, numerical experiments are conducted that suggest smooth
solutions. Section 2 details the motivation behind the technique, with section 4 de-
tailing the general method. Section 3 specifies the averaging kernels that we consider
in our technique. Section 7 examines the modified homentropic Euler equations look-
ing at conservation of mass and momentum, traveling wave solutions, eigenvalues,
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and convergence to weak solutions of the original homentropic Euler equations, and
finally examines some numerical results. Section 8 examines the same properties, but
with the modified Euler equations. All is then followed by concluding remarks and
descriptions of relevant open questions.

2. Motivation. The motivation for our technique stems from a simple concept:
that nonlinear terms generate high wave modes continuously as time progresses. Con-
sider the mechanics behind shock formation and turbulence. The nonlinear convective
term u · �u generates high wave modes by transferring energy into smaller scales as
time progresses. This nonlinear term is found in the Burgers equations where it
causes nonlinear steepening, resulting in shocks. It is also found in the Euler and
Navier–Stokes equations where it generates high wave modes by tilting and stretching
vortices [27]. Thus this nonlinear term is cascading energy down into smaller and
smaller scales. In the three-dimensional Navier–Stokes and three-dimensional Euler
equations, the energy cascade has a slope of − 5

3 until reaching the Kolmogorov scale,
illustrated in Figure 2.1(a). The Burgers equation has an energy cascade slope of −2
until viscosity begins to dominate, seen in Figure 2.1(b) [28, 29]. It is by reducing this
cascade of energy after some length of scale that we intend to regularize the Euler
equations. In the Burgers equation the nonlinear term uux was replaced with ūux. A
low-pass filtered velocity will have less energy in its high wave modes after the scale
1
α . Thus when inserted into the nonlinear term, the energy cascade will be lessened.
This modification to the Burgers equations was found to result in a regularization of
the equations. It is our hypothesis that a similar modification to the Euler equations
will have similar results.

1 Re2 Re3

1/η1 1/η2 1/η3

E(k)

Navier-Stokes with 

k

EulerRe

Slope -5/3

1 ν2 ν3

E(k)

k

Burgers with 

Inviscid Burgers
ν

Slope -2

(a) (b)

Fig. 2.1. Schematics of energy cascade for the Navier–Stokes/Euler equations and the viscous/
inviscid Burgers equation are shown. In an inviscid flow, both turbulence and shocks show continuous
generation of higher wave modes indefinitely. (a) Energy cascades from high wavelengths to lower
wavelengths at a predicted rate of − 5

3
for the Navier–Stokes/Euler equations. For the Navier–Stokes

equations, the kinetic energy drops drastically upon reaching a certain wavelength—the Kolmogorov
scale, η. For the Euler equations the cascade continues indefinitely. Here Re1 < Re2 < Re3. (b) For
the Burgers equation, shocks can form from continuous initial conditions. The energy cascade has a
slope of −2 when shocks form, until viscosity begins to exert its influence and balance the steepening
effect of the nonlinear term. Here ν3 < ν2 < ν1.

3. Averaging kernels. In our previous work [2, 5] the low-pass filters were as-
sumed to have certain properties. As an averaging kernel, it seems intuitively reason-
able that an averaging should give no negative weight, have no directional preference,
and give higher weight to other particles that are physically closer. Mathematically
this is equivalent to saying that the convolution kernels g are assumed to be nor-
malized, nonnegative, decreasing, and even. This is summarized in Table 3.1. The
physical rationale behind these properties is described more thoroughly in our previ-
ous work [2] when dealing with the Burgers equation. For this paper similar properties
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Table 3.1

This table succinctly lists the requirements of the low-pass filters employed.

Properties Mathematical expression

Normalized
∫
g = 1

Nonnegative g(x) > 0 ∀x
Decreasing |x1| ≥ |x2| ⇒ g(x1) ≤ g(x2)
Even |x1| = |x2| ⇒ g(x1) = g(x2)

are assumed for the filters. However, only sections 4, 5, and 6 deal with a general fil-
ter. All other sections deal exclusively with the Helmholtz filter, which also possesses
all these characteristics. The Helmholtz filter is defined as

(3.1) u = ū− α2ūxx,

and thus has an averaging kernel of

(3.2) gα(x) =
1

2α
exp

(
−|x|

α

)
.

4. A general method. The successful regularization of the Burgers equations
can be extended in several ways. As mentioned in the introduction, we had previously
interpreted the convectively filtered Burgers (CFB) equations as an averaging of the
characteristics [23]. Bhat, Fetecau, and Goodman interpreted the regularization of
the Burgers equation as an averaging of the convective velocity, a Leray-type averag-
ing [25]. Neither of these interpretations, when extended to the homentropic Euler
equations, has led to the desired regularization of homentropic Euler equations. Here
we examine yet another interpretation of the CFB equations, based on a conservation
law perspective. This approach addresses the cascade of energy generated by the
nonlinear terms. We then discuss how the technique used in regularizing the Burgers
equation can be extended to a general technique to be used on conservation laws.
Begin by looking at the inviscid Burgers equation

(4.1) ut + (uu)x = 0.

The flux term represents that the quantity u is flowing into a control volume with
velocity u. When the product rule is applied to the flux term the result is

(4.2) ut + uux + uux = 0.

Each nonlinear term in the above equation results in steepening waves which cascade
energy into higher wave modes. It is this energy cascade that produces shocks. In
section 2, it was discussed how this cascade of energy can be reduced by filtering
the convective velocity. Thus the nondifferentiated term is passed through a low-pass
filter. The resulting equation is

(4.3) ut + ūux + ūux = 0,

which has been referred to as the CFB equations. The portrayal of the CFB equations
here differs from (1.1) and in previous papers [1, 3, 4, 2, 5, 6] by a factor of 2 but is
identical under rescaling.
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Now we extend this technique to a more general method. Suppose there is a single
or multiple conservation laws of the form

(4.4) Qt + (Qu)x = 0.

The proposed method is to apply the product rule to the nonlinear term and then
apply a filter to the nondifferentiated quantities. This results in

Qt + Q̄ux + ūQx = 0,(4.5a)

ū = g ∗ u,(4.5b)

Q̄ = g ∗Q.(4.5c)

We believe that this filtering of the nondifferentiated quantities will reduce the en-
ergy cascade and provide a regularization of the conservation law. This method can
be shown to be a result of applying conservation principles using an “observable”
divergence as shown in Mohseni [30]. As such, when this method is applied to the
homentropic Euler and Euler equations, the new equations will be referred to as the
observable homentropic Euler and the observable Euler equations.

5. Preservation of conserved quantities. Before we begin the examination
of the observable homentropic Euler and observable Euler equations we will first ex-
amine how the modification of the nonlinear term still preserves the original conserved
quantities. Consider (4.5). Integrate Qt over the spatial domain and substitute equa-
tions (4.5b) and (4.5c) and the full definition of convolution to obtain

(5.1)
∂

∂t

∫
Q(x) dx = −

∫∫
g(x− y)Q(y)u′(x) dy dx−

∫∫
g(x− y)u(y)Q′(x) dy dx.

Integrate by parts to obtain

(5.2)
∂

∂t

∫
Q(x) dx =

∫∫
g′(x − y) (Q(y)u(x) + u(y)Q(x)) dy dx.

If g is even, then g′ is odd and g′(x − y) is antisymmetric over y = x. Clearly
(Q(y)u(x) + u(y)Q(x)) is symmetric over y = x, and thus by symmetry

(5.3)
∂

∂t

∫
Q(x) dx = 0.

From this it is determined the modified conservation law still conserves the original
conserved quantity. Thus we see that the proposed method conserves the quanti-
ties that the original conservation laws were designed to preserve. This property is
independent of the filter as long as it is even, which was a requirement of section 3.

6. Shock speed. Typically the speed of a shock in a conservation law is deter-
mined from the Rankine–Hugoniot jump conditions. However, for this case, equations
(4.5) are not written in a conservative form, so applying the Rankine–Hugoniot jump
conditions is not possible. However, using the definition of weak solution, we are able
to determine the speed of a shock for equations (4.5) and show that it is similar if not
identical to the speed of the unmodified conservation law.

