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LAGRANGIAN AVERAGING FOR COMPRESSIBLE FLUIDS∗

H. S. BHAT† , R. C. FETECAU‡ , J. E. MARSDEN† , K. MOHSENI§ , AND M. WEST¶

Abstract. This paper extends the derivation of the Lagrangian averaged Euler (LAE-α) equa-
tions to the case of barotropic compressible flows. The aim of Lagrangian averaging is to regularize
the compressible Euler equations by adding dispersion instead of artificial viscosity. Along the way,
the derivation of the isotropic and anisotropic LAE-α equations is simplified and clarified.

The derivation in this paper involves averaging over a tube of trajectories ηε centered around a
given Lagrangian flow η. With this tube framework, the LAE-α equations are derived by following a
simple procedure: start with a given action, Taylor expand in terms of small-scale fluid fluctuations ξ,
truncate, average, and then model those terms that are nonlinear functions of ξ. Closure of the
equations is provided through the use of flow rules, which prescribe the evolution of the fluctuations
along the mean flow.
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1. Introduction.

Historical remarks. The incompressible case will be discussed first. The La-
grangian averaged Euler (LAE-α) equations for average incompressible ideal fluid
motion first appeared in the context of averaged fluid models in Holm, Marsden, and
Ratiu (1998a, 1998b). Dissipation was added later to produce the Lagrangian aver-
aged Navier–Stokes (LANS-α) equations, also known as the Navier–Stokes-α equa-
tions.1

Remarkably, the LAE-α equations are mathematically identical to the inviscid
second grade fluid equations introduced in Rivlin and Erickson (1955), except for the
fact that the parameter α is interpreted differently in the two theories. In the case of
LAE-α and LANS-α, the parameter α is a spatial scale below which rapid fluctuations
are smoothed by linear and nonlinear dispersion.

As in, for example, the work of Whitham (1974) on nonlinear waves, the distinc-
tive feature of the Lagrangian averaging approach is that averaging is carried out at
the level of the variational principle and not at the level of the Euler or Navier–Stokes
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equations, which is the traditional averaging or filtering approach used for both the
Reynolds averaged Navier–Stokes (RANS) and the large eddy simulation (LES) mod-
els. As such, the variational procedure does not add any artificial viscosity, a physical
reason to consider the LAE-α or LANS-α equations as good models for incompressible
turbulent flow. Moreover, it has been proven that the α models are computationally
very attractive (see Chen et al. (1999) and Mohseni et al. (2003)).

Although sharing the same general technique (use of averaging and asymptotic
methods in the variational formulation), several alternative derivations of incompress-
ible LAE-α equations exist in the literature. One of these derivations (see Holm
(1999)) uses the generalized Lagrangian mean (GLM) theory developed in Andrews
and McIntyre (1978).

An alternative derivation of the incompressible LAE-α and LANS-α equations
was given in Marsden and Shkoller (2003) by using an ensemble average over the set
of solutions of the Euler equations with initial data in a phase-space ball of radius α
while treating the dissipative term via stochastic variations. The derivation also
uses a turbulence closure that is based on the Lagrangian fluctuations, namely a
generalization of the frozen turbulence hypothesis of Taylor (see Taylor (1938)).

Rigorous analysis aimed at proving global well-posedness and regularity of the
three-dimensional isotropic and anisotropic LANS-α equations can be found in, for ex-
ample, Foias, Holm, and Titi (2002) and Marsden and Shkoller (2001, 2003). However,
global existence for the inviscid three-dimensional LAE-α remains an open problem.

From a computational viewpoint, numerical simulations of the α models (see
Chen et al. (1999) and Mohseni et al. (2003)) show that the LANS-α equations give
computational savings comparable to LES models for forced and decaying turbulent
flows in periodic domains. For wall-bounded flows, it is expected that either the
anisotropic model or a model with varying α needs to be used; the computational
efficacy of these methods on such flows remains to be demonstrated.

As far as the compressible case is concerned, the only reference we know of is
Holm (2002a). We shall discuss the relation between the work in this reference and
the present paper below.

We refer the interested reader to Marsden and Shkoller (2001, 2003) for a more
detailed history of the PDE analysis for LAE-α and LANS-α equations and to Mohseni
et al. (2003) for a survey and further references about the numerical aspects of these
models.

Motivation. In compressible flows there are two major problems at higher wave
numbers, or small scales, that require special attention. These are (a) turbulence
for high Reynolds number flows (common with incompressible flows) and (b) strong
shocks. In both cases the challenge lies in the appropriate representation of small-
scale effects. For turbulence, the energy cascade to smaller scales can be balanced by
viscous dissipation, resulting in the viscous regularization of the Euler equations.

Historically, viscous dissipation has been used to regularize shock discontinuities.
This includes adding to the Euler equation nonphysical and artificial viscous terms
and Fourier’s law for heat transfer in the shock region (see, e.g., Liepmann and Roshko
(1957) and Shapiro (1953)). This way, the steepening effect of the nonlinear convective
term is balanced by dissipation. We believe that Lagrangian averaging is a reasonable
alternative way to regularize shock waves. The net effect of Lagrangian averaging is
to add dispersion instead of dissipation to the Euler equations; that is, one adds terms
that redistribute energy in a nonlinear fashion. In other, rather different situations,
the technique of balancing a nonlinear convective term by dispersive mechanisms was
used by Lax and Levermore (1983) for the KdV equation and by Kawahara (1970)
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and Kakutani and Kawahara (1970) for plasma flows.
The competition between nonlinearity and dispersion has, of course, resulted in

remarkable discoveries, the most famous being solitons, localized waves that collide
elastically, suffering only a shift in phase. The robustness of solitons in overcom-
ing strong perturbations is largely due to a balance between nonlinearity and linear
dispersion. Note that in Lagrangian averaging the energy redistribution mechanism
that is introduced is nonlinear and might yield other interesting features that warrant
further investigation.

Another feature of the compressible Lagrangian averaged Navier–Stokes-α equa-
tions (or CLANS-α equations) is that in turbulent flows with shocks the effect of
shocks and turbulence are simultaneously modeled by the same technique, namely
the Lagrangian averaging method.

Issues addressed in this paper. In this paper we apply the averaged Lagrangian
methodology to derive the isotropic and anisotropic averaged models for compressible
Euler equations.

One goal of this paper is to present a clear derivation of the averaged equations.
We are particularly interested in separating the two issues of averaging and modeling.
In the derivation, a new ensemble averaging technique is proposed and investigated.
Instead of taking clouds of initial conditions, as in Marsden and Shkoller (2003), we
average over a tube of trajectories ηε centered around a given Lagrangian flow η. The
tube is constructed by specifying the Lagrangian fluctuations ξε = ηε ◦ η−1 at t = 0
and providing a flow rule which evolves them to all later times. The choice of flow
rule is a precise modeling assumption which brings about closure of the system.

