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AN ONLINE MANIFOLD LEARNING APPROACH FOR MODEL
REDUCTION OF DYNAMICAL SYSTEMS∗
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Abstract. This article discusses a newly developed online manifold learning method, subspace
iteration using reduced models (SIRM), for the dimensionality reduction of dynamical systems. This
method may be viewed as subspace iteration combined with a model reduction procedure. Specif-
ically, starting with a test solution, the method solves a reduced model to obtain a more precise
solution, and it repeats this process until sufficient accuracy is achieved. The reduced model is
obtained by projecting the full model onto a subspace that is spanned by the dominant modes of
an extended data ensemble. The extended data ensemble in this article contains not only the state
vectors of some snapshots of the approximate solution from the previous iteration but also the as-
sociated tangent vectors. Therefore, the proposed manifold learning method takes advantage of the
information of the original dynamical system to reduce the dynamics. Moreover, the learning proce-
dure is computed in the online stage, as opposed to being computed offline, which is used in many
projection-based model reduction techniques that require prior calculations or experiments. After
providing an error bound of the classical POD-Galerkin method in terms of the projection error
and the initial condition error, we prove that the sequence of approximate solutions converge to the
actual solution of the original system as long as the vector field of the full model is locally Lipschitz
on an open set that contains the solution trajectory. Good accuracy of the proposed method has
been demonstrated in two numerical examples, from a linear advection-diffusion equation to a non-
linear Burgers equation. In order to save computational cost, the SIRM method is extended to a
local model reduction approach by partitioning the entire time domain into several subintervals and
obtaining a series of local reduced models of much lower dimensionality. The accuracy and efficiency
of the local SIRM are shown through the numerical simulation of the Navier–Stokes equation in a
lid-driven cavity flow problem.
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tion
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1. Introduction. The simulation, control, design, and analysis of the methods
and algorithms for many large-scale dynamical systems are often computationally
intensive and require massive computing resources if at all possible. The idea of
model reduction is to provide an efficient computational prototyping tool to replace
a high-order system of differential equations with a system of a substantially lower
dimension, whereby only the most dominant properties of the full system are pre-
served. During the past several decades, several model reduction methods have been
studied, such as Krylov subspace methods [4], balanced truncation [16, 23, 12], and
proper orthogonal decomposition (POD) [16, 13]. More techniques can be found in [3]
and [2]. These model reduction methods are usually based on offline computations to
build the empirical eigenfunctions of the reduced model before the computation of the
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ONLINE MANIFOLD LEARNING FOR MODEL REDUCTION 1929

reduced state variables. Most of the time these offline computations are as complex
as the original simulation. For these reasons, an efficient reduced model with high
fidelity based on online manifold learning is preferable.1 However, much less effort
has been expended in the field of model reduction via online manifold learning. In
[22], an incremental algorithm involving adaptive periods was proposed. During these
adaptive periods the incremental computation is restarted until a quality criterion is
satisfied. In [14] and [17] state vectors from previous time steps are extracted to
span a linear subspace in order to construct the reduced model for the next step. In
[18] dynamic iteration using reduced order models (DIRM) combines the idea of the
waveform relaxation technique and model reduction, which simulates each subsystem
that is connected to model reduced versions of the other subsystems.

A new framework of iterative manifold learning, subspace iteration using reduced
models (SIRM), is proposed in this article for the reduced modeling of high-order
nonlinear dynamical systems. Similar to the well-known Picard iteration for solving
ODEs, a trial solution is set at the very beginning. Using POD, a set of updated
empirical eigenfunctions are constructed in each iteration by extracting dominant
modes from an extended data ensemble; then, a more accurate solution is obtained
by solving the reduced equation in a new subspace spanned by these empirical eigen-
functions. The extended data ensemble contains not only the state vectors of some
snapshots of the trajectory in the previous iteration but also the associated tangent
vectors. Therefore, the manifold learning process essentially takes advantage of the
information from the original dynamical system. Both analytical results and numeri-
cal simulations indicate that a sequence of functions asymptotically converges to the
solution of the full system. Moreover, the aforementioned method can be used to test
(and improve) the accuracy of a trial solution of other techniques. A posterior error
estimation can be estimated by the difference between the trial solution and a more
precise solution obtained by SIRM.

The remainder of this article is organized as follows. Since algorithms in this ar-
ticle fall in the category of projection methods, the classic POD-Galerkin method and
its ability to minimize truncation error are briefly reviewed in section 2. After pre-
senting the SIRM algorithm in section 3, we provide convergence analysis, complexity
analysis, and two numerical examples. Then SIRM is combined with the time domain
partition in section 4, and a local SIRM method is proposed to decrease redundant
dimensions. The performance of this technique is evaluated in a lid-driven cavity flow
problem. Finally, conclusions are offered.

2. Background of model reduction. Let J = [0, T ] denote the time domain,
x : J → R

n denote the state variable, and f : J × R
n → R

n denote the discretized
vector field. A dynamical system in R

n can be described by an initial value problem

(2.1) ẋ = f(t, x); x(0) = x0.

By definition, x(t) is a flow that gives an orbit in R
n as t varies over J for a fixed x0.

The orbit contains a sequence of states (or state vectors) that follow from x0.