First we establish notation used in this section and in later sections. The operator
[·] will be used to quantify the difference between the right and left limits of a function
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at a discontinuity. For example, if the limits of u(x) at χ are defined as

lim
x→χ+

u(x) = uR,(6.1)

lim
x→χ−

u(x) = uL,(6.2)

then at χ

(6.3) [u] = uR − uL.

The Rankine–Hugoniot jump conditions establish that for weak solutions of con-
servation laws of the form

(6.4) vt + (f)x = 0

a traveling discontinuity must have a speed S, where S is defined as [31]

(6.5) S =
[f ]

[v]
.

Thus for the conservation law equation (4.4) the shock speed would be

(6.6) S =
[Qu]

[Q]
.

We will now show that (4.5) will give a shock speed similar to that of the original
equation, (4.4). Let Ω be a compact subset of R × T. Let φ(x, t) be a continuously
differentiable function that is compactly supported on Ω. For the functions Q and u
to be a weak solution to (4.5a) they must satisfy

(6.7)

∫∫
Ω

Qφt + Q̄uφx + Q̄xuφ+ ūQφx + ūxQφ dxdt = 0

for all φ and all Ω. As a weak solution, when derivatives are properly defined, Q and u
will satisfy (4.5a).

Assume that Q and u are continuously differentiable on Ω except at a single
discontinuity located at x = χ(t). The line in Ω traced by x = χ(t) will be designated
as Γ. We assume that Γ divides the domain Ω into two subdomains, Ωl and Ωr,
signifying the left and right sections. Using (6.7) we will determine the speed of the

shock, S = ∂
∂tχ(t). Since S = ∂

∂tχ(t), the vectors n = 〈1,−S〉√
1+S2

and m = 〈−1,S〉√
1+S2

are

normal to the line Γ in R × T. The vector n points away from Ωl, while vector m
points away from Ωr. We refer the reader to Figure 6.1 for a visual representation.

Apply the divergence theorem to the vector field
〈
Q̄uφ+ ūQφ,Qφ

〉
to establish

(6.8)

∫∫
Ωl

〈
∂

∂x
,
∂

∂t

〉
· 〈Q̄uφ+ ūQφ,Qφ

〉
=

∮
∂Ωl

n · 〈Q̄uφ+ ūQφ,Qφ
〉
.

Since φ is zero along the boundary of Ωl except at Γ this can be reduced to
(6.9)∫∫
Ωl

Q̄xuφ+Q̄uxφ+Q̄uφx+ūxQφ+ūQxφ+ūQφx+Qtφ+Qφt =

∫
Γ

Q̄uφ+ ūQφ√
1 + S2

− SQφ√
1 + S2

.
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Ω Ω

Ω

Γ

nm rl

χ(t)

Fig. 6.1. A diagram of the domain Ω, its subdomains Ωl and Ωr, and the curve Γ defined by
χ(t). Also shown are the normal vectors to Γ.

On the domain Ωl, Qx, Qt, and ux are well defined, and thus Q̄uxφ+ ūQxφ+Qtφ = 0.
Thus it is established that

(6.10)

∫∫
Ωl

Q̄xuφ+ Q̄uφx + ūxQφ+ ūQφx +Qφt =

∫
Γ

Q̄uφ+ ūQφ√
1 + S2

− SQφ√
1 + S2

.

Similarly

(6.11)

∫∫
Ωr

Q̄xuφ+ Q̄uφx + ūxQφ+ ūQφx +Qφt =

∫
Γ

− Q̄uφ+ ūQφ√
1 + S2

+
SQφ√
1 + S2

.

From the definition of a weak solution we know that

(6.12)

∫∫
Ωl+Ωr

Q̄xuφ+ Q̄uφx + ūxQφ+ ūQφx +Qφt = 0

and thus

(6.13)

∫
Γ

− Q̄uφ+ ūQφ√
1 + S2

+
SQφ√
1 + S2

+

∫
Γ

Q̄uφ+ ūQφ√
1 + S2

− SQφ√
1 + S2

= 0.

Note that the first term of (6.13) regards the values of Q and u on Ωr, and the second
term regards the values on Ωl. Since this must hold on all Ω and all φ we establish

(6.14) lim
x→χ+

(−Q̄uφ− ūQφ+ SQφ
)
+ lim

x→χ−

(
Q̄uφ+ ūQφ− SQφ

)
= 0,

which determines the shock speed to be

(6.15) S =
[Q̄u+ ūQ]

[Q]
.

In section 3, our filter g(x) was chosen to be even. Here another consequence of
this choice is seen. For a filter satisfying conditions in section 3 and for small α one
can find that

(6.16) Q̄(χ) ≈ Qr +Ql

2
,
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where Qr and Ql are the right and left limits of Q(x) as x → χ. With this substitution
we find that

(6.17) S ≈ [Qu]

[Q]
.

Thus we see that the general technique will approximate the shock speed of the original
conservation law. For the case where Q and u are constant to the left and right of the
shock, the shock speeds of the original and modified conservation laws exactly match.

7. The one-dimensional homentropic Euler equations. Examine the hom-
entropic Euler equations

ρt + (ρu)x = 0,(7.1a)

(ρu)t + (ρuu+ P )x = 0,(7.1b)

with pressure defined as P = ργ . Equations (7.1a) and (7.1b) are the mathematical
expressions of conservation of mass and momentum, respectively. The homentropic
Euler equations make the assumption that the entropy is constant throughout the
entire domain, and thus the pressure can be expressed solely as a function of the
density [31]. This differs from the isentropic Euler equations, where the entropy is
constant along streamlines but not necessarily constant on the whole domain. It is
found that the homentropic Euler equations are an accurate predictor of gas dynamics
behavior for low pressure.

Both equations have a nonlinear term that fits the general method from section 4.
Apply the method, break the nonlinear term apart, and then apply the filter to the
nondifferentiated terms in the nonlinear terms to obtain the equations

ρt + ρ̄ux + ūρx = 0,(7.2a)

(ρu)t + (ρu)ux + ū(ρu)x + Px = 0,(7.2b)

with pressure defined as P = ργ . These equations are now referred to as the observ-
able homentropic Euler equations. For the following analysis, the only filter that is
considered is the Helmholtz filter (3.1).

7.1. Conservation of mass and momentum. The homentropic Euler equa-
tions (7.1) are conservation laws for mass and momentum. These equations are re-
flections of important physical principles. In order to be physically relevant it is
desirable that any modification of the homentropic Euler equations should also pre-
serve this structure. In section 5, we established that the technique used will preserve
the conservative structure of the original equations. Here we reverify that result for
the observable homentropic Euler equations (7.2) by casting the equations into a
conservative form using the Helmholtz filter.

Using the definition of the Helmholtz filter (3.1) we get the following expressions
for the unfiltered quantities:

u = ū− α2ūxx,(7.3a)

ρ = ρ̄− α2ρ̄xx,(7.3b)

ρu = ρu− α2(ρu)xx.(7.3c)
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By substituting (7.3a), (7.3b), and (7.3c) into equations (7.2) and then regrouping
the similar terms, the observable homentropic Euler equations can be rewritten as

ρt +
(
ρ̄ū− α2(ūρ̄xx + ρ̄ūxx) + α2ūxρ̄x

)
x
= 0,(7.4a)

(ρu)t +
(
ρuū− α2(ū(ρu)xx + ρuūxx) + α2ūx(ρu)x + P

)
x
= 0.(7.4b)

This shows that the observable homentropic Euler equations can be written in a
conservative form and preserve both mass,

∫
ρ, and momentum,

∫
ρu, as well as

the averaged mass,
∫
ρ̄, and averaged momentum,

∫
ρu. Examination of equations

(7.4) could lead to more geometric structure. It may also lead to the application of
numerical techniques designed specifically for conservation laws.