For the incompressible case we assume that fluctuations are Lie advected by the
mean flow (or frozen into the mean flow as divergence-free vector fields), and we
obtain both the isotropic and the anisotropic versions of the LAE-α equations. The
advection hypothesis is the natural extension to vector fields of the classical frozen
turbulence hypothesis of Taylor (see Taylor (1938)) stated for scalar fluctuations.

The second goal of this work is to extend the derivation to barotropic compressible
flows. This problem has already been considered by Holm (see Holm (2002a)) in the
context of GLM motion. In this work, an alpha model appears as a GLM fluid
theory with an appropriate Taylor hypothesis closure. However, even though Holm
(2002a) enumerates several frozen-in closure hypotheses, the averaged equations are
derived only for the case when the fluctuations are parallel transported by the mean
flow. In our work we will consider a more general advection hypothesis to study
the compressible anisotropic case. In addition, a physically based new flow rule is
introduced to deal with the isotropic case.

The averaging technique consists of expanding the original Lagrangian with re-
spect to a perturbation parameter ε, truncating the expansion to O(ε2) terms, and
then taking the average. It turns out that the averaged compressible Lagrangian de-
pends on the Lagrangian fluctuations ξ′ only through three tensor quantities which
are quadratic in ξ′. In the terminology of Holm (2002a) these tensors represent the
second-order statistics of the Lagrangian fluctuations. Evolution equations for these
tensors are derived from a core modeling assumption: a prescribed flow rule for the
time evolution of the fluctuations ξ′. The flow rule gives us closure, allowing us to
apply Hamilton’s principle to the averaged Lagrangian and thereby derive an equation
for the mean velocity u.

The organization of the rest of the paper is as follows. In section 2 we describe
a general procedure for Lagrangian ensemble averaging. This procedure is then ap-
plied to the action for incompressible fluids in section 3 to demonstrate our derivation
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technique. The general procedure is applied again in section 4, this time to the more
complex case of barotropic compressible fluids. Section 5 is devoted to modeling is-
sues; here the strategy of modeling the evolution of Lagrangian fluctuations ξ′ using
flow rules is discussed in detail. In section 6 we derive the averaged equations for in-
compressible and compressible models in both isotropic and anisotropic versions. The
appendix provides technical details about the fluctuation calculus used throughout the
paper.

Main results. The main result of this paper is the derivation of compressible
Lagrangian averaged Euler equations with

• anisotropic modeling of fluid fluctuations—see equations (6.2);
• isotropic modeling of fluid fluctuations—see equations (6.4).

In addition, we provide an improved derivation of the incompressible isotropic and
anisotropic LAE-α equations.

2. General Lagrangian averaging. A mathematical setting for a certain class
of compressible fluid flow problems will be given first. After describing the general
procedure for Lagrangian averaging, the specific case of the Euler action for fluids will
be considered.

Let M be an open subset of R
N representing the containing space of a fluid.

Suppose we are given a Lagrangian for a compressible fluid, L(ψ, ψ̇, µ0), where ψ ∈
Diff(M), the space of diffeomorphisms of M , (ψ, ψ̇) ∈ TDiff(M), and µ0 ∈ ΛN (M), the
space of N -forms on M . Fix a time interval [0, T ], and let C(Diff(M)) be the path space
of smooth maps from [0, T ] into Diff(M). Then the action S : C(Diff(M))×ΛN (M) →
R is

S(η, µ0) =

∫ T

0

L(η(t), η̇(t), µ0) dt.

We seek an averaged action Sα(η, µ0), where α is a length scale characterizing the
coarseness of the average. Taking η and µ0 as given, we shall describe how to compute
Sα(η, µ0).

Remark. It is important to emphasize that for both S and Sα, η is merely a
test curve. It is not an extremal of the action S. We are trying to average the
action S itself, not any fluid dynamical PDE or the solutions of such a PDE. Our
final product Sα should not depend at all on an initial choice of the test curve η.

Tube initialization. The first step is to take ξε(x, t) to be a family of diffeomor-
phisms about the identity. That is,

for each ε ≥ 0, ξε(·, t) ∈ Diff(M) for all t, and

at ε = 0, ξε(x, t) = x for all x, t.

Define the vector fields ξ′ and ξ′′ via

ξ′ =
∂

∂ε

∣

∣

∣

∣

ε=0

ξε and ξ′′ =
∂2

∂ε2

∣

∣

∣

∣

ε=0

ξε.

Use ξε to construct a tube of material deformation maps that are close to η by letting
ηε(X, t) = ξε(η(X, t), t), or, written more compactly,

ηε = ξε ◦ η.(2.1)
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Here, X is a material point in the reference configuration. Define the spatial veloc-
ity by uε(x, t) = η̇ε((ηε)−1(x, t), t), where ηε is a given material deformation map.
Compactly written, this reads as

uε = η̇ε ◦ (ηε)−1.(2.2)

The map uε is a time-dependent vector field on M ; i.e., for each ε ≥ 0, and for all t,
uε(·, t) ∈ X(M).

Averaging. The existence of an averaging operation 〈 · 〉 will now be postulated.
The properties this operation is required to satisfy and an example of such an opera-
tion will be given shortly.

Relationship between uε and u. It is desirable to have the fluctuations ξε centered,
on average, about the identity: 〈ξε(x, t)〉 = x for all positions x at all times t. What
is actually needed is that for n ≥ 1,

〈

∂nξε

∂εn

∣

∣

∣

∣

ε=0

〉

= 0.(2.3)

In other words, the nth-order fluid fluctuation vector fields should all have mean zero.
Restricting the map to be centered about the identity means simply that the average
will not be skewed in an arbitrary direction. From (2.2) and (2.3) one can derive

〈uε ◦ ξε(x, t)〉 = u(x, t).(2.4)

Equation (2.4) shows in which sense the average of uε is u in a Lagrangian-mean
theory defined by 〈ηε(·, t)〉 = η(·, t). This equation is closely connected with the
generalized Lagrangian-mean description of Andrews and McIntyre (1978), where the
Lagrangian-mean velocity ūL and the fluctuating Eulerian velocity uξ are related in
a similar way.