2.1. Galerkin projection. For a k-dimensional linear subspace S in R
n, there

exists an n × k orthonormal matrix Φ = [φ1, . . . , φk], the columns of which form a
complete basis of S. The orthonormality of the column matrix requires that ΦTΦ = I,
where I is an identity matrix. Any state x ∈ R

n can be projected onto S by a linear

1To avoid confusion, “online” in this article means that the manifold learning is carried out in
the online stage, as opposed to the offline stage.
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1930 LIQIAN PENG AND KAMRAN MOHSENI

projection. The projected state is given by ΦTx ∈ R
k in the subspace coordinate

system, where superscript T denotes the matrix transpose. Let P := ΦΦT denote the
projection matrix in R

n. Then, the same projection in the original coordinate system
is represented by x̃(t) := Px(t) ∈ R

n.
Let ΦT f(t,Φz) denote a reduced-order vector field formed by Galerkin projection.

The corresponding reduced model for z(t) ∈ R
k is

(2.2) ż = ΦT f(t,Φz); z0 = ΦTx0.

An approximate solution in the original coordinate system x̂(t) = Φz(t) ∈ R
n is

equivalent to the solution of the following ODE:

(2.3) ˙̂x = Pf(t, x̂); x̂0 = Px0.

It is well-known that the existence and uniqueness of a solution for system (2.1)
can be proved by the Picard iteration.

Lemma 2.1 (Picard–Lindelöf existence and uniqueness [15]). Suppose there is
a closed ball of radius b around a point x0 ∈ R

n such that f : Ja × Bb(x0) → R
n

is a uniformly Lipschitz function of x ∈ Bb(x0) with constant K, and a continuous
function of t on Ja = [0, a]. Then the initial value problem (2.1) has a unique solution
x(t) ∈ Bb(x0) for t ∈ Ja, provided that a = b/M , where

(2.4) M = max
(t,x)∈Ja×Bb(x0)

‖f(t, x)‖ .

Similarly, a reduced model formed by Galerkin projection also has a unique local
solution if the original vector field is Lipschitz. Moreover, the existence and uniqueness
of solutions do not depend on the projection operator.

Lemma 2.2 (local existence and uniqueness of reduced models). With a, Ja, b,
Bb(x0), M , and f(t, x) defined in Lemma 2.1, the reduced model (2.3) has a unique
solution x̂(t) ∈ Bb(x0) at the interval t ∈ J0 = [0, a/2] for a given initial condition
x̂(0) = x̂0, provided that a = b/M and ‖x̂0 − x0‖ < b/2.

Proof. Since f(t, x) is a uniformly Lipschitz function of x with constant K for all
(t, x) ∈ Ja ×Bb(x0), then

‖f(t, x1)− f(t, x2)‖ ≤ K ‖x1 − x2‖
for x1, x2 ∈ Bb(x0) with t ∈ Ja. Since P is a projection matrix, ‖P‖ = 1. As a
consequence,

‖Pf(t, x1)− Pf(t, x2)‖ ≤ ‖P‖ ‖f(t, x1)− f(t, x2)‖ ≤ K ‖x1 − x2‖ ,
which justifies that the projected vector field Pf(t, x) is also Lipschitz with constantK
for the same domain. Since ‖x̂0 − x0‖ < b/2, we have Bb/2(x̂0) ⊂ Bb(x0). By Lemma

2.1, ˙̂x = Pf(t, x̂) has a uniquely local solution x̂(t) ∈ Bb/2(x̂0) for t ∈ [0, a1] ∩ Ja,
where a1 is given by

a1 =
b/2

max
(t,x)∈J0×Bb(x0)

‖Φf(t, x)‖ .

Since ‖Φf(t, x)‖ ≤ ‖f(t, x)‖, we have a1 ≥ b/2M = a/2. Therefore, J0 ⊂ [0, a1] ∩ Ja,
and there exists a unique solution x̂(t) ∈ Bb(x0) for the interval J0.
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ONLINE MANIFOLD LEARNING FOR MODEL REDUCTION 1931

Fig. 1. Illustration of the actual solution x(t) for the original system (2.1), the projected
solution x̃(t) on S, and the approximate solution x̂(t) computed by the reduced model (2.3). The
component of error orthogonal to S is given by eo(t) = x̃(t) − x(t) and the component of error
parallel to S is given by ei(t) = x̂(t) − x̃(t). This figure is reproduced from [19].

The error of the reduced model formed by the Galerkin projection can be defined
as e(t) := x̂(t) − x(t). Let eo(t) := (Ik − P )e(t), which denotes the error component
orthogonal to S, and ei(t) := Pe(t), which denotes the component of error parallel to
S (see Figure 1). Thus, we have

(2.5) eo(t) = x̃(t)− x(t),

which directly comes from the projection. However, since the system is evolutionary
with time, further approximations of the projection-based reduced model result in an
additional error ei(t), and we have

(2.6) ei(t) = x̂(t)− x̃(t).

Although ei(t) and eo(t) are orthogonal to each other, they are not independent [19].
Lemma 2.3. Consider the initial value problem (2.1) over the interval J0 =

[0, a/2]. a, Ja, b, Bb(x0), M , P , x(t), x̃(t), x̂(t), e(t), eo(t), and ei(t) are defined as
above. Suppose f(t, x) is a uniformly Lipschitz function of x with constant K and a
continuous function of t for all (t, x) ∈ Ja×Bb(x0). Then the error e(t) = x̂(t)−x(t)
in the infinity norm for the interval J0 is bounded by

(2.7) ‖e‖∞ ≤ eKa/2‖eo‖∞ + eKa/2 ‖ei(0)‖ .
Proof. Since f(t, x) is a uniformly Lipschitz function for any (t, x) ∈ Ja ×Bb(x0),

Lemmas 2.1 and 2.2 respectively imply the unique existences of x(t) ∈ Bb(x0) and
x̂(t) ∈ Bb(x0). Moreover, we can uniquely determine x̃(t) ∈ Bb(x0) by x̃(t) = Px(t).
Therefore, x(t), x̃(t), and x̂(t) are all well-defined for any t ∈ J0.