7.2. Traveling wave solution. In this section, we establish that a previously
known traveling wave solution to the homentropic Euler equations is, in fact, a travel-
ing wave solution to the observable homentropic Euler equations. The traveling wave
solution that we examine for the homentropic Euler equations is a single traveling
shock.

Using the Rankine–Hugoniot jump conditions it is easy to establish that the
following is a weak solution to the homentropic Euler equations (7.1):

u =

{
uL, x < St,
uR, x ≥ St,

(7.5a)

ρ =

{
ρL, x < St,
ρR, x ≥ St.

(7.5b)

The speed of the shock S is twice defined, once for each conservation law, by the
Rankine–Hugoniot jump conditions as

(7.6) S =
[ρu]

[ρ]

and

(7.7) S =
[ρuu+ P ]

[ρu]
.

Thus uL, uR, ρL, and ρR must satisfy the relationship

(7.8)
[ρu]

[ρ]
= S =

[ρuu+ P ]

[ρu]
.

Using the results from section 6, it is not difficult to established that a weak
solution to the observable homentropic Euler equations (7.2) will have a shock speed
dictated by

S =
[ūρ+ ρ̄u]

[ρ]
,(7.9a)

S =
[ūρu+ ρuu+ P ]

[ρu]
.(7.9b)

Next we will establish that (7.5) is also a weak solution to the observable homen-
tropic Euler equations (7.4). It is straightforward to establish that with u defined as



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1222 GREG NORGARD AND KAMRAN MOHSENI

in (7.5) and using the Helmholtz kernel definition (3.2) that ū and ρ̄ are

ū =

{
uR−uL

2 exp(x−St
α ) + uL, x < St,

uL−uR

2 exp(−x−St
α ) + uR, x ≥ St,

(7.10)

ρ̄ =

{
ρR−ρL

2 exp(x−St
α ) + ρL, x < St,

ρL−ρR

2 exp(−x−St
α ) + ρR, x ≥ St.

(7.11)

Thus the values of ū and ρ̄ at the position of the shock, x = St, are

ū(St, t) =
uR + uL

2
,(7.12)

ρ̄(St, t) =
ρR + ρL

2
.(7.13)

Now, by using (7.12) and (7.13) and the definition of [·] one can re-express (7.9a)
as

S =
1
2 (uR + uL)(ρR − ρL) +

1
2 (ρR + ρL)(uR − uL)

[ρ]
(7.14)

=
(ρRuR − ρLuL)

[ρ]
(7.15)

=
[ρu]

[ρ]
,(7.16)

which is identical to (7.6). Similarly (7.9b) reduces to (7.7). Thus for a single traveling
shock, the Rankine–Hugoniot jump conditions are identical for the homentropic Euler
equations and the observable homentropic Euler equations. This validates our claim
that (7.5) is a traveling weak solution for the observable homentropic Euler equations.

7.3. Shock thickness. With (7.5) validated as a traveling weak solution for
the observable homentropic Euler equations, we establish an analytical result about
shock thickness. Here the thickness of the shock is defined to be the length over which
90% of the amplitude change takes place, centered at the point of inflection.

The thickness of the shock in the traveling wave solution (7.5) will then be 2αb,
where b is the value where

(7.17)

∫ b

−b

1

2
exp(−|x|) dx =

∫ αb

−αb

1

2α
exp

(−|x|
α

)
dx = 0.9.

The value b is a constant that is approximately b ≈ 2.30259. The thickness of the
shock, 2αb, is independent of ρR, ρL, uR, and uL. As such, the thickness of the shock
varies linearly on the parameter α.

7.4. Diagonalization and eigenvalues. The homentropic Euler equations
have very clearly defined eigenvalues, u ± a, where a2 = γργ−1 is the speed of
sound. We have calculated how the averaging technique has affected the eigenval-
ues. An α-regularization can fundamentally change some of the original properties of
the equations, such as in Bardos, Linshiz, and Titi [18], where the α-regularization of
the two-dimensional incompressible Euler equations changed the ill-posedness of the
Birkhoff–Rott equations. Thus we examine the changes to the eigenvalues of the equa-
tions to gain important information regarding the characteristic nature of the equa-
tions. If the averaging technique significantly changes the way that the characteristics
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of the Euler equations behave, then there is little hope that there will be convergence
to the entropy solution, as we have demonstrated in our previous work [23]. Addi-
tionally the eigenvalues, or the speed of the characteristics, are important in their
use in establishing stability in numerical simulations. However, within this paper,
these results have not been theoretically applied, and as such these calculations are
presented in Appendix A.

7.5. Convergence to a weak solution. It is the goal of our technique to de-
velop new equations that effectively capture the low wave mode (larger scale) behavior
of the original equations. Thus it is desirable that the observable homentropic Euler
equations approximate the homentropic Euler equations well. Ideally we can show
that as the amount of filtering decreases, we regain the original equations. One cru-
cial step in determining this is proving that as α → 0, the solutions to the observable
homentropic Euler equations converge to a weak solution of the homentropic Euler
equations. This, among other things, proves that as α → 0, the shocks produced by
the observable homentropic Euler equations travel at the same speed as those of the
homentropic Euler equations, which is desirable.

In order to properly show convergence to a weak solution, one must first establish
the existence of solutions and then the compactness of those solutions, in order to
establish a converging subsequence of solutions. As of yet, we have not been able to
extend our existence theorems of the regularized Burgers equations (1.1) to the ob-
servable homentropic Euler equations (7.2). Without the existence theorem we have
been unable to establish the a priori bounds needed to guarantee compactness. Until
this can be accomplished, we operate under the assumption that solutions exist and
have a converging subsequence. Thus far, all numerical simulations have given the
impression that these assumptions are reasonable; however, proving such results can
be found to be nontrivial. We assume that for every α > 0 there exists a solution
to equations (7.2) and that a subsequence of these solutions converges in L1

loc. Fur-
thermore, we assume that the solutions are bounded independent of α. The following
summarizes these assumptions:

||u||∞ < U,(7.18a)

||ρ||∞ < R,(7.18b)

lim
α→0

u = ũ in L1
loc,(7.18c)

lim
α→0

ρ = ρ̃ in L1
loc.(7.18d)

With these assumptions we are able to prove that the solutions to the observable
homentropic Euler equations (7.2) will converge to weak solutions of the homentropic
Euler equations (7.1). The examination of the claim is done with the Helmholtz filter,
using both definitions (3.1) and (3.2). The following bounds are easily established by
examining the kernel:

||gα||1 = 1

and ∣∣∣∣
∣∣∣∣ ∂∂xgα

∣∣∣∣
∣∣∣∣
1

=
1

α
.

These bounds, combined with Young’s inequality [32] and the assumptions (7.18),
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give the estimates

||ū||∞ < U,(7.19)

||ρ̄||∞ < R,(7.20)

||ρu||∞ < UR,(7.21)

||ūx||∞ <
1

α
U,(7.22)

||ρ̄x||∞ <
1

α
R,(7.23)

||(ρu)x||∞ <
1

α
UR.(7.24)

Along with these estimates, the last piece needed is taken from Duoandikoetxea [33].
The following lemma is a restatement of Duoandikoetxea’s Theorem 2.1 [33, p. 25].

Lemma 7.1. Let g be an integrable function on R such that
∫
g = 1. Define

gα = 1
αg(

x
α ). Then

lim
α→0

||gα ∗ f − f ||p = 0

if f ∈ Lp, 1 ≤ p < ∞, and uniformly (i.e., when p = ∞) if f ∈ C0(R).
With Lemma 7.1 the convergence to weak solutions can now be proven.
Begin by multiplying equations (7.4) by a test function φ and integrate over time

and space. It is assumed that φ has an infinite number of bounded and continuous
derivatives and is compactly supported. Doing this we obtain the equations∫

R

∫ T

0

ρtφ+
(
ρ̄ū− α2(ūρ̄xx + ρ̄ūxx) + α2ūxρ̄x

)
x
φdt dx = 0,(7.25a)

∫
R

∫ T

0

(ρu)tφ+
((
ρuū− α2(ū(ρu)xx + ρuūxx) + α2ūx(ρu)x

)
+ P

)
x
φdt dx = 0.