Density. For the nonaveraged Lagrangian L, µ0 is a parameter in the sense of
Lagrangian semidirect product theory; see Marsden, Ratiu, and Weinstein (1984) and
Holm, Marsden, and Ratiu (1998b). The physical interpretation of µ0 is as follows.
Since µ0 is an N -form on M , it can be written as

µ0 = ρ0 dx
1 ∧ · · · ∧ dxN ,

where ρ0 is a smooth function on M . Now ρ0(X) is the density of the fluid at the
material point X in the reference configuration. This is in contrast to the spatial
density ρε(x, t), which gives us the density of the fluid at the spatial point x at time t.
Defining

µε = ρε dx1 ∧ · · · ∧ dxN ,(2.5)

one has the relationship

(ηε)∗µ0 = µε.(2.6)

Fluctuation calculus. Because uε and ρε will be expanded, the ε-derivatives of
uε and ρε need to be calculated. First, define

u′ =
∂

∂ε

∣

∣

∣

∣

ε=0

uε and u′′ =
∂2

∂ε2

∣

∣

∣

∣

ε=0

uε.(2.7)
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By differentiating (2.2), one finds expressions for u′ and u′′ in terms of u, ξ′, and ξ′′.
The calculations can be performed intrinsically using Lie derivative formulae—the
results, as found in Marsden and Shkoller (2003), are

u′ = ∂tξ
′ + [u, ξ′],(2.8a)

u′′ = ∂tξ
′′ + [u, ξ′′] − 2∇u′ · ξ′ −∇∇u(ξ′, ξ′).(2.8b)

In these formulas, the bracket [x, y] = £xy is the standard Jacobi–Lie bracket of
vector fields on M (see, for example, Abraham, Marsden, and Ratiu (1988)). Next,
define

ρ′ =
∂

∂ε

∣

∣

∣

∣

ε=0

ρε and ρ′′ =
∂2

∂ε2

∣

∣

∣

∣

ε=0

ρε.(2.9)

One obtains expressions for ρ′ and ρ′′ in terms of ρ, ξ′, and ξ′′ by differentiating (2.6)
(see the appendix for the detailed calculations). The results are

ρ′ = − div(ρξ′),(2.10a)

ρ′′ = div(div(ρξ′ ⊗ ξ′)) − div(ρξ′′).(2.10b)

Averaging operation. In the above development, an averaging operation has
been implicitly used. The properties it is required to satisfy will now be spelled
out. Let F(Y ) mean the space of smooth, real-valued functions on a manifold Y .
If Y is infinite-dimensional, then smoothness is understood in the sense of infinite-
dimensional calculus with respect to, for example, suitable Sobolev topologies. These
infinite-dimensional technicalities will not be required in any detail in this paper, and
so may be treated formally.

As before, the set M is the containing space of the fluid, and α is a small positive
number. Let X be an appropriately chosen space of fields, designed to model “fluid
fluctuations,” on M , and consider the space Y = [0, α] × X. Assume that there is an
averaging operation

〈 · 〉 : F(Y ) → F(M)

satisfying the following properties for f, g ∈ F(Y ), a, b ∈ R, ψ ∈ F([0, α]), and
h ∈ F(X):

Linearity: 〈af + bg〉 = a〈f〉 + b〈g〉,(2.11)

Independence: 〈ψh〉 =
1

α

(
∫ α

0

ψ(ε) dε

)

〈h〉,(2.12)

Commutativity:

〈

∫

f dx

〉

=

∫

〈f〉 dx,(2.13)

〈∂f〉 = ∂〈f〉, where ∂ = ∂t or ∂ = ∂xi .(2.14)

Here, ψh ∈ F(Y ) is defined as the pointwise product. Note that if ψ is a constant,
then the first and second requirements are compatible.

For compressible flow, the space of fluid fluctuations is X = X(M). For in-
compressible flow, the space of divergence-free vector fields is used instead, i.e.,
X = Xdiv(M). In general, X = TIdentityX, where X is the space to which the tube
maps ξε belong.
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Example. Let µ be a probability measure on the unit sphere S in X(M), and
define the average of a (vector-valued) function f(ε, w) on [0, α] × S by

〈f〉 :=
1

α

∫ α

0

∫

S

f(ε, w) dµ(w) dε.

One checks formally that this is an example of an averaging operation that satisfies
the desired properties.

3. Incompressible flow revisited. Before applying the averaging technique to
the case of compressible flow, we shall first derive averaged equations for incompress-
ible flow, equations which have already been derived in the literature. The presenta-
tion given here has the advantage of being easily generalized to compressible flows.
This advantage stems from the careful use and interpretation of modeling assumptions
on the fluctuations ξ′—only intuitive assumptions are required regarding the mean
behavior of the fluctuations, as well as a first-order Taylor hypothesis. Furthermore,
great care has been taken to separate the algebraic issues involved with the averaging
procedure from the modeling issues.

In the incompressible case, fluid fluctuations are modeled using the volume-
preserving diffeomorphism group on M , which is denoted by Diffvol(M). Therefore,
the tube construction from the previous section now reads as follows: let ξε(x, t) be
a family of volume-preserving diffeomorphisms about the identity. That is,

for each ε ≥ 0, ξε(·, t) ∈ Diffvol(M) for all t, and

at ε = 0, ξε(x, t) = x for all x, t.

This forces ξ′(·, t) to be a divergence-free vector field for all t.
Averaged Lagrangian for incompressible fluids. Let us start with the standard

Lagrangian

l(uε) =

∫

M

1

2
‖uε‖2 dx(3.1)

and expand uε in a Taylor series about u:

uε = u + εu′ +
1

2
ε2u′′ + O(ε3).(3.2)

Substituting this expansion into (3.1) gives

l(uε) =

∫

M

1

2
‖u2‖ + εu · u′ +

ε2

2

(

‖u′‖2 + u′′ · u
)

+ O(ε3) dx.(3.3)

Let l̂(uε) be the truncation of l to terms of order less than ε3. Using formulas (2.8),

u′ and u′′ can be rewritten in terms of u, ξ′, and ξ′′. We do this in order to write l̂ as a
function only of u, ξ′, and ξ′′. Making the substitutions and rewriting in coordinates,

l̂(uε) =

∫

M

1

2
uiui + ε

(

ui(∂tξ
′i) + uiujξ′

i
,j − uiξ′

j
ui
,j

)

+
ε2

2

(

(∂tξ
′i)(∂tξ

′i) + 2(∂tξ
′i)ξ′

i
,ku

k − 2(∂tξ
′i)ui

,kξ
′k + ξ′

i
,ju

jξ′
i
,ku

k

− ξ′
i
,ju

jui
,kξ

′k − ui
,jξ

′jξ′
i
,ku

k + ui
,jξ

′jui
,kξ

′k − 2(∂tξ
′i
,j)ξ

′jui − 2ξ′
i
,jku

kξ′
j
ui

− 2ξ′
i
,ku

k
,jξ

′jui + 2ui
,kjξ

′kξ′
j
ui + 2ui

,kξ
′k
,jξ

′jui − ui
,jkξ

′jξ′
k
ui
)

+
ε2

2

(

(∂tξ
′′i)ui + ujξ′′

i
,ju

i − ξ′′
j
ui
,ju

i
)

dx,(3.4)
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where the notation ui
,j means ∂ui/∂xj . Throughout this paper, there is an implied

sum over repeated indices. The averaged Lagrangian for incompressible flow is now
simply lαin = 〈l̂〉.

Zero-mean fluctuations. Before undertaking this computation, recall from sec-
tion 2 that the fluctuation diffeomorphism maps ξε are required to have as their
average the identity map. This statistical assumption regarding the behavior of the
fluctuations is the first modeling assumption:

〈ξ′〉 = 0 and 〈ξ′′〉 = 0.(3.5)

This point would not be worth belaboring, except that, when combined with the
properties of our averaging operation (2.11)–(2.14), assumption (3.5) forces all linear
functions of ξ′, ξ′′, and their derivatives to also have zero mean. Applying this fact
to (3.4) causes the entire O(ε) group and the second O(ε2) group (i.e., the last line of
(3.4)) to vanish inside the average.