Substituting (2.1) and (2.3) into the differentiation of eo(t) + ei(t) = x̂(t) − x(t)
yields

(2.8) ėo + ėi = Pf(t, x̂)− f(t, x).

Left multiplying (2.8) by P , expanding x̂, and recognizing that P 2 = P gives

ėi(t) = P (f(t, x+ eo + ei)− f(t, x)).

Using this equation by expanding ‖ei(t+ h)‖ and applying triangular inequality yields

‖ei(t+ h)‖ = ‖ei(t) + hPf(t, x+ eo + ei)− hPf(t, x)‖+O(h2)

≤ ‖ei(t)‖+ h ‖Pf(t, x+ eo + ei)− Pf(t, x+ eo)‖
+h ‖Pf(t, x+ eo)− Pf(t, x)‖+O(h2).
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1932 LIQIAN PENG AND KAMRAN MOHSENI

Rearranging this inequality and applying the Lipschitz conditions gives

‖ei(t+ h)‖ − ‖ei(t)‖
h

≤ K ‖ei(t)‖+K ‖eo(t)‖+O(h).

Since O(h) can be uniformly bounded independent of ei(t), using the mean value
theorem and letting h→ 0 give

d

dt
‖ei(t)‖ ≤ K ‖ei(t)‖+K ‖eo(t)‖ .

Rewriting the above inequality into the integral form, ‖ei(t)‖ ≤ α(t)+K
∫ t

0
‖ei(τ)‖ dτ ,

where α(t) := ‖ei(0)‖+K
∫ t

0
‖ei(τ)‖ dτ , and using Gronwall’s lemma, we obtain

‖ei(t)‖ ≤ α(t) +

∫ t

0

α(s)K exp

(∫ t

s

Kdτ

)
ds.

By definition, ‖eo‖∞ ≥ ‖eo(t)‖ for any t ∈ J0. It follows that α(t) ≤ ‖ei(0)‖ +
Kt ‖eo‖∞. Simplifying the integral of the right-hand side of the above inequality gives

‖ei(t)‖ ≤ (eKa/2 − 1) ‖eo‖∞ + eKa/2 ‖ei(0)‖ ,
for any t ∈ J0. Combining the above inequality with ‖e‖∞ ≤ ‖ei‖∞+ ‖eo‖∞, one can
obtain
(2.7).

Remark. The above lemma provides a bound for ‖ei(t)‖ in terms of ‖eo‖∞ and
ei(0). We have ‖ei(0)‖ = 0 when the initial condition of the reduced model is given by
x̂0 = Px0 for (2.3). In this situation, (2.7) becomes ‖e‖∞ ≤ eKa/2‖eo‖∞. Considering
‖e‖∞ ≥ ‖eo‖∞, ‖e‖∞ = 0 holds if and only if ‖eo‖∞ = 0.

Obviously, J0 is not the maximal time interval of the existence and uniqueness
of x(t) and x̂(t). For convenience, we simply assume that x(t) and x̂(t) globally exist
on J = [0, T ] throughout the rest of this article. Otherwise, we can shrink J to a
smaller interval, which starts from 0, such that both x(t) and x̂(t) are well-defined
on J . Let D be an open set that contains x(t), x̃(t), and x̂(t) for all t ∈ J . Under
this assumption, Lemma 2.3 is still valid if J0 and Bb(x0) are substituted by J and
D, respectively.

2.2. POD. In order to provide an accurate description for the original system,
the POD method can be used to deliver a set of empirical eigenfunctions such that
the error for representing the given data onto the spanned subspace is optimal, in
a least squares sense [11]. Assume that m precomputed snapshots form a matrix,
X := [x(t1), . . . , x(tm)]. Then, the truncated singular value decomposition (SVD)

(2.9) X ≈ ΦΛΨT

provides the POD basis matrix Φ ∈ R
n×k, where Λ ∈ R

k×k is a diagonal matrix that
consists of the first k nonnegative singular values arranged in decreasing order. P is
then obtained by ΦΦT .

Let E denote the energy of the full system, which is approximated by the square

of the Frobenius norm of snapshot matrix X , E =
∫ T

0
‖x(t)‖2 dt ≈ ‖X‖2F =

∑r
α=1 λ

2
α,

where r = min(n,m). Let E′ denote the energy in the optimal k-dimensional sub-

space, E′ =
∫ T

0 ‖Px(t)‖2 dt ≈ ‖PX‖2F =
∑k

α=1 λ
2
α. A criterion can be set to limit

the approximation error in the energy by a certain fraction η. Then, we seek k 
 r
so that
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(2.10) E′/E > η.

The key for POD and other projection-based reduced models is to find a subspace
where all the state vectors approximately reside. Although these methods can sig-
nificantly increase the computational speed during the online stage, the cost of data
ensemble construction in the offline stage is often very expensive. For these reasons,
developing an inexpensive online manifold learning technique is a desirable objective.