(7.25b)

Integrate by parts to obtain∫
R

∫ T

0

ρφt + (ρ̄ū)φx dt dx =

∫
R

∫ T

0

(
α2(ūρ̄xx + ρ̄ūxx)− α2ūxρ̄x

)
φx dt dx,(7.26a)

∫
R

∫ T

0

(ρu)φt + (ρuū+ P )φx dt dx =

∫
R

∫ T

0

(
α2(ū(ρu)xx + ρuūxx)− α2ūx(ρu)x

)
φx dt dx.

(7.26b)

Clearly if the right-hand sides of (7.26a) and (7.26b) limit to zero, then the limit of
ρ and u is a weak solution to the homentropic Euler equations. Begin by examining
the term

(7.27)

∫
R

∫ T

0

α2ūρ̄xxφx dt dx.

Substitute the definition of the averaging so that α2ρ̄xx = ρ̄ − ρ and examine the
quantity

(7.28)

∫
R

∫ T

0

ū(ρ̄− ρ)φx dt dx.
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It was established that ū and φx are bounded, and by Lemma 7.1 (ρ̄ − ρ) converges
in L1 to zero. Thus we find

(7.29) lim
α→0

∫
R

∫ T

0

α2ūρ̄xxφx dt dx =

∫
R

∫ T

0

ū(ρ̄− ρ)φx dt dx = 0,

and the similar terms can be treated likewise.
Next examine the term

(7.30)

∫
R

∫ T

0

α2ūx(ρu)xφx dt dx.

Perform an integration by parts to obtain

(7.31) −
∫
R

∫ T

0

α2ū(ρu)xxφx dt dx−
∫
R

∫ T

0

α2ū(ρu)xφxx dt dx.

The first term in (7.31) limits to zero from the steps shown above. The second term
can be bounded with the estimates found from Young’s inequality,∣∣∣∣∣

∣∣∣∣∣
∫
R

∫ T

0

α2ū(ρu)xφxx dt dx

∣∣∣∣∣
∣∣∣∣∣ ≤

∫
R

∫ T

0

α2U
1

α
UR|φxx| dt dx(7.32)

= αU2R||φxx||1,(7.33)

and thus limits to zero. The similar terms can be treated likewise. Thus we see
that solutions to equations (7.4) converge to weak solutions of the homentropic Euler
equations as α → 0.

7.6. Numerics. In this section, we discuss the numerical techniques we used
to simulate the observable homentropic Euler equations and the homentropic Euler
equations. As we discussed in the introduction, we are proposing an inviscid regular-
ization of the Euler equations. As such we wish to avoid any numerical dissipation
or artificial viscosity from our numerical method, as this numerical dissipation could
lead to a false sense of regularization. We also wish to isolate our regularization
technique from any complexities, such as boundary conditions, so we use periodic
boundary conditions. Thus we choose a pseudospectral method, as this is known to
prevent numerical viscosity to the extent possible [34] and forces periodic boundary
conditions.

For the homentropic Euler equations, shocks are expected to form in the simu-
lations. If a pseudospectral method were used, the Gibbs phenomenon would cause
spurious oscillations; thus we use a well-established numerical method, utilized as
described in section 7.6.2.

7.6.1. Numerical simulations of the observable homentropic Euler
equations. In practical applications, it is the mean quantity that is desired, since
any physical measurement is in effect an averaged quantity. In turbulence simulations
(LES and LANS-α) and other averaging techniques that address shock behavior, only
the evolution of the averaged quantities is conducted [35, 36, 6, 37, 2]. In doing so, the
numerical resolution required for accurate simulations is lessened. It is our hope that
the averaging technique that we present here will be used in turbulence and shock
simulation. In that regard, for the observable homentropic Euler equations we wish
only to resolve the averaged quantities in our numerical simulations. To obtain the
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evolution equations of the averaged quantities, we first apply the Helmholtz filter to
equations (7.2) and add (ρ̄ū)x or (ρuū)x to both sides:

ρ̄t + (ρ̄ū)x = (ρ̄ū)x − (ρ̄ux + ūρx),(7.34a)

ρut +
(
ρuū+ P̄

)
x
= (ρuū)x − (ρuux + ū(ρu)x).(7.34b)

Then we use the definition of the Helmholtz filter (3.1) to manipulate the equations
to

ρ̄t + (ρ̄ū)x = (1 − α2∂2
x) (ρ̄ū)x − ρ̄(ūx − α2ūxxx)− ū(ρ̄x − α2ρ̄xxx),(7.35a)

ρut +
(
ρuū+ P̄

)
x
= (1− α2∂2

x) (ρuū)x − ρu(ūx − α2ūxxx)− ū((ρu)x − α2(ρu)xxx).

(7.35b)

One can then simplify to obtain

ρ̄t + (ρ̄ū)x = −3α2(ūxρ̄x)x,(7.36a)

ρut +
(
ρuū+ P̄

)
x
= −3α2(ūx(ρu)x)x.(7.36b)

The equations are now completely in terms of the averaged quantities, with the right-
hand sides being the potentially regularizing terms.

In order to reduce the potential for numerical dissipation we use a pseudospectral
method to solve equations (7.36). We advance the equations in time with an explicit
Runge–Kutta–Fehlberg predictor/corrector (RK45) [6]. The initial time step is chosen
small enough to achieve stability and is then varied by the code using the formula

(7.37) hi+1 = γhi

(
εhi

||ρ̄i − ρ̂i||2

) 1
4

.

Thus the new time step is chosen from the previous time step and the amount of
error between the predicted density, ρ̄, and the corrected density, ρ̂. The relative
error tolerance was chosen at ε = 10−4 and the safety factor γ = 0.9. If the new
time step chosen was found to violate the CFL condition, the time step was chosen
according to the velocity speed and the speed of sound with CFL number 0.5.

Spatial derivatives and the inversion of the Helmholtz operator were computed in
the Fourier domain. The terms were converted into the Fourier domain using a fast
Fourier transform, multiplied by the appropriate term, and then converted back into
the physical domain.

A number of high resolution simulations were done at the resolution of 214 =
65536 grid points on the domain [0, 2π]. We found that some long-term simulations
may suffer from long-term numerical instabilities. In order to control this long-term
instability, every 200 time steps we zero out all the wave modes with a wave number
higher than N

3 , where N is the highest Fourier wave mode simulated. Wave modes

higher than 2N
3 are set to zero at every nonlinear multiplication to prevent aliasing.

Numerical runs were conducted for values α = 0.10, 0.09, . . . , 0.02, 0.01. In the worst-
case scenario, α = 0.01, the wave modes that are zeroed are over an order of magnitude
higher than 1

α , as seen in Figure 7.1.
We attribute this error to the right-hand side of equations (7.36) for the following

reasons. Examine the term

(7.38) −3α2(ūxρ̄x)x.
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Fig. 7.1. The spectral energy of u. The vertical lines represent three significant wave numbers.
From left to right the lines represent 1

α
, N

3
, and 2N

3
, where N is the highest Fourier wave mode

simulated. The wave mode N
3

is the highest wave mode that is ever zeroed out in the simulations.
Here with α = 0.01 you can see that zeroing of wave modes takes place an order of magnitude higher
than where the filtering has its effect. This graph was taken from simulations of example problem
(7.42). Here t = 0.1, N = 213, and n = 214, where N is the number of Fourier modes resolved and
n is the number of grid points.

Expand the term to

(7.39) −3α2ūxxρ̄x + ūxρ̄xx

and specifically notice the ūxρ̄xx term. This term can be considered as a viscosity-
like term that changes signs with ūx. Now along the expansion wave ūx > 0, and
thus there is a negative second derivative or viscosity-like term. Negative viscosity is
inherently unstable, so we attribute the numerical instabilities to this. This could be
compared to the backscatter of energy to larger scales that is observed in turbulence.