We continue analyzing (3.4): the only remaining terms are (1/2)uiui and the first
O(ε2) group. Within this O(ε2) group, we integrate certain terms by parts and notice
that all terms involving time derivatives of ξ′ group together:

(3.6) (∂tξ
′i)(∂tξ

′i) + 2(∂tξ
′i)ξ′

i
,ku

k + ξ′
i
,ju

jξ′
i
,ku

k

=
(

(∂tξ
′i) + ξ′

i
,ju

j
)(

(∂tξ
′i) + ξ′

i
,ku

k
)

=

∥

∥

∥

∥

Dξ′

Dt

∥

∥

∥

∥

2

,

where D/Dt is the material derivative:

D

Dt
= (∂t + u · ∇).(3.7)

We then simplify the remaining non-time-derivative terms from (3.4), integrating by
parts to remove second-order spatial derivatives. The final expression for the averaged
incompressible Lagrangian is

lαin(u) =

∫

M

{

1

2
‖u‖2 +

α2

2

[〈

∥

∥

∥

∥

Dξ′

Dt

∥

∥

∥

∥

2
〉

−
1

2
〈tr(∇ξ′ · ∇ξ′)〉 ‖u‖2

]}

dx.(3.8)

Modeling of ξ′. Immediate application of Hamilton’s principle to (3.8) does not
yield a closed system of equations. Namely, we have initial (t = 0) data for ξ′ but no
way to compute this vector field for t > 0. Our approach in what follows will be to
write down, based on physical considerations, an evolution law, or flow rule, for ξ′.

A flow rule consists of a prescribed choice of φ in the following evolution equation
for ξ′:

Dξ′

Dt
= φ(u, ρ, ξ′).(3.9)

Given a choice of ξ′ at t = 0, this equation will uniquely determine ξ′ for t > 0. Let
us assume we have a linear flow rule,

Dξ′
i

Dt
= Ωijξ′

j
,(3.10)
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where Ωij is allowed to depend on u and ρ but not on ξε or its derivatives. The caveat
here is that our choice of Ω must be compatible with incompressibility; in particular,
div ξ′ = 0 at t = 0, and Ω must be chosen such that ξ′ remains divergence-free as it
evolves. At this stage, one might raise the issue of the tube ξε and request a concrete
description of the whole object. Such a description is unnecessary; in order to close the
system of evolution equations resulting from (3.8), we need only describe the evolution
of the first-order fluctuation field ξ′. Now defining the Lagrangian covariance tensor

F = 〈ξ′ ⊗ ξ′〉(3.11)

and using the linear flow rule (3.10), the Lagrangian (3.8) can be rewritten as

lαin(u) =

∫

M

{

1

2
uiui +

α2

2

[

ΩijΩikF jk −
1

2
F ij
,iju

kuk

]}

dx.(3.12)

Here we have used the fact that ξ′ must be divergence-free.
Advection flow rule. The first flow rule we shall consider results from setting

Ωij = ui
,j :

Dξ′
i

Dt
= ui

,jξ
′j .(3.13)

Using the definition of the material derivative, it is trivial to see that this flow rule
is equivalent to Lie advection of ξ′: ∂tξ

′ = −£uξ
′. This advection hypothesis is the

vector field analogue of the classical frozen turbulence hypothesis of Taylor introduced
in Taylor (1938). This hypothesis is widely used in the turbulence community (see
Cocke (1969), for instance, for usage of this hypothesis even in the sense of Lie advec-
tion of vector fields). More recently, this generalized version of the Taylor hypothesis
has been used to achieve turbulence closure in the derivation of incompressible LAE-α
equations (see Marsden and Shkoller (2001, 2003)) or in the work of Holm (see Holm
(2002a)) on averaged compressible models using the GLM theory.

The advection flow rule (3.13) is perhaps the most obvious choice for Ω that is
compatible with incompressibility. Note that if div ξ′ = 0 at t = 0, then differentiating
(3.13) with respect to xi yields

∂t (div ξ′) = ui
,jξ

′j
,i − ξ′

i
,ju

j
,i = 0.

Therefore, div ξ′ = 0 for all t > 0. Using this flow rule, both anisotropic and isotropic
models shall be developed. For incompressible flow, no other flow rules will be con-
sidered.

Incompressible, anisotropic, inhomogeneous flow. In this case, the flow rule is
used to derive an evolution equation for the covariance tensor F . Time-differentiating
F ij = 〈ξ′

i
ξ′

j
〉 and using (3.13) yields the Lie advection equation ∂tF = −£uF .

Equipped with an evolution equation for F , we can apply Hamilton’s principle to
(3.12) and derive a closed system with unknowns u, the average velocity, and F , the
covariance tensor.

Carrying this out, one finds that the anisotropic LAE-α equations are given by
the following coupled system of equations for u and F :

∂t(1 − α2C)u + (u · ∇)(1 − α2C)u = − grad p,(3.14a)

div u = 0,(3.14b)

∂tF + ∇F · u− F · ∇u−∇uT · F = 0,(3.14c)
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where p is the fluid pressure, and the operator C is defined by

Cu = div[∇u · F ].(3.15)

When α = 0, the system (3.14a)–(3.14b) reduces to the incompressible Euler equation.
Note. Start with the generic incompressible averaged Lagrangian (3.12) and sub-

stitute the advection flow rule (3.13). Now integrate the last term by parts and use
div ξ′ = 0. The result is

lαin(u) =

∫

M

{

1

2
‖u‖

2
−

α2

2
u · [∇∇u : F ]

}

dx,(3.16)

which is exactly the Lagrangian used in Marsden and Shkoller (2003) to derive the
anisotropic LAE-α equations. However, in Marsden and Shkoller (2003) the second-
order Taylor hypothesis

D

Dt
〈ξ′′〉 ⊥ u,

where the orthogonality is taken in L2, is necessary to achieve closure. Our choice of
modeling assumptions rendered unnecessary any such hypothesis on the second-order
fluctuations ξ′′. Second-order Taylor hypotheses, unlike the first-order hypothesis
retained from Marsden and Shkoller (2003), do not have much precedent in the tur-
bulence literature, as discussed above.

Incompressible, isotropic, homogeneous fluids. To model the motion of an ap-
proximately isotropic fluid, we take the covariance tensor F to be the identity matrix,
i.e.,

F ij =
〈

ξ′
i
ξ′

j
〉

= δij .(3.17)

The choice of F ij = δij is a modeling assumption, and thus will be valid only for flows
which almost preserve this property. Note that (3.17) is strictly inconsistent with the
advection flow rule, and thus can be regarded only as an approximation.

For the case of incompressible isotropic mean flow, we assume that (3.17) holds;
then differentiating this equation with respect to xk and xj and using the fact that
ξ′ is divergence-free, we have

〈

ξ′
i
,jξ

′j
,k

〉

= −
〈

ξ′
i
,jkξ

′j
〉

.