3. SIRM. The SIRM method is introduced by combining subspace iteration
with a model reduction procedure in this section. The idea of subspace construction
is to enhance the PODmethod by feeding it with information drawn from the observed
state of the system and its time derivation. Then, a more precise solution is solved
by projecting the original system onto this subspace. The subspace construction is
carried out iteratively until a convergent solution is achieved.

3.1. Algorithm of SIRM. In this article, a k-dimensional subspace S is called
invariant of x(t) (or invariant for short) if x(t) ∈ S for all t ∈ J . In this case, Px(t) =
x(t), which means that P is an invariant projection operator on the trajectory and
that x̃(t) = x(t). As mentioned above, eo(t) = 0 holds if and only if e(t) = 0. Then,
x̂(t) = x(t). Inserting (2.1) and (2.3) into ˙̂x(t) = ẋ(t), one can achieve Pf(t, x) =
f(t, x), which is equivalent to f(t, x) ∈ S. In fact, (x(t), f(t, x)) can be considered
a point in the tangent bundle TS, which coincides with the Cartesian product of S
with itself. As an invariant projection, P preserves not only the state vectors along
the solution orbit but also the associated tangent vectors, i.e., the dynamics.

On the jth iteration, the aim is to construct a subspace Sj such that both x̂j−1

and f(t, x̂j−1) are invariant under the associated projection operator P j , i.e.,

P j(x̂j−1) = x̂j−1,(3.1)

P j(f(t, x̂j−1)) = f(t, x̂j−1).(3.2)

Thus, both x̂j−1(t) and f(t, x̂j−1(t)) reside in Sj for all t ∈ J = [0, T ].
If the solution orbit is given at discrete times t1, . . . , tm, then we have an n×m

state matrix

(3.3) X̂j := [x̂j(t1), . . . , x̂
j(tm)].

Accordingly, the samples of tangent vectors along the approximating orbit can form
another n×m matrix,

(3.4) F̂ j := [f(t1, x̂
j(t1)), . . . , f(tm, x̂

j(tm))].

A combination of X̂j and F̂ j gives an information matrix, which is used to represent
an extended data ensemble

(3.5) Ŷ j := [X̂j , γF̂ j],

where γ is a weighting coefficient. The basis vectors of Sj can be obtained by using
SVD of Ŷ j−1. γ = 1 is a typical value that is used to balance the truncation error of X̂j

and F̂ j . It can be noted that a large m value will lead to intensive computation, but
the selected snapshots should reflect the main dimensions of states and tangent vectors
along the solution trajectory. When the width of each time subinterval (partitioned
by ti) approaches zero, S

j can be given by the column space of Ŷ j−1.
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1934 LIQIAN PENG AND KAMRAN MOHSENI

Algorithm 1. SIRM.
Require: The initial value problem (2.1).
Ensure: An approximate solution x̂(t).
Set a test function x̂0(t) as the trial solution. Initialize the iteration number j = 0.
repeat
1: Update the iteration number j = j + 1.
2: Assemble snapshots of an approximate solution x̂j−1(t) into matrix form X̂j−1.
3: Compute vector field matrix F̂ j−1 associated with snapshots in X̂j−1.
4: Form an information matrix for the extended data ensemble Ŷ j−1 =
[X̂j−1, γF̂ j−1].
5: Based on Ŷ j−1, compute the empirical eigenfunctions Φj through POD.
6: Project the original equation onto a linear subspace spanned by Φj and form
a reduced model.
7: Solve the reduced model and obtain an approximate solution zj(t) in the
subspace coordinate system.
8: Express the updated solution in the original coordinate system x̂j(t) = Φjzj(t).

until
∥∥x̂j − x̂j−1

∥∥
∞ < ε, where ε is the error tolerance.

Obtain the final approximate solution x̂(t) = x̂j(t).

Algorithm 1 lists the comprehensive procedures of the SIRM method. A new sub-
space Sj is constructed in each iteration, followed by an approximate solution x̂j−1(t).
As x̂j(t) → x(t), Sj approaches an invariant subspace. For this reason, SIRM is an
iterative manifold learning procedure, which approximates an invariant subspace by a
sequence of subspaces. A complete iteration cycle begins with a collection of snapshots
from the previous iteration (or an initial test function). Then, a subspace spanned by
an information matrix is constructed. Empirical eigenfunctions are generated by POD,
and finally a reduced-order equation obtained by Galerkin projection (2.2) is solved.

3.2. Convergence analysis. In this subsection, we first provide a local error
bound for the sequence of approximate solutions {x̂j(t)} obtained by SIRM, which
paves the way for the proof of local and global convergence of the sequence.

It can be noted that both xj−1(t) ∈ Sj and f(t, xj−1) ∈ Sj hold for all t ∈ J0
only in an ideal situation. If Sj is formed by extracting the first few dominant modes
from the information matrix of the extended data ensemble (3.5), neither (3.1) nor
(3.2) can be exactly satisfied. Let εj quantify the projection error,

(3.6) εj :=

∫ a/2

0

∥∥(I − P j
)
x̂j−1(τ)

∥∥2 dτ+γ2
∫ a/2

0

∥∥(I − P j
)
f(τ, x̂j−1)

∥∥2 dτ.
If SVD is used to construct the empirical eigenfunctions, εj can be estimated by

(3.7) εj ≈
r∑

α=kj+1

(λjα)
2,

where λjα is the αth singular value of the information matrix Ŷ j−1, and kj is the
adaptive dimension of Sj such that the truncation error produced by SVD is bounded
by εj ≤ ε. The following lemma gives an error bound for the limit of the sequence
{x̂j(t)}.