7.6.2. Numerics for the homentropic Euler equations. For the numerical
simulations of the homentropic Euler equations there are many established, available
techniques [31]. We chose to use the Richtmyer method, a well-established and low-
order method, as described by [31]. This method is a second-order, finite-difference
scheme and employs an artificial viscosity. This method requires an artificial viscosity
for stability when examining the Riemann problem. Several different values of ν
were tested to see that the value did not significantly affect the solutions on the time
interval examined. For the numerical simulations shown here, the artificial viscosity
was set at ν = 0.08. For reference, the simulations were done with 214 grid points on
a [0, 2π] domain.

7.7. Numerical results. This section examines some numerical simulations
performed on equations (7.36) with the technique described in the previous section.
A shock tube or Riemann problem exhibits both shocks and expansion waves, some
of the key behaviors of the homentropic Euler equations. Our pseudospectral method
enforces periodic boundary conditions, so we created two pressure jumps in the initial
conditions resolving this issue. Thus essentially a double shock tube problem is con-
sidered where there are two discontinuities in the initial conditions to make the left-
and right-hand side boundary conditions identical. The example problem considered
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(a) (b)

Fig. 7.2. A numerical simulation of the observable homentropic Euler equations (dashed line)
plotted against the solution to the homentropic Euler equations (solid line). Here α = 0.05. In both
figures, it is clear that the observable homentropic Euler equations are capturing both the expansion
wave and shock behavior. (a) The velocity. (b) The density.

is

u0(x) = 0,(7.40)

a0(x) =

⎧⎪⎨
⎪⎩

1, 0 < x ≤ 2π
3 ,

2, 2π
3 < x ≤ 4π

3 ,

1, 4π
3 < x ≤ 2π,

(7.41)

which for γ = 1.4, the constant for air, is equivalent to

u0(x) = 0,(7.42)

ρ0(x) =

⎧⎪⎨
⎪⎩

0.43120, 0 < x ≤ 2π
3 ,

13.7984, 2π
3 < x ≤ 4π

3 ,

0.43120, 4π
3 < x ≤ 2π.

(7.43)

In our previous work, we established that for the CFB equations (1.1) initial
conditions with discontinuities were excluded in order to avoid nonentropic behavior
[5]. By averaging the initial conditions it was proven that the solution to the CFB
equations would be regularized for all time. This was done by averaging the initial
conditions with the same filter used on the velocity. We use this same approach here.
Thus when the filter is applied to the entire system to obtain equations (7.36), the
initial conditions are filtered twice, with the same filter used on the equations.

In the simulation of the double shock tube problem the observable homentropic
Euler equations are displaying behavior similar to that of the homentropic Euler
equations. Figures 7.2 and 7.3 show the solutions to the two sets of equations imposed
on each other. One can see that the solutions to the observable homentropic Euler
equations capture both the expansion wave and the shock front. The solutions to
the observable homentropic Euler equations are seen to be smooth, with the solutions
tightening to the solutions of the homentropic Euler equations as α decreases.

Now we check the convergence of the solutions of the observable homentropic Eu-
ler equations to the solution of the homentropic Euler equations as α → 0. Figures 7.4
and 7.5 show that as α → 0 the error in the L1 norm appears to be approaching zero



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POTENTIAL REGULARIZATION OF THE EULER EQUATIONS 1229

(a) (b)

Fig. 7.3. A numerical simulation of the observable homentropic Euler equations (dashed line)
plotted against the solution to the homentropic Euler equations (solid line). Here α = 0.01. In both
figures, it is clear that the observable homentropic Euler equations are capturing both the expansion
wave and shock behavior. With the lower value of α the fit is much closer. (a) The velocity. (b) The
density.

Fig. 7.4. The difference between the density in solutions of the observable homentropic Euler
equations and the solution of the homentropic Euler equations in the L1 norm as α → 0. As
α → 0 the difference in the solutions also approaches zero. The measurements were taken for
α = 0.01, 0.02, . . . , 0.1 at times t = 0 (dashed dotted line), t = 0.2 (solid line), and t = 0.4 (dashed
line).

for the example problem. This suggests that the solutions of the observable homen-
tropic Euler equations converge to the solutions of the homentropic Euler equations.

7.8. Kinetic energy rates. In addition to checking solution profiles, we ex-
amine the effect that our averaging technique has upon the kinetic energy. For the
homentropic Euler equations we define kinetic energy as 1

2ρu
2. For the observable

homentropic Euler equations there are three different averaged quantities, ρ̄, ū, and
ρu. With these quantities, kinetic energy can be defined in a variety of ways. In this
section we examine a kinetic energy with unfiltered terms, 1

2ρu
2, and a kinetic energy

with filtered terms, 1
2 ρ̄ū

2. We have also examined the possible kinetic energies 1
2ρuū

and ρu2

2ρ̄ , but for the example that we are considering, the difference between them
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Fig. 7.5. The difference between the momentum in solutions of the observable homentropic
Euler equations and the solution of the homentropic Euler equations in the L1 norm as α → 0.
As α → 0 the difference in the solutions also approaches zero. The measurements were taken for
α = 0.01, 0.02, . . . , 0.1 at times t = 0.2 (solid line) and t = 0.4 (dashed line).

(a) (b)

Fig. 7.6. The kinetic energy of the homentropic Euler equations and the observable hom-
entropic Euler equations. The energy for the true solution of the homentropic Euler equations
is shown as a dashed line. The simulations of the observable homentropic Euler equations for
α = 0.01, 0.02, . . . , 0.1 are shown as solid lines. The bottommost line represents α = 0.1. As α
decreases the energy approaches the energy of the homentropic Euler equations. (a) Plots of the
unfiltered kinetic energies, 1

2
ρu2. (b) Plots of the filtered kinetic energies, 1

2
ρ̄ū2. When examined,

the plots of 1
2
ρuū and ρu2

2ρ̄
were identical to this one.

and 1
2 ρ̄ū

2 was of the order 10−14 and thus negligible. For flows with more small scale
behavior, we would expect this difference to be more significant.

For the shock tube problem, the kinetic energy of the system clearly starts at
zero. For the homentropic Euler equations the solution is self-similar, depending only
on the variable x

t . Thus the kinetic energy for the homentropic Euler equations will
be a linear function of time. This can be seen in Figure 7.6. We find that the energies
of the observable homentropic Euler equations mimic that of the homentropic Euler
equations. In the simulations of the observable homentropic Euler equations there is
a brief period where the energy growth is curved before it appears to behave linearly.
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We attribute this to the averaging of the initial conditions. As we would expect, as α
decreases the energies grow closer to those of the homentropic Euler equations.

8. The one-dimensional Euler equations. While the homentropic Euler
equations are good for low pressures, to have real impact we want our technique to
be able to capture the behavior of the full one-dimensional Euler equations. With the
observable homentropic Euler equations showing promise, we attempt to use the same
general methodology on the one-dimensional Euler equations. The one-dimensional
Euler equations consist of three conservation laws paired with a constitutive law. The
conservation laws are conservation of mass, momentum, and energy. For the consti-
tutive law, this paper is considering an ideal gas. Thus the one-dimensional Euler
equations considered, in conservation form, are

ρt + (ρu)x = 0,(8.1a)

(ρu)t + (ρuu+ P )x = 0,(8.1b)

(ρe)t + (ρeu+ uP )x = 0,(8.1c)

P = (γ − 1)

(
ρe− 1

2
ρu2

)
.(8.1d)

The technique described in section 4 applies the product rule to nonlinear terms,
and then the nondifferentiated quantities are spatially filtered. Again this is to re-
duce the production of higher wave modes as time progresses. When our averaging
technique is applied, the new equations are

ρt + ρ̄ux + ūρx = 0,(8.2a)

(ρu)t + ρuux + ū(ρu)x + Px = 0,(8.2b)

(ρe)t + ρeux + ū(ρe)x + Pux + ūPx = 0,(8.2c)

P = (γ − 1)

(
ρe− 1

2
ρu2

)
,(8.2d)

which we refer to as observable Euler equations. The general method established in
section 4 does not address exactly how to handle the pressure terms. In the conser-
vation of momentum equation (8.1b) the pressure term is left unaffected, as in the
observable homentropic Euler equations. However, the (uP )x term in the conserva-
tion of energy equation (8.1c) is averaged using the general method. We have found
in earlier numerical simulations that not performing the averaging technique on this
term leads to some nonphysical behavior.