Hence

〈tr(∇ξ′ · ∇ξ′)〉 =
〈

ξ′
i
,jξ

′j
,i

〉

= −
〈

ξ′
i
,jiξ

′j
〉

= 0,

and the Lagrangian (3.8) simplifies to

lαin,iso(u) =

∫

M

{

1

2
‖u‖2 +

α2

2

〈

∥

∥

∥

∥

Dξ′

Dt

∥

∥

∥

∥

2
〉}

dx.(3.18)

We emphasize that this is only an approximation, so that

lαin,iso(u) ≈ lαin(u)
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along fluid trajectories u(t) for which the covariance tensor is approximately the iden-
tity. Now using the flow rule given by (3.13), the averaged Lagrangian lαin from (3.18)
becomes

〈

∥

∥

∥

∥

Dξ′

Dt

∥

∥

∥

∥

2
〉

= ui
,ju

i
,k

〈

ξ′
j
ξ′

k
〉

= ui
,ju

i
,j ,(3.19)

where we have used the isotropy assumption (3.17). Hence, (3.18) becomes

lαin(u) =

∫

M

{

1

2
‖u‖2 +

α2

2
‖∇u‖

2

}

dx.(3.20)

This expression for the averaged Lagrangian in the isotropic case is identical to the
one derived in Marsden and Shkoller (2001). Now applying either Hamilton’s principle
or Euler–Poincaré theory, we obtain the standard isotropic LAE-α equations

∂t(1 − α2∆)u + (u · ∇)(1 − α2∆)u− α2(∇u)T · ∆u = − grad p,(3.21a)

div u = 0,(3.21b)

where p is the usual fluid pressure.

4. Averaged Lagrangian for compressible flow. Having understood the in-
compressible case, we now turn to the compressible case. The procedure is identical
in all aspects, except we must now keep track of density fluctuations. Start with the
reduced Lagrangian for compressible flow:

l(uε, ρε) =

∫

M

(

1

2
‖uε‖2 −W (ρε)

)

ρε dx.(4.1)

The fluid is assumed to be barotropic, meaning that W , the potential energy, is a
function only of ρ, the fluid density. Now expand the velocity and density in Taylor
series

uε = u + εu′ +
1

2
ε2u′′ + O(ε3),

ρε = ρ + ερ′ +
1

2
ε2ρ′′ + O(ε3)

(4.2)

and also expand the potential energy W :

W (ρε) = W (ρ) + εW ′(ρ)ρ′ +
1

2
ε2(W ′′(ρ)ρ′

2
+ W ′(ρ)ρ′′) + O(ε3).

Substituting these expansions into the reduced Lagrangian gives

l(uε, ρε) =

∫

M

(

1

2
‖u‖2 −W (ρ)

)

ρ

+ ε

[

(u · u′ −W ′(ρ)ρ′) ρ +

(

1

2
‖u‖2 −W (ρ)

)

ρ′
]

+ ε2
[

1

2

(

(‖u′‖2 + u′′ · u) − (W ′′(ρ)ρ′
2

+ W ′(ρ)ρ′′)
)

ρ

+ (u · u′ −W ′(ρ)ρ′)ρ′ +
1

2

(

1

2
‖u‖2 −W (ρ)

)

ρ′′
]

+ O(ε3) dx.

(4.3)
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This expansion is now truncated, leaving out all terms of order ε3 and higher. Denote
the truncated Lagrangian by l̂(uε, ρε), and define the averaged Lagrangian lα by

lα(u, ρ) = 〈l̂(uε, ρε)〉.(4.4)

We now outline the procedure by which we arrive at a final written expression for the
averaged Lagrangian lα. The algebra is straightforward but tedious, so details will be
omitted.

1. Use (2.8) and (2.10) to rewrite (4.3) in terms of only u, ρ, and the fluctuations
ξ′, ξ′′.

2. Remove two kinds of terms that vanish inside the average:
(a) linear functions of ξ′ or ξ′′,
(b) linear functions of derivatives (either spatial or temporal) of ξ′ or ξ′′.

Note: see “zero-mean fluctuations” in section 3 for justification.
3. Carry out the averaging operation. As in the incompressible case, the only

quantities left inside the average should be nonlinear functions of ξ′.

The end result for the averaged Lagrangian for compressible flow is

lαcomp(u, ρ) =

∫

M

{

1

2
ρ‖u‖2 − ρW (ρ) + α2

[

1

2
ρ

〈

∥

∥

∥

∥

Dξ′

Dt

∥

∥

∥

∥

2
〉

−
1

2
w′(ρ)

〈

div(ρξ′)2
〉

−
1

2
w(ρ) 〈div div(ρξ′ ⊗ ξ′)〉

]}

dx.

(4.5)

We have introduced w, the enthalpy,2 defined by

w(ρ) = W (ρ) + ρW ′(ρ).(4.6)

5. Flow rule modeling. In deriving the expressions (4.5) and (3.8) for the
averaged Lagrangians, no assumptions were made regarding how the Lagrangian fluc-
tuations ξ′ evolve. In this section we describe one possible strategy for modeling ξ′.
Note that such a strategy is necessary to achieve closure for the evolution equations
associated with the Lagrangians (4.5) or (3.8).

Preliminary observation. Assuming ξ′ evolves via a linear flow rule, as in (3.10),
the vector field ξ′ appears in the averaged Lagrangian (4.5) only as part of the following
three expressions:3

F ij =
〈

ξ′
i
ξ′

j
〉

,(5.1a)

Gi =
〈

ξ′
i
ξ′

j
,j

〉

,(5.1b)

H =
〈

ξ′
i
,iξ

′j
,j

〉

.(5.1c)

Note that F is the same Lagrangian covariance tensor from the incompressible deriva-
tion. In terms of these quantities, the averaged compressible Lagrangian is given in

2Any function w satisfying ∇w = (∇p)/ρ, where p is pressure, is called enthalpy. Our definition
of w implies w,i = 2W ′(ρ)ρ,i + ρW ′′(ρ)ρ,i = (ρ2W ′(ρ)),i/ρ = p,i/ρ, as required.

3Similar tensors appear in Holm (1999); they are referred to as second-order statistics of the
Lagrangian fluctuations.
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coordinates by

lαcomp(u, ρ) =

∫

M

{

1

2
ρuiui − ρW (ρ) + α2

[

1

2
ρΩijΩikF jk

−
1

2
w′(ρ)

(

ρ,iρ,jF
ij + 2ρρ,jG

j + ρ2H
)

−
1

2
w(ρ)

(

ρF ij
)

,ij

]}

dx.

(5.2)

Time-differentiating (5.1a)–(5.1c) and using the linear flow rule (3.10) results in evo-
lution equations for F , G, and H:

∂tF
ij = ΩikF kj + ΩjkF ki − ukF ij

,k ,(5.3a)

∂tG
i = ΩikGk − ukGi

,k + F ijΩkj
,k +

〈

ξ′
i
ξ′

j
,k

〉

(Ωkj − uk
,j),(5.3b)

∂tH = 2Ωik
,i G

k − ukH,k + 2
〈

ξ′
j
,kξ

′i
,i

〉

(Ωkj − uk
,j).(5.3c)

Flow rules. For compressible flows, two flow rules will be considered. We define
them first and then go on to consider their relative merits and demerits:

(I) Advection: Ωij = ui
,j .