Lemma 3.1. Consider solving the initial value problem (2.1) over the interval
J0 = [0, a/2] by the SIRM method. a, Ja, b, Bb(x0), M , P , x(t), x̃(t), x̂(t), e(t),
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eo(t), and ei(t) are defined as above. The superscript j denotes the jth iteration.
Suppose f(t, x) is a uniformly Lipschitz function of x with constant K and a contin-
uous function of t for all (t, x) ∈ Ja ×Bb(x0). Then {x̂j(t)} approaches x(t) with an
upper bound of ‖e‖∞ given by

(3.8) χ =

√
aεeKa/2

√
2γ(1−KaeKa/2/2)

+
2θeKa/2

1−KaeKa/2/2

for all t ∈ J0 provided that

(3.9) a < min

[
b

M
,
2e−Kb/2M

K

]
,

where θ is the maximal error of the initial states in reduced models, and θ < b/2.
Proof. As proved in Lemma 2.3, x(t), x̃(t), and x̂(t) are well-defined over the

interval J0. Moreover, x(t), x̃(t), and x̂(t) ∈ Bb(x0) for all t ∈ J0. Multiplying (2.8)
on the left by I − P j , we obtain the evolution equation for ejo(t),

ėjo = −(I − P j)f(t, x),

which is equivalent to

(3.10) ėjo = (I − P j)[f(t, x+ ej−1)− f(t, x)]− (I − P j)f(t, x+ ej−1).

Considering that x(t) ∈ Bb(x0), x̂
j−1(t) ∈ Bb(x0) for all t ∈ J0 and f(t, x) is a

uniformly Lipschitz function for all (t, x) ∈ Ja × Bb(x0) with constant K, it follows
that

(3.11)
∥∥f(t, x+ ej−1)− f(t, x)

∥∥ ≤ K
∥∥ej−1(t)

∥∥ .
Since P j is a projection matrix, we have

∥∥I − P j
∥∥ = 1. This equation together with

(3.10) and (3.11) yields

(3.12)
∥∥ėjo(t)∥∥ ≤ K

∥∥ej−1(t)
∥∥+

∥∥(I − P j)f(t, x+ ej−1)
∥∥ .

For h > 0, the expansion of ejo(t+ h) gives

(3.13)
∥∥ejo(t+ h)

∥∥ ≤ ∥∥ejo(t)∥∥+ h
∥∥ėjo(t)∥∥+O(h2).

Rearranging (3.13) and applying (3.12) results in

(3.14)

∥∥ejo(t+ h)
∥∥− ∥∥ejo(t)∥∥
h

≤ K
∥∥ej−1(t)

∥∥+
∥∥(I − P j)f(t, x+ ej−1)

∥∥+O(h),

where the O(h) term may be uniformly bounded independent of ejo(t). Integrating
(3.14) with respect to t yields

(3.15)
∥∥ejo(t)∥∥ ≤ K

∫ t

0

∥∥ej−1(τ)
∥∥ dτ +

∫ t

0

∥∥(I − P j)f(τ, x+ ej−1)
∥∥ dτ +

∥∥ejo(0)∥∥ .
For t ∈ J0, the first term on the right-hand side is bounded by Ka

∥∥ej−1
∥∥
∞/2. Using

the definition of εj in (3.6) and the fact that εj ≤ ε for each j, we obtain

ε ≥ γ2
∫ a/2

0

∥∥(I − P j
)
f(τ, x̂j−1)

∥∥2 dτ .D
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By the Cauchy–Schwarz inequality, the second term on the right-hand side of (3.15)
is bounded by

√
aε/2γ2 when t ≤ a/2. It follows that

∥∥ejo(t)∥∥ ≤ Ka
∥∥ej−1

∥∥
∞

2
+

√
aε

2γ2
+
∥∥ejo(0)∥∥ .

Using (2.7) in Lemma 2.3, this inequality yields

(3.16)
∥∥ej∥∥∞ ≤ KaeKa/2

∥∥ej−1
∥∥
∞

2
+

√
aεeKa/2

√
2γ

+ eKa/2
∥∥ejo(0)∥∥+ eKa/2

∥∥eji (0)∥∥.
If the error of the initial condition is bounded by

∥∥ej(0)∥∥ ≤ θ for each iteration, then∥∥ejo(0)∥∥ ≤ θ, and
∥∥eji (0)∥∥ ≤ θ. As a result,

(3.17)
∥∥ej∥∥∞ ≤ KaeKa/2

∥∥ej−1
∥∥
∞

2
+

√
aεeKa/2

√
2γ

+ 2θeKa/2.

By (3.9), KaeKa/2/2 < KaeKb/2M/2 < 1. Using the definition of χ in (3.8), (3.17)
can be rewritten as

(3.18) ‖ej‖∞ − χ ≤ KaeKa/2/2(‖ej−1‖∞ − χ).

It follows that if ‖ej‖∞ − χ > 0 for all j, it converges to 0 linearly. Otherwise, once
‖ej0−1‖∞ − χ ≤ 0 for some j0, then ‖ej0‖∞ ≤ χ, and so does ‖ej‖∞ for all j > j0.
Therefore, we have

(3.19) lim sup
j→+∞

∥∥ej∥∥∞ ≤ χ,

which means
∥∥ej(t)∥∥ is bounded by χ as j → +∞ for all t ∈ J0.