We now go on to show results for the observable Euler equations similar to those
shown in section 7.

8.1. Conservation of mass and momentum. The Euler equations (8.1) are
conservation laws that address conservation of mass, momentum, and energy. This
section shows that the observable Euler equations preserve these same quantities by
casting the equations into a conservative form. It would be sufficient to refer the
reader back to sections 5 and 7.1 and note that our method does not disturb the
conservation structure of the Euler equations. However, explicitly showing this for
the observable Euler equations for the Helmholtz filter has merit, as it demonstrates
a new form of the equations which are of interest.

When using the Helmholtz filter, the nonfiltered equations can be expressed by
their filtered counterparts using (3.1). Using this filter, equations (8.2) can be rewrit-
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ten as

ρt +
[
ρ̄ū− α2(ūρ̄xx + ρ̄ūxx) + α2ūxρ̄x

]
x
= 0,(8.3a)

(ρu)t +
[
ρuū− α2(ū(ρu)xx + ρuūxx) + α2ūx(ρu)x + P

]
x
= 0,(8.3b)

(ρe)t +
[
ρeū− α2(ū(ρe)xx + ρeūxx) + α2ūx(ρe)x

+ P ū− α2(ūPxx + P ūxx) + α2ūxP x

]
x
= 0.(8.3c)

In this conservation form it is easy to see that mass
∫
ρ, momentum

∫
ρu, and energy∫

ρe are conserved.

8.2. Traveling wave solution. In section 7.2 it was established that certain
traveling shock solutions to the homentropic Euler equations are also solutions to
the observable homentropic Euler equations. The section establishes a similar result
for the Euler and observable Euler equations using the same techniques. Again the
operator [·] is used as defined in section 6.

Again we examine a traveling shock of the form

ρ =

{
ρL, x < St,
ρR, x ≥ St,

(8.4a)

ρu =

{
ML, x < St,
MR, x ≥ St,

(8.4b)

ρe =

{
EL, x < St,
ER, x ≥ St.

(8.4c)

Using the Rankine–Hugoniot jump conditions (6.5) we can establish that at a
discontinuity a weak solution to the Euler equations (8.1) must satisfy

S =
[ρu]

[ρ]
,(8.5a)

S =
[ρuu+ P ]

[ρu]
,(8.5b)

S =
[ρeu+ uP ]

[ρe]
.(8.5c)

Using the results from sections 6 and 7.2 we can establish that a weak solution
to the observable Euler equations (8.2) will have a shock speed dictated by

S =
[ρ̄u+ ūρ]

[ρ]
,(8.6a)

S =
[ρuu+ ūρu+ P ]

[ρu]
,(8.6b)

S =
[ρeu+ ūρe+ Pu+ ūP ]

[ρe]
.(8.6c)

Using the exact same computations as in section 7.2 it is a straightforward process
to show that for solutions of the form (8.4), the jump conditions for the Euler equations
(8.5) are exactly equivalent to the jump conditions for the observable Euler equations
(8.6). Thus (8.4) with values satisfying equations (8.5) will be traveling weak solutions
to the observable Euler equations.

Additionally, using the same analysis found in section 7.3, it can again be shown
that the thickness of the shocks for the traveling solution will decrease linearly with α.
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8.3. Eigenvalues. Much like the homentropic Euler equations, the one-dimen-
sional Euler equations have very well defined eigenvalues u, u± a. We again examine
how the averaging technique has affected the eigenvalues of the system. As these cal-
culations have not been directly applied in the scope of this paper, these calculations
can be found in Appendix B.

8.4. Convergence to a weak solution. Section 7.5 showed that with certain
assumptions made on the solutions of the observable Euler equations, the solutions
converge to weak solutions of the homentropic Euler equations as α → 0. With similar
assumptions on the observable Euler equations, we are able to prove that the solutions
converge to weak solutions of the Euler equations.

With an existence and uniqueness proof for the observable Euler equations not
yet developed, we are again forced to make several assumptions. We assume that for
every α > 0 there exists a solution to equations (8.2) and that a subsequence of these
solutions converges in L1

loc. Additionally, we assume that the solutions are bounded
independent of α. Thus far, all numerical simulations have given the impression that
these assumptions are reasonable; however, proving such results can be found to be
nontrivial. The following summarizes these assumptions:

||u||∞ < U,(8.7a)

||ρ||∞ < R,(8.7b)

||e||∞ < E,(8.7c)

lim
α→0

u = ũ in L1
loc,(8.7d)

lim
α→0

ρ = ρ̃ in L1
loc,(8.7e)

lim
α→0

e = ẽ in L1
loc.(8.7f)

With these assumptions we are able to prove that the weak solutions to the
observable Euler equations (8.2) will converge to weak solutions of the Euler equations
(8.1) as α → 0. The examination of this claim is done with the Helmholtz filter,
which has bounds already established in section 7.5. These bounds can be combined
with Young’s inequality [32] and assumptions (8.7) to obtain estimates on the filtered
quantities. The following estimates essentially state that the filtered quantities have
the same infinity bound as the unfiltered quantities and that the first derivatives of
the filtered quantities are of order 1

α . Explicitly these estimates are

||ū||∞ < U,(8.8)

||ρ̄||∞ < R,(8.9)

||ρu||∞ < UR,(8.10)

||ē||∞ < E,(8.11)

||ρe||∞ < ER,(8.12)

||P ||∞ < (γ − 1)

(
ER+

1

2
RU2

)
,(8.13)

||ūx||∞ <
1

α
U,(8.14)

||ρ̄x||∞ <
1

α
R,(8.15)

||(ρu)x||∞ <
1

α
UR,(8.16)
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||(ρe)x||∞ <
1

α
ER,(8.17)

||P x||∞ <
1

α
(γ − 1)

(
ER+

1

2
RU2

)
.(8.18)

Begin by multiplying equations (8.3) by a test function φ and integrate over time
and space. The test function φ has an infinite number of bounded and continuous
derivatives and is compactly supported. After the multiplication and integration the
equations become

∫
R

∫ T

0

ρtφ+
(
ρ̄ū− α2(ūρ̄xx + ρ̄ūxx) + α2ūxρ̄x

)
x
φdt dx = 0,

(8.19a)

∫
R

∫ T

0

(ρu)tφ+
((
ρuū− α2(ū(ρu)xx + ρuūxx) + α2ūx(ρu)x

)
+ P

)
x
φdt dx = 0,

(8.19b)

∫
R

∫ T

0

(ρe)tφ+
[
ρeū− α2(ū(ρe)xx + ρeūxx) + α2ūx(ρe)x

+ P ū− α2(ūP xx + P ūxx) + α2ūxP x

]
x
φdt dx = 0.(8.19c)

Integrate by parts to obtain∫
R

∫ T

0

ρφt + (ρ̄ū)φx dt dx =

∫
R

∫ T

0

(
α2(ūρ̄xx + ρ̄ūxx)− α2ūxρ̄x

)
φx dt dx,(8.20a)

∫
R

∫ T

0

(ρu)φt + (ρuū+ P )φx dt dx =

∫
R

∫ T

0

(
α2(ū(ρu)xx + ρuūxx)− α2ūx(ρu)x

)
φx dt dx,

(8.20b)

∫
R

∫ T

0

(ρe)φt +
(
ρeū+ P ū

)
φx dt dx =

∫
R

∫ T

0

(
α2(ū(ρe)xx + ρeūxx)− α2ūx(ρe)x

)
φx dt dx

+

∫
R

∫ T

0

(
α2(ūP xx + Pūxx)− α2ūxP x

)
φx dt dx.(8.20c)

Clearly if the right-hand side of the above equations limits to 0 as α → 0, then
convergence to a weak solution is proven. Since the calculations are all but identical,
the reader is referred to section 7.5 to prove that the right-hand sides of the equations
do limit to 0. With the right-hand side limiting to 0 we find that ρ, u, and e are, in
fact, limiting to a weak solution of the Euler equations.