(II) Rotation: Ωij = 1
2
(ui

,j − uj
,i).

Advection. For our anisotropic model, we shall advect ξ′ and treat the quantities
F , G, and H as parameters in the final system, each of which will have its own
evolution equation. Substituting Ωij = ui

,j into the system (5.3) gives

∂tF = −£uF ,(5.4a)

∂tG = −£uG + F · grad(div u),(5.4b)

∂tH = 2 grad(div u) ·G− u · gradH.(5.4c)

One advantage of the advection flow rule is that it automatically closes the system
(5.3). For a general choice of Ω, the system involves 〈ξ′

i
ξ′

j
,k〉 and 〈ξ′

j
,kξ

′i
,i〉, which

cannot be expressed solely in terms of F , G, and H.
Rotation. For our isotropic model, we want to know whether the evolution equa-

tion (5.3a) for F preserves the isotropy relationship F = Identity. Suppose F ij = δij

at t = 0. Then substituting into (5.3a) reveals that

∂t|t=0F
ij = Ωij + Ωji.(5.5)

If Ω is antisymmetric, we have ∂t|t=0F = 0, and F (x, t) = Identity solves (5.3a) for
all t. We wish to know whether this solution is unique. This is guaranteed by a
straightforward generalization of the results concerning linear hyperbolic systems of
first-order equations from Evans (1998), assuming sufficient smoothness of u.

We conclude that antisymmetry of Ω is sufficient to guarantee that the initial
data F = Identity is, in fact, preserved for all t. Then an immediate choice of a
tensor Ω that is antisymmetric is given by the rotation flow rule (II). This form has
a very attractive physical interpretation. Putting the linear flow rule equation (3.10)
together with (II) gives us

Dξ′

Dt
= ω × ξ′,(5.6)
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where ω = curlu is the vorticity vector. The last equation can be interpreted in the
sense that fluctuations are rigidly transported by the mean flow, with a local angular
velocity given by the vorticity vector.

Finally, the rotation flow rule (II) does not by itself close the system (5.3). When
using this flow rule, we shall assume that G = 0 and H = β2.

6. Equations for averaged dynamics. Here we shall write down two systems
of coupled PDEs which describe the evolution of the average velocity and density in
a compressible flow. Each PDE is derived from an associated averaged Lagrangian.

Compressible, fully anisotropic, inhomogeneous fluids. By substituting (I) into
the Lagrangian (4.5), we obtain closure: the Lagrangian no longer depends explicitly
on ξ′, instead depending on the tensors F , G, and H, for which a self-contained
system of evolution equations (5.4) has already been derived—see section 5 for details.
Applying Hamilton’s principle directly to (5.2) yields an evolution equation for u, the
average fluid velocity. We write this equation using the operator A, which is defined
as

(Av)
i
=

1

ρ

(

ρvi,jF
jk
)

,k
.(6.1)

We also write w̃ = ρw′(ρ), where ′ means d/dρ as usual. The anisotropic compressible
LAE-α equations are

(6.2a)
(

∂tu
n + un

,iu
i
)

= (1 − α2A)−1 1

ρ

{

−ρw,n −
α2

2

[

ρ
(

F ijuk
,iu

k
,j

)

,n
+ F ij

,ijρw̃,n

+ F ij
,nρ,iw̃,j +

(

F ij
,nρ

)

,ij
w̃ + 2Gi

,nρw̃,i + 2Gi (ρw̃,n)
,i

+
(

Hρ2w̃′
)

,n

]

}

,

∂tρ = − div(ρu),(6.2b)

∂tF = −∇F · u + F · ∇u + ∇uT · F ,(6.2c)

∂tG = −u · ∇G + G · ∇u + F · grad(div u),(6.2d)

∂tH = 2 grad(div u) ·G− u · gradH.(6.2e)

Well-posedness. We now sketch a rough well-posedness argument for the system
(6.2). Assume that the tensor F is positive definite. By this it is meant, since F
is a (2, 0) tensor, that for any one-form θ, the contraction F : (θ ⊗ θ) is positive
everywhere. Given the ρ-weighted inner product 〈f, g〉 =

∫

f g ρ, we have 〈f,−Af〉 =
−
∫

f 1
ρ

(

ρf,jF
jk
)

,k
ρ =

∫

f,jF
jkf,k ρ > 0. Since −A is a positive definite linear

operator, the kernel of (1 − α2A) is trivial, and we expect that (6.2) is well-posed.
It would be of analytical interest to see to what extent the “geodesic part” of

these equations defines a smooth spray in the sense of Ebin and Marsden (1970), and
which holds for the EPDiff equations (that is, the n-dimensional CH equations), as
explained in Holm and Marsden (2004).

Compressible, isotropic, inhomogeneous. For this case we use flow rule (II), which
can be written in vector notation as

Ω =
1

2

(

∇u−∇uT
)

.

Recall that this flow rule is compatible with an isotropic choice of the covariance
tensor, i.e., F ij = δij . We further assume that G = 0 and H = β2 for some constant β.
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Using flow rule (II) along with these extra assumptions in the general Lagrangian
expression (5.2) gives us a Lagrangian in only two variables:

(6.3) l(u, ρ) =

∫

M

(

1

2
ρ‖u‖2 − ρW (ρ) + α2

[

1

4
ρ
(

‖∇u‖2 − tr(∇u · ∇u)
)

−
1

2
w′(ρ)

(

‖∇ρ‖2 + ρ2β2
)

−
1

2
w(ρ)∆ρ

])

dNx,

where w(ρ) = W (ρ) + ρW ′(ρ) is the enthalpy introduced in (4.6). Regarding this as
a Lagrangian in u and µ = ρ dNx, one uses the semidirect product Euler–Poincaré
equations (see Holm, Marsden, and Ratiu (1998b)) to derive the system

∂t(ρv) + (u · ∇) (ρv) + α2 div (ρΩ · ∇u) + ρv div u = −∇p̃,(6.4a)

∂tρ + div(ρu) = 0,(6.4b)

with the modified momentum ρv and modified pressure p̃ given by

ρv = ρu + α2 div (ρΩ) ,(6.5)

∇p̃ = ∇p + α2β2ρ∇

(

ρw′ +
1

2
ρ2w′′

)

.(6.6)

Here are explicit coordinate expressions for two slightly complicated objects:

ρvi = ρui +
1

2
α2

(

ρ
(

uj
,i − ui

,j

))

,j
,

div (ρΩ · ∇u) =
(

ρΩkiui
,j

)

,k
.

The following convention for divergences of tensors has been used: given a 2-tensor
Aij , we set

(divA)j = Aij
,i .