The first term of χ is introduced by the truncation error. By decreasing the
width of time intervals among neighboring snapshots and increasing the number of
POD modes, we can limit the value of ε. The second term of χ is the magnified error
caused by ej(0). If both χ and ej(0) approach 0, we have the following theorem.

Theorem 3.2 (local convergence of SIRM). Consider solving the initial value
problem (2.1) over the interval J0 = [0, a/2] by the SIRM method. a, Ja, b, Bb(x0),
M , P , x(t), x̃(t), x̂(t), e(t), eo(t), and ei(t) are defined as above. The superscript
j denotes the jth iteration. Suppose f(t, x) is a uniformly Lipschitz function of x
with constant K and a continuous function of t for all (t, x) ∈ J0 ×Bb(x0). For each
iteration, the reduced subspace Sj contains x0 and the initial state for the reduced
model is given by x̂j0 = P jx0. Moreover, (3.2) is satisfied. Then the sequence {x̂j(t)}
uniformly converges to x(t) for all t ∈ J0, provided that

(3.20) a < min

[
b

M
,
2e−Kb/2M

K

]
.

Proof. Since the initial state x̂j0 is the projection of x0 onto Sj , we have eji (0) = 0.
Meanwhile, x0 ∈ Sj results in ejo(0) = 0. Then the initial error satisfies ej(0) = 0.
On the other hand, (3.2) requires that f(t, x̂j−1) is invariant under the projection
operator P j , i.e., (I −P j)f(t, x̂j−1) = 0, which leads to εj = 0. Therefore, in Lemma
3.1, both ε and θ approach 0, and so does χ. As a consequence, {x̂j(t)} converges to
the fixed point x(t) for all t ∈ J0.

It can be noted that the error bound χ of the SIRM method is completely de-
termined by θ and ε. As an alternative to (3.5), a more straightforward form of the
information matrix for the extended data ensemble can be written as
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(3.21) Ỹ j := [x0, γF̂
j],

and the SIRM method can still converge to x(t) by Theorem 3.2. However, as a
Picard-type iteration, SIRM can only be guaranteed to reduce local error within one
iteration. If ε and θ approach 0, (3.17) can be rewritten as

(3.22)

∥∥ej∥∥∞
‖ej−1‖∞

≤ KaeKa/2

2
.

When the interval J0 is large, for example, a > 2/K, the left-hand side might be
greater than 1. Thus, although x̂j(t) has less local error than x̂j−1(x), it might be
less accurate in a global sense.

On the other hand, if the information matrix (3.5) is applied to the SIRM method,
x̂j−1(t) ∈ Sj is satisfied for each iteration. For any t,

∥∥ejo(t)∥∥ denotes the distance from

x(t) to Sj, while
∥∥ej−1(t)

∥∥ denotes the distance from x(t) to x̂j−1(t). Recognizing
that x̂j−1(t) ∈ Sj , we have

(3.23)
∥∥ejo(t)∥∥ ≤ ∥∥ej−1(t)

∥∥ .
If θ approaches 0, so does ‖eji (0)‖. Using (2.7) in Lemma 2.3, one obtains

(3.24)

∥∥ej∥∥∞
‖ej−1‖∞

≤ eKa/2.

This inequality still cannot guarantee that
∥∥ej−1(t)

∥∥ < ∥∥ej(t)∥∥ for all t ∈ J . However,
when a > 2/K it provides a stronger bound than (3.22) does, which can effectively
reduce the global error.

So far, we have proved convergence of SIRM for a local time interval J0 = [0, a/2].
Since the estimates used to obtain J0 are certainly not optimal, the true convergence
time interval is usually much larger. Supposing J0 ⊂ J , we will next prove that the
convergence region J0 can be extended to J under certain conditions.

Theorem 3.3 (global convergence of SIRM). Consider solving the initial value
problem (2.1) over the interval J = [0, T ] by the SIRM method. P , x(t), x̃(t), x̂(t),
e(t), eo(t), and ei(t) are defined as above. The superscript j denotes the jth iteration.
Suppose f(t, x) is a locally Lipschitz function of x and a continuous function of t for
all (t, x) ∈ J ×D′, where D′ is an open set that contains x(t) for all t ∈ J . For each
iteration, the reduced subspace Sj contains x0 and the initial state for the reduced
model is given by x̂j0 = P jx0. Moreover, (3.2) is satisfied. The sequence {x̂j(t)} then
uniformly converges to x(t) for all t ∈ J .

Proof. Since D′ is open, there exists a constant b such that b > 0, and E :=
∪tB̄b(x(t)) ⊂ D′. Since f(t, x) is locally Lipschitz on J ×D′ and E is compact, f(t, x)
is Lipschitz on J × E . Let K denote the Lipschitz constant for (t, x) ∈ J × E . In
addition, we can choose the value of a, which is bounded by (3.20). Let Jm be the
maximal interval in J such that for all t ∈ Jm, x̂j(t) → x(t) uniformly as j → ∞.
Theorem 3.2 indicates that SIRM will generate a sequence of functions {x̂j(t)} that
uniformly converges to x(t) for all t ∈ J0 = [0, a/2]. For this reason, we have J0 ⊂ Jm.