8.5. Numerics. The numerical simulations for the observable Euler equations
are the same as those discussed in section 7.6 with the addition of the energy equation.
The equations simulated here are

ρ̄t + (ρ̄ū)x = −3α2(ūxρ̄x)x,(8.21a)

ρut +
(
ρuū+ P̄

)
x
= −3α2(ūx(ρu)x)x,(8.21b)

ρet +
(
ρeū+ ūP̄

)
x
= −3α2

(
ūx

(
(ρe)x + P x

))
x
.(8.21c)

The same pseudospectral method is used to solve equations (8.21). Again an adap-
tive Runge–Kutta is used to advance in time with all spatial derivatives and the inver-
sion of the Helmholtz operator conducted in the Fourier domain. The simulations were
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conducted with 214 = 65536 grid points on the domain [0, 2π] for approximately 10000
time steps. Numerical runs were conducted for values α = 0.10, 0.09, . . . , 0.02, 0.01.
The same long-term instability was found in these numerical simulations and was
again controlled by setting wave modes higher than N

3 to zero every 200 time steps.

8.6. Numerical results. Again the preferred example problem is the shock
tube or Riemann problem. The classic Sod test problem [38] is the ideal example as it
produces a demonstration of expansion waves, shocks, and contact surfaces, the three
classical behaviors of the Riemann problem in the Euler equations. It is also a quite
well-known example that is commonly used. For this example the initial conditions
are

u0(x) = 0,(8.22a)

ρ0(x) =

{
1, 0 < x ≤ π,
0.125, π < x ≤ 2π,

(8.22b)

P0(x) =

{
10, 0 < x ≤ π,
1, π < x ≤ 2π.

(8.22c)

The difficulty with this example is that the boundary conditions are not periodic.
As such, we restrict ourselves to the domain [π2 ,

3π
2 ] up to time t = 0.25 to avoid

contamination regions due to the periodic nature of the simulation.

Again we note that in our previous work, we established that for the CFB equa-
tions (1.1) initial conditions with discontinuities were excluded in order to avoid non-
entropic behavior [5]. By averaging the initial conditions it was proven that the
solution to the CFB equations would be regularized for all time. This was done by
averaging the initial conditions with the same filter used on the velocity. We use the
same approach here. Thus when the filter is applied to the entire system to obtain
equations (8.21), the initial conditions are filtered twice with the same filter used on
the equations.

Figures 8.1 and 8.2 show simulations of the observable Euler equations for two
different values of α plotted against the solution to the Euler equations. The expansion
wave, contact surface, and the shock are all captured in the behavior of the observable
Euler equations. For the smaller value of α, the behavior of the observable Euler
equations matches that of the Euler equations more closely.

(a) (b) (c)

Fig. 8.1. A numerical simulation of the observable Euler equations (dashed line) plotted against
the solution to the Euler equations (solid line). Here α = 0.05 at time t = 0.25. In the figures, it
is clear that the observable Euler equations are capturing the expansion wave, contact surface, and
shock behavior. (a) The density. (b) The velocity. (c) The energy.
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(a) (b) (c)

Fig. 8.2. A numerical simulation of the observable Euler equations (dashed line) plotted against
the solution to the Euler equations (solid line). Here α = 0.01 at time t = 0.25. In the figures, it
is clear that the observable Euler equations are capturing the expansion wave, contact surface, and
shock behavior. With the lower value of α the fit is much closer. (a) The density. (b) The velocity.
(c) The energy.

Fig. 8.3. The difference between the density in solutions of the observable Euler equations and
the solution of the Euler equations in the L1 norm as α → 0. As α → 0 the difference in the
solutions also approaches zero. The measurements were taken for α = 0.01, 0.02, . . . , 0.1 at times
t = 0.05 (solid line), t = 0.15 (dashed line), and t = 0.25 (dashed dotted line).

As before, we check the convergence of the solutions of the observable Euler
equations to the solution of the Euler equations as α → 0. Figures 8.3, 8.4, and 8.5
show that as α → 0 the error in the L1 norm appears to be approaching zero for the
example problem. This suggests that the solutions of the observable Euler equations
converge to the solutions of the Euler equations.

8.7. Kinetic energy rates. As in section 7.8, we examine the kinetic energy
for the shock tube problem. Again for the shock tube problem, the solutions to
the Euler equations are self-similar, depending only on the variable x

t , and thus the
kinetic energy changes linearly in time. For the Euler equations, we examine the
kinetic energy 1

2ρu
2, and for the observable Euler equations we examine an unfiltered

kinetic energy 1
2ρu

2 and a filtered kinetic energy 1
2 ρ̄ū

2. Other filtered kinetic energies
were also considered, but as in the homentropic case, for this example problem, the
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Fig. 8.4. The difference between the momentum in solutions of the observable Euler equations
and the solution of the Euler equations in the L1 norm as α → 0. As α → 0 the difference in the
solutions also approaches zero. The measurements were taken for α = 0.01, 0.02, . . . , 0.1 at times
t = 0.05 (solid line), t = 0.15 (dashed line), and t = 0.25 (dashed dotted line).

Fig. 8.5. The difference between the energy in solutions of the observable Euler equations and
the solution of the Euler equations in the L1 norm as α → 0. As α → 0 the difference in the
solutions also approaches zero. The measurements were taken for α = 0.01, 0.02, . . . , 0.1 at times
t = 0.05 (solid line), t = 0.15 (dashed line), and t = 0.25 (dashed dotted line).

differences between them and 1
2 ρ̄ū

2 were negligible.
Figure 8.6 shows how the kinetic energies for the observable Euler equations

behave for various values of α. Again after a brief period, the energies seem to vary
linearly with time. We attribute this brief period to the averaging of the initial
conditions. As α decreases the energies for the observable Euler equations approach
the energy of the Euler equations, as we would expect if the solutions are converging
as α → 0.
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(a) (b)

Fig. 8.6. The kinetic energy of the Euler equations and the observable Euler equations. The
energy for the true solution of the Euler equations is shown as a dashed line. The simulations of
the observable Euler equations for α = 0.01, 0.02, . . . , 0.1 are shown as solid lines. The bottommost
line represents α = 0.1. As α decreases the energy approaches the energy of the Euler equations.
(a) Plots of the unfiltered kinetic energies, 1

2
ρu2. (b) Plots of the filtered kinetic energies, 1

2
ρ̄ū2.

When examined, the plots of 1
2
ρuū and ρu2

2ρ̄
were identical to this one.

9. Conclusion. Using the convectively filtered Burgers (CFB) equations as in-
spiration, we developed a new averaging technique with the intent of regularizing
both shocks and turbulence simultaneously. This paper examines primarily the shock
regularization aspect of the technique. We discussed the physical motivation for the
method and then derived a general technique to be used on conservation laws. It
was then established that this technique, when applied to conservation laws, would
preserve the original conservative properties and create similar, if not identical, shock
speeds.

The remainder of the paper then examined the effects when this method was ap-
plied to the homentropic Euler and Euler equations. The results show much promise.
It was found that with the Helmholtz filter both the observable homentropic Euler
and observable Euler equations can be rewritten in conservation form, reiterating that
the original conservative properties are preserved. For both sets of equations we were
able to find traveling shock solutions, where the Rankine–Hugoniot jump conditions
for the modified equations reduced to the same jump conditions as for the original
equations. For both sets of equations it was proven that as the filtering is decreased,
α → 0, the solutions will converge to weak solutions of the original equations. Both
of these results show that the proper shock speeds of the original equations will be
preserved with the averaging techniques.

Numerical simulations were run on both sets of equations for the shock tube prob-
lem. These simulations demonstrated that the modified equations mimic the behavior
of the original equations. The observable homentropic Euler equations captured both
the expansion wave and the shock front behavior, while the observable Euler equations
captured the expansion wave, contact surface, and the shock front. The solutions ap-
peared continuous and smooth. Furthermore, as α → 0 these solutions were seen to
be converging to the solutions of the original equations.