That is, the contraction implicit in the divergence operation always takes place on
the first index.

Observations.

• In the case of homogeneous incompressible flow, where ρ is constant and
div u = 0, the definition of ρv in (6.5) reduces to

v =

(

1 −
1

2
α2∆

)

u,

which after rescaling α to get rid of the factor of 1/2 is precisely the v one
finds in treatments of the incompressible LAE-α and LANS-α equations.

• The above does not work in one spatial dimension. The problem is that here
Ω reduces to (ux−ux)/2 = 0, which clearly does not describe transport at all.
For a one-dimensional isotropic model one may very well want to forget about
antisymmetry of Ω and instead use something such as the advection flow rule.
One may, quite reasonably, conclude that the only meaning of isotropy in one
dimension should be reflection symmetry.
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7. Future directions.

The initialization problem. Perhaps the largest unsolved problem for the La-
grangian averaged equations is the initialization problem. A concise statement of the
problem reads as follows:

Given initial data u0(x) for the Euler equation, how does one obtain
initial data U0(x) for the LAE-α equation?

Let us look at this problem in slightly more detail. Let u denote the solution of the
incompressible Euler equations for initial data u0, i.e., u(x, 0) = u0(x). Similarly,
let U denote the solution of the incompressible, isotropic LAE-α equations (3.21) for
initial data U0.

Now U should be, in some sense, the mean flow of the fluid. This means that
U0 should be the mean flow of the fluid at time t = 0, implying that U0 should be,
in some sense, an “averaged” or “filtered” version of u0. The question is, How does
one derive U0 from u0? Another way of phrasing this question is, How do we describe
(approximately) the initial state of the fluid (given exactly, for our purposes, by the
field u0) using only the mean flow variable U0?

Numerous methods have been used to initialize the LAE-α equations for use in
numerical simulations, but none of these methods has any theoretical foundation.
There is also no theory regarding how one should filter a full Euler flow u, or even a
family of flows uε, in order to obtain a mean flow that could be compared with the
full LAE-α trajectory U . In this respect, (2.4), which states that

〈uε ◦ ξε(x, t)〉 = u(x, t),

is not helpful: we have no way to compute the fluctuation diffeomorphism group ξε.
Therefore, we have no way to compute the left-hand side 〈uε ◦ ξε〉.

The difficulty can be summarized in the following commutative diagram. Here S
is the standard Euler action and Sα is the Lagrangian averaged action.

S
Lagrangian average

��

��

Sα

derive PDE,

solve numerically
��

u
the missing link

����������� U

Solid arrows represent steps that we know how to carry out. The dashed arrow
represents the one step that we do not know how to carry out. Our strategy for
this problem will be to develop methods by which we can test different filters for
obtaining U0 from u0 in practice.

Treatment of densities. Another area for further investigation involves our treat-
ment of the density tube µε. There are two questions to ground us:

1. We have tacitly assumed that at t = 0, for all ε and all x,

µ(x, t) = µε(x, t).

An argument similar to the one made above in our discussion of the initializa-
tion problem can be made here. Namely, µ(x, 0) represents the mean density
at time t = 0. Meanwhile, µε(x, 0) represents the true density of the fluid at
time t = 0. These two quantities need not be equal. This prompts the follow-
ing question: how would we carry out the procedure from sections 2 and 4
with tubes in which each trajectory does not have the same initial density
µ(x, 0)?
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2. As our derivation of the averaged compressible equations stand, we have
derived the fact that the “mean” density µ was advected by the mean flow U :
∂tµ = −£Uµ. Substituting µ = ρ dNx and using the definition of divergence
yields the standard continuity equation

∂tρ + div(ρU) = 0.

In both RANS and LES treatments of averaged/filtered flow, the mean flow U
satisfies a modified continuity equation rather than the standard one. There-
fore, why does the Lagrangian averaged mean density µ satisfy the usual
continuity equation?

The two questions regarding densities are, in fact, related. To see this, let us suppose
that, given the initial density µ0 associated with the center line of our tube η, we have
a method for constructing a family of initial densities µε

0 for each of the other curves
in the tube ηε. Now defining4

µε(t) = (ηεt )∗µ
ε
0 and µ̄(t) = 〈µε(t)〉,

we will find that µ̄(t) = ρ̄(t) dNx satisfies a modified continuity equation

∂tρ̄(t) + div(ρ̄u) + div

〈

ρε
(

εu′ +
1

2
ε2u′′

)〉

= 0.

To close this equation, we either must carry out the average directly or must expand ρε

about a suitable trajectory and make modeling assumptions.
Filtered Lagrangians. We have seen that the current averaging procedure leads to

complicated averaged equations. Furthermore, there is no clear way to evaluate nu-
merically the flow rules we have proposed on physical grounds. One of our immediate
goals is to investigate a filtering approach, still at the level of the Lagrangian, which
will lead to simpler averaged models that can be tested numerically. The filtering
approach we have in mind begins with a decomposition of the velocity field

u = ū + u′ and ρ = ρ̄ + ρ′(7.1)

into mean and fluctuating components. This would replace the Taylor expansion
(4.2) of uε and ρε that we carried out in the present work and would therefore lead
to Lagrangians and equations with much less algebraic complexity. As opposed to
the axiomatic averaging operation 〈 · 〉, the filter shall be specified concretely. We
expect this to help greatly with the initialization and density problems discussed
above; furthermore, the filtering approach leads naturally to questions about the
relationship between LES and LAE-α models.

Simpler models. As we previously noted, the flow rule approach developed in
this paper does not yield a one-dimensional compressible averaged model. We are
currently investigating such a model, derived from the filtered Lagrangian

l(ρ, u) =

∫
(

1

2
uv −W (ρ)

)

ρ dNx,(7.2)

where v =
(

1−α2∂xx
)

u. To derive this Lagrangian, we filter only the velocity, leaving
density and potential energy alone. This is the compressible analogue of the filtered

4Note that 〈µε(x, t)〉 �= µ(x, t).
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Lagrangian used in deriving the CH equation (see Camassa and Holm (1993)). The
analysis and numerical simulation of the new equations presented in section 6 of this
work will be difficult. The analysis of the PDE associated with (7.2) is much easier.
In particular, we expect that numerical studies of this one-dimensional model will
yield insight into the dynamics of the higher-dimensional equations.

Entropy. In the derivation of our compressible averaged models, we have made
the barotropic assumption W = W (ρ). We expect the resulting barotropic model to
be useful in computing mean flow quantities in regimes where we are not concerned
with strong physical shocks, for example in climate models. The next major step
forward will be to remove the barotropic assumption and derive a model that is valid
in regimes where we are concerned with shocks.

To this end, we have derived an averaged model for the general case, where
the potential energy has the form W (ρ, S), where S is the entropy. This model,
which consists of a system of equations for ρ, u, and S, also involves the pressure p.
Therefore, in order to close the system, we require an equation of state relating p
to ρ and S. The open question now is as follows: given an equation of state for
the compressible Euler system, what is the equation of state relating the averaged
variables to one another? In other words, how does Lagrangian averaging interact
with the thermodynamics of the system? We hope that analyzing a finite-dimensional
case of this interaction will shed light on this issue.