Now assume Jm �= J . Then, there exists a ti ∈ Jm such that ti + a/2 ≤ T , but
ti + a/2 /∈ Jm. ti ∈ Jm means for every κ > 0 there exists an integer M1(κ) > 0 such
that for all j with j > M1(κ), x̂

j(ti) uniquely exists and
∥∥x̂j(ti)− x(ti)

∥∥ < κ.
Consider the initial value problem

(3.25) ẏ = f(t, y); y(0) = y0 = x(ti).
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The corresponding reduced model of SIRM at iteration l is given by

(3.26) ˙̂yl = P lf(t, ŷl); ŷl(0) = y0 + el(ti),

where el(ti) = x̂l(ti) − x(ti). For an arbitrary small positive number κ′, Lemma 3.1
implies that there exists a positive integerM2(κ

′) such that whenever l > M2(κ
′) and

t ∈ J0 = [0, a/2],

∥∥ŷl(t)− y(t)
∥∥ < χ+ κ′.

Plugging χ from (3.8) into this inequality and replacing θ by κ, we have

(3.27)
∥∥ŷl(t)− y(t)

∥∥ ≤
√
aεeKa/2

√
2γ(1−KaeKa/2/2)

+
2κeKa/2

1−KaeKa/2/2
+ κ′.

In an ideal case, the truncation error is zero, i.e., ε = 0. Then, the right-hand side of
(3.27) can be arbitrarily small. The uniqueness lemma for ODE’s (Lemma 2.1) yields
y(t) = x(ti + t) and ŷj(t) = x̂j(ti + t). Therefore, for every ε > 0, there exists an
integer

(3.28) N(ε) =M1

(
(1−KaeKa/2/2)ε

4eKa/2

)
+M2

( ε
2

)

such that, as long as j > N(ε),
∥∥x̂j(t)− x(t)

∥∥ ≤ ε holds for all t ∈ [0, ti + a/2].
Moreover, ti+a/2 ≤ T . However, this contradicts our assumption that ti+a/2 /∈ Jm.
Therefore, Jm = J , i.e., x̂j(t) uniformly converges to xt(t) for all t ∈ J .

3.3. Computational complexity. The computational complexity of the SIRM
method for solving an initial value problem is discussed in this subsection. We follow
[19] when we estimate the computational cost of the procedures related to the standard
POD-Galerkin approach.

Let γ(n) be the cost of computing the original vector field f(t, x), and let γ̂(k, n)
be the cost of computing the reduced vector field ΦT f(t,Φz) based on the POD-
Galerkin approach. In the full model, the cost of one-step time integration using
Newton iteration is given by bγ(n)/5+ b2n/20 if all n×n matrices are assumed to be
banded and have b + 1 entries around the diagonal [19]. Thus, the total cost of the
full model for NT steps is given by

(3.29) NT · (bγ(n)/5 + b2n/20
)
.

Next, we analyze the complexity of Algorithm 1. Assuming a trial solution is
given initially, the computational cost for each iteration mainly involves the following
procedures. In procedure 3, an n ×m vector field matrix, F̂ j−1, is computed based
on m snapshots. In procedure 5, from an n × 2m information matrix, Ŷ j−1, the
empirical eigenfunctions Φj can be obtained in 4m2n operations by SVD [25]. In
procedure 6, the original system is projected onto a subspace spanned by Φj , and
this cost is denoted by β(k, n). For a linear time-invariant system, ẋ = Ax, β(k, n)
represents the cost to compute (Φj)TAΦj , which is given by bnk for sparse A. For a
general system, β(k, n) is a nonlinear function of n. In procedure 7, the reduced model
is evolved for NT steps by an implicit scheme to obtain zj(t). If the reduced model
inherits the same scheme from the full model, then one-step time integration needs
kγ̂(k, n)/5 + k3/15 operations [19]. In procedure 8, an n×m snapshot matrix X̂j(t)
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Table 1

Complexity of Algorithm 1 for one iteration using an implicit scheme for time integration.

Procedure Complexity

Compute a vector field matrix F̂ j−1 mγ(n)

SVD: empirical eigenfunctions Φj 4m2n

Construct a reduced model β(k, n)

Evolve the reduced model NT (kγ̂(k, n)/5 + k3/15)

Obtain an approximate solution X̂j mnk

is constructed through x̂(ti) = Φz(ti). Table 1 shows the asymptotic complexity for
each basic procedure mentioned above. Let NI denote the number of iterations; then,
the total cost of Algorithm 1 is given by

(3.30) NI ·
(
4m2n+ β(k, n) +NT · (kγ̂(k, n)/5 + k3/15

)
+mγ(n) +mnk

)
.

Notice that the first three terms in (3.30) represent the cost for the classic POD-
Galerkin method, while construction of the extended data ensemble needs extra
computational overhead, mγ(n) + mnk, for each iteration. On one hand, the sub-
space dimension k is no greater than the number of sampling points m, which means
mnk < 4m2n. On the other hand, we can always choose an optimal m value such
that m 
 NT . Thus, the extra computational overhead plays a secondary role in
(3.30), and the computational complexity of Algorithm 1 is approximately equal to
the number of iterations, NI , multiplied by the cost of the standard POD-Galerkin
approach.

Algorithm 1 does not explicitly specify the trial solution x̂0(t). In fact, the con-
vergence of SIRM does not depend on x̂0(t), as previously shown. Thus, we can
simply set x̂0(t) as a constant, i.e., x̂0(t) = x0. However, a “good” trial solution could
lead to a convergent solution in fewer iterations and could thus decrease the total
computational cost. For example, if the full model is obtained by a finite difference
method with n grid points and time step δt, a trial solution could be obtained by a
coarse model, using the same scheme but n/10 grid points with time step 10 × δt.
Thus, the coarse model can cost less than 1% of the required operations in the full
model.

Notice that γ̂(k, n) 
 γ(n) is achieved only when the analytical formula of
ΦT f(t,Φz) can be significantly simplified, especially when f(t, x) is a low-degree poly-
nomial of x [19]. Otherwise, it is entirely possible that the reduced model could be
more expensive than the original one. Because of this effect, there is no guarantee
that Algorithm 1 can speed up a general nonlinear system. However, it should be
emphasized that the POD-Galerkin approach is not the only method that can be
used to construct a reduced model in the framework of SIRM; in principle, it can
be substituted by a more efficient model reduction technique when f(t, x) contains
a nonlinear term, such as trajectory piecewise linear and quadratic approximations
[20, 21, 26, 6], the empirical interpolation method [10], or its variant, the discrete
empirical interpolation method [5]. This article, however, focuses on using SIRM to
obtain an accurate solution without a precomputed database. Therefore, the numer-
ical simulations in the next subsection are still based on the classic POD-Galerkin
approach.
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3.4. Numerical results. The proposed algorithm, SIRM, is illustrated in this
subsection by a linear advection-diffusion equation and a nonlinear Burgers equation.
These examples focus on demonstrating the capability of SIRM to deliver accurate
results using reduced models. We also show an application of SIRM for the posteriori
error estimation of a coarse model.

3.4.1. Advection-diffusion equation. Let u = u(t, x). Consider the one-
dimensional advection-diffusion equation with constant moving speed c and diffusion
coefficient ν,

(3.31) ut = −cux + νuxx,

on space x ∈ [0, 1]. Without loss of generality, periodic boundary conditions are
applied,

u(t, 0) = u(t, 1),(3.32)

ux(t, 0) = ux(t, 1).

The initial condition is provided by a cubic spline function,

(3.33) u(0, x) =

⎧⎪⎪⎨
⎪⎪⎩

1− 3
2s

2 + 3
4s

3 if 0 ≤ s ≤ 1,

1
4 (2− s)3 if 1 < s ≤ 2,

0 if s > 2,

where s = 10 × |x − 1/3|. The fully resolved model is obtained through a high-
resolution finite difference simulation with spatial discretization by n equally spaced
grid points. The advection term is discretized by the first-order upwind difference
scheme with the explicit two-step Adams–Bashforth method for time integration,
while the diffusion term is discretized by the second-order central difference scheme
with the Crank–Nicolson method for time integration.

For our numerical experiments, we consider a system with c = 0.5 and ν = 10−3,
which gives rise to a system with diffusion as well as advection propagating to the
right. This can be seen in Figure 2(a), where the initial state and the final state (at
t = 0.5) are shown. The full model (reference benchmark solver) is computed through
n = 500 grid points. Thus, the unit step can be set as δt = 10−3 such that the
Courant–Friedrichs–Lewy (CFL) condition is satisfied for the stability requirement,
i.e., cδt/δx ≤ 1. In order to initialize SIRM, a smaller simulation is carried out by
the finite difference method with a coarse grid of k0 = 20 and a larger time step of
2.5 × 10−2. In order to obtain a smooth function for the trial solution, the coarse
solution is filtered by extracting the first 10 Fourier modes. When η = 10−8, the
full-order equation is projected onto a subspace spanned by k = 12 dominant modes
during the first iteration and a better approximation is obtained. For different η and k0

values, Figure 2(b) compares the maximal L2 error between the benchmark solution
u(t) and the iterative solution ûj(t) for t ∈ [0, 0.5] in the first 10 iterations. Each
subspace dimension is adaptively determined by (2.10). If k0 = 20, the first three
iterations of SIRM respectively use 9, 9, and 11 dominant modes when η = 10−6;
use 12, 14, and 14 dominant modes when η = 10−8; use 14, 17, and 18 dominant
modes when η = 10−10; and use 17, 19, and 20 dominant modes when η = 10−12. As
expected, a smaller η value results in a smaller truncation error produced by SVD and
the total error, ‖ej‖∞, for an approximate solution. Meanwhile, a trial solution with
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Fig. 2. (a) The velocity profiles at t = 0 and t = 0.5 of the one-dimensional advection-diffusion
equation with constant speed c = 0.5 and diffusion coefficient ν = 10−3. n = 500 grid points are used
to obtain the full model for the fixed space domain [0, 1]. The trial solution is obtained by extracting
the first 10 Fourier modes from a coarse model based on k0 = 20 grid points. When η = 10−8, it takes
one iteration for SIRM to obtain an accurate solution by 12 modes. (b) Convergence of SIRM for
different η and k0 values. Plot of the maximal L2 error, ‖ej‖∞ = sup{‖ûj(t) − u(t)‖ : t ∈ [0, 0.5]},
between the benchmark solution u(t) and the iterative solution ûj(t) for t ∈ [0, 0.5].

a higher initial dimension, k0, could also significantly decrease the error for the first
10 iterations. It is also noted that ‖ej‖∞ is not a monotonically decreasing function
of j, especially when η = 10−6 and k0 = 20. This does not contradict the convergence
analysis