There is still more work to be done regarding these equations. It would be bene-
ficial to establish more theory regarding both sets of equations. Specifically existence
proofs would be beneficial. It would be interesting to see if either set of equations
possesses a Hamiltonian structure.
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The observable homentropic Euler and observable Euler equations are showing
promise as a potentially new regularization method based on the preliminary exam-
ination considered here. From these results we believe that this averaging technique
leads to a regularization of the homentropic Euler and Euler equations that is capable
of capturing the relevant behavior of the equations. We now list potential future work
regarding these equations.

10. Future work. There are many open questions left regarding the observable
Euler equations. We have touched on a couple of them, but in this section we list
explicitly some of the more pertinent questions.

• Positivity of density. In sections 5, 7.1, and 8.1 we addressed the fact that
the quantities preserved by the original conservation laws will still be con-
served under the modified equations. However, the positivity of the density,
ρ, was not addressed. From a physical standpoint a negative density is dis-
allowed, but there is no guarantee that the averaged equations would satisfy
this property.

• Existence of solutions. As of publication there is currently no rigorous proof
for the existence of solutions to the observable homentropic Euler equations
(7.2) or the observable Euler equations (8.2) for α > 0. Clearly this is desired
in order to advance the theory and application of these equations.

• Compactness of solutions. In order to show convergence of a subsequence
of the solutions, one must first establish the compactness of the function
space where the solutions reside. This is often the most challenging part for
nonlinear PDEs. It is hoped that with the existence proof would come a priori
bounds on the solution which could be utilized to established compactness.

• Entropy solution. In this paper we have shown that a converging sequence of
bounded solutions will converge to a weak solution of the original equations.
A weak solution, however, is not guaranteed to capture the physical behavior
desired by the solution. A conservation law will often support multiple, if
not an infinite number of, solutions. Thus it is desirable to prove that the
solutions are converging to the entropy solution, which is a unique weak
solution that reflects the physical behavior of the conservation laws.

• Multiple dimensions. For use in practical applications this technique should
be extended into two and three dimensions. We believe that the derivation of
these equations shown by Mohseni [30] is the proper way to extend this tech-
nique into higher dimensions. This is an active direction of current research.

It will be important to address these and other questions in order to establish this
averaging method as a valid regularization technique.

Appendix A. Eigenvalues for the observable homentropic Euler equa-
tions. This appendix examines how the proposed averaging affects the eigenvalues
of the system and thus the characteristic speeds. Again these calculations are impor-
tant in verifying that the characteristic nature of the homentropic Euler equations is
preserved and in establishing numerical stability.

In order to cast the equations in vector-matrix form we first rewrite the equations
in their primitive variable form:

ρt + ρ̄ux + ūρx = 0,(A.1a)

ut + ūux +

(
ρu− uρ̄

ρ

)
︸ ︷︷ ︸

β

ux +
γργ−1

ρ
ρx = 0.(A.1b)
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The equations can then be written in vector-matrix form, leading to

(A.2)

[
ρ
u

]
t

+

[
ū ρ̄
a2

ρ ū+ β

]
︸ ︷︷ ︸

A

[
ρ
u

]
x

= 0.

The eigenvalues of matrix A are

(A.3) λ± = ū+
β

2
±
√

β2

4
+ a2

ρ̄

ρ
.

Examining quantities β and ρ̄
ρ it seems apparent that as the filtering decreases β → 0

and ρ̄
ρ → 1, thus regaining the original eigenvalues.

The matrix A can also be diagonalized and can thus be written in the form

(A.4) A = QΛQ−1,

where Λ is a diagonal matrix with its diagonal entries being λ±. Using this we can
write the observable homentropic Euler equations in the characteristic form

(A.5)
∂v

∂t
+ Λ

∂v

∂x
= 0,

where

(A.6) dv = Q−1

[
dρ
du

]
.

By diagonalizing A we find that

(A.7) Q−1 =

⎡
⎢⎢⎣ 1

ρ β +
√
ρ (ρ β2 + 4 a2 ρ̄)

2 a2

1
ρ β −√

ρ (ρ β2 + 4 a2 ρ̄)

2 a2

⎤
⎥⎥⎦ .

And thus we can define the quantities v± through the relation

(A.8) dv± = dρ+
ρ β ±√

ρ (ρ β2 + 4 a2 ρ̄)

2 a2
du.

We can then say that dv± = 0 along the characteristic dx = λ± dt.
If α = 0, there would be no filtering and β = 0. In this case we would get

(A.9) dv± = dρ± ρ

a
du = 0 along the characteristic dx = u± a dt,

which is the case for the homentropic Euler equations. For the homentropic Euler
equations the characteristic variables are able to be computed analytically and are

(A.10) v± = u± 2a

γ − 1
.

For nonzero α’s there appears to be no straightforward way of integrating (A.8).
Thus currently we have no analytical expression for the characteristic variables, though
we have not spent much time investigating this possibility.
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Appendix B. Eigenvalues for the observable Euler equations. In this
appendix we examine the eigenvalues of the observable Euler equations. We begin
with equations (8.2), and through substitution and manipulation we can express them
in primitive variable form as

ρt + ūρx + ρ̄ux = 0,(B.1)

ut + ūux +

(
ρu− uρ̄

ρ

)
︸ ︷︷ ︸

β

ux + Px = 0,(B.2)

Pt − (γ − 1)βρuux +

(
(γ − 1)P̄ + (γ − 1)ρe− 1

2
(γ − 1)ρ̄u2

)
︸ ︷︷ ︸

ρã2

ux+(γū− (γ − 1)u)Px = 0.

(B.3)

The equations can then be written in vector-matrix form, leading to

(B.4)

⎡
⎣ ρ

u
P

⎤
⎦
t

+

⎡
⎣ ū ρ̄ 0

0 β + ū 1
ρ

0 −(γ − 1)βρu+ ρã2 γū− (γ − 1)u

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ ρ

u
P

⎤
⎦
x

= 0.

Define the quantities β, κ, and ã as

β =
ρu− uρ̄

ρ
,(B.5)

κ = ū− u,(B.6)

ã2 =

(
(γ − 1)P̄ + (γ − 1)ρe− 1

2 (γ − 1)ρ̄u2
)

ρ
.(B.7)

Then the eigenvalues of matrix A are

λ0 = ū,(B.8)

λ± =
u+ ū

2
+

β

2
− γκ

2
±
√

β2

4
+

(γ − 1)2κ2

4
− (γ − 1)(ū + u)β

2
+ ã2.(B.9)

The quantities β and κ would appear to limit to zero as α → 0, and the quantity
ã2 would appear to limit to a2, the speed of sound for the Euler equations. Again the
averaging technique alters the eigenvalues, but with the original values regained with
the limit as α → 0.

Much like in the homentropic case the matrix A can be diagonalized and thus
written in the form A = QΛQ−1. Using this we can write the observable Euler
equations in the characteristic form

(B.10)
∂v

∂t
+ Λ

∂v

∂x
= 0,

where

(B.11) dv = Q−1

⎡
⎣ dρ

du
dP

⎤
⎦ .
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When diagonalizing A we calculated

(B.12) Q−1 =

⎡
⎢⎢⎢⎢⎣

ã2−(γ−1)ūβ
(γ−1)κρ̄ 1 −1

ρ(γ−1)κ

0 1
(γ−1)κ−β+

√
β2+(γ−1)2κ2−2(γ−1)(ū+u)β+4ã2

2ρ(ã2−(γ−1)uβ)

0 1
(γ−1)κ−β−

√
β2+(γ−1)2κ2−2(γ−1)(ū+u)β+4ã2

2ρ(ã2−(γ−1)uβ)

⎤
⎥⎥⎥⎥⎦ .

With Q−1 containing such a complex structure we were not able to find a straight-
forward way of determining an analytical expression for the characteristic variables.
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