Connections with Kevrekidis’s coarse/fine methods. Given a description of any
mechanical system, not necessarily involving fluids, in the form of a Lagrangian , we
can carry out the procedure described in section 2 to find an averaged Lagrangian 〈〉.
From this we can derive equations of motion for the average dynamics of the origi-
nal system. Changing our language slightly, we say that we have a general method
for extracting the “coarse” dynamics of a mechanical system whose full description
involves motions on both fine and coarse scales.

Another method for computing the coarse-scale dynamics of a mechanical system
has been put forth in Kevrekidis et al. (2002). Kevrekidis’s method does not involve
trying to write down equations of motion which govern the coarse dynamics. Instead,
he offers an algorithmic approach, the crux of which is as follows. The coarse dynamics
of a system are found by lifting the initial (t = t0) state to an ensemble of initial states,
integrating each using the full equations until some small final time t = ε has been
reached, and projecting the resulting t = ε states onto a single state. This t = ε state
is then extrapolated to a state at some desired t = tf > 0. By iterating this process
and tuning the lifting, projection, and extrapolation operations, this method can be
used to recover the coarse dynamics of the system.

Now the question that begs to be asked is as follows: for the case of fluid dynamics,
how different are the coarse dynamics provided by the LANS-α equation from the
coarse dynamics one would obtain by following Kevrekidis? The difficulty in answering
this question lies in implementing a full fine-scale integrator for fluids that one could
successfully embed inside Kevrekidis’s coarse-scale algorithm. We look forward to
tackling this task soon.

8. Appendix: Fluctuation calculus details. Before proceeding with any
derivations, we state the Lie derivative theorem for time-dependent vector fields: if
the vector field Xλ has flow Fλ, then

d

dλ
F ∗
λYλ = F ∗

λ

(

∂Yλ

∂λ
+ £Xλ

Yλ

)

.(8.1)
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Our task now is to derive equations (2.10). Starting with (2.6), let us move ηε to
the right-hand side of the equation:

µ0 = (ηε)
∗
µε.(8.2)

The strategy is to differentiate with respect to ε and use the Lie derivative theorem
(8.1). The intrinsic definition of divergence

£ζ(ν) = (divν ζ) ν(8.3)

and the canonical volume form dNx = dx1∧· · ·∧dxN will both be used in what follows.
Note that div ζ with no subscript on the div means £ζ(d

Nx). Before applying the Lie
derivative theorem, note that the vector field

W ε =
∂

∂ε
ηε ◦ (ηε)

−1
(8.4)

has flow ηε. A simple computation yields

∂

∂ε

∣

∣

∣

∣

ε=0

W ε = ξ′′ −∇ξ′ · ξ′.(8.5)

Then we start with ρ′:

∂

∂ε
µ0 = 0 =

∂

∂ε
(ηε)

∗
µε by differentiating (8.2)

= (ηε)
∗

(

∂µε

∂ε
+ £W εµε

)

by (8.1)

= η∗ (µ′ + £ξ′µ) at ε = 0

=⇒ µ′ = −£ξ′µ,

ρ′ dNx = − (£ξ′ρ) d
Nx− ρ

(

£ξ′d
Nx

)

by (2.5),

ρ′ dNx = − (∇ρ · ξ′ + ρ div ξ′) dNx by (8.3)

=⇒ ρ′ = − div (ρξ′) .

Next we compute ρ′′:

∂2

∂ε2
µ0 = 0 =

∂2

∂ε2
(ηε)

∗
µε

= (ηε)
∗

(

∂2

∂ε2
µε + £W ε

∂µε

∂ε
+

∂

∂ε
(£W εµε) + £W ε£W εµε

)

=⇒ 0 = η∗ (µ′′ + 2£ξ′µ
′ + £ξ′′−∇ξ′·ξ′µ + £ξ′£ξ′µ)

=⇒ µ′′ = −£ξ′′µ + 2£ξ′£ξ′µ− £ξ′£ξ′µ + £∇ξ′·ξ′µ,

ρ′′ dNx = − (div(ρξ′′)) dNx + div(div(ρξ′) ξ′) dNx + div(ρ∇ξ′ · ξ′) dNx

=⇒ ρ′′ = − (div(ρξ′′)) +

(

(

ρξ′
i
)

,i
ξ′

j

)

,j

+
(

ρξ′
j
,iξ

′i
)

,j

= − (div(ρξ′′)) +
(

ρξ′
i
ξ′

j
)

,ij

= − (div(ρξ′′)) + div div (ρξ′ ⊗ ξ′) .



LAGRANGIAN AVERAGING FOR COMPRESSIBLE FLUIDS 837

Acknowledgments. We extend our sincerest thanks to Steve Shkoller, Darryl
Holm, and Marcel Oliver for helpful discussions and criticism on a wide array of issues
central to this paper.

REFERENCES

R. Abraham, J. E. Marsden, and T. S. Ratiu (1988), Manifolds, Tensor Analysis and Applications,
2nd ed., Appl. Math. Sci. 75, Springer-Verlag, New York.

D. Andrews and M. E. McIntyre (1978), An exact theory of nonlinear waves on a Lagrangian-
mean flow, J. Fluid Mech., 89, pp. 609–646.

R. Camassa and D. D. Holm (1993), An integrable shallow water equation with peaked solitons,
Phys. Rev. Lett., 71, pp. 1661–1664.

S. Y. Chen, C. Foias, D. D. Holm, E. J. Olson, E. S. Titi, and S. Wynne (1998), The Camassa–
Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81,
pp. 5338–5341.

S. Y. Chen, D. D. Holm, L. G. Margolin, and R. Zhang (1999), Direct numerical simulations of
the Navier-Stokes alpha model, Phys. D, 133, pp. 66–83.

W. J. Cocke (1969), Turbulent hydrodynamic line stretching: Consequences of isotropy, Phys. Flu-
ids, 12, pp. 2488–2492.

D. G. Ebin and J. E. Marsden (1970), Groups of diffeomorphisms and the motion of an incom-
pressible fluid, Ann. of Math. (2), 92, pp. 102–163.

L. C. Evans (1998), Partial Differential Equations, Grad. Stud. Math. 19, AMS, Providence, RI.
C. Foias, D. D. Holm, and E. S. Titi (2002), The three dimensional viscous Camassa-Holm equa-

tions and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Dif-
ferential Equations, 14, pp. 1–36.

D. D. Holm (1999), Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion,
Phys. D, 133, pp. 215–269.

D. D. Holm (2002a), Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dy-
namics, Phys. D, 170, pp. 253–286.

D. D. Holm and J. E. Marsden (2005), Momentum maps and measure-valued solutions (peakons,
filaments, and sheets) for the EPDiff equation, in The Breadth of Symplectic and Poisson Ge-
ometry, Progr. Math. 232, Birkhäuser, Boston, pp. 203–235.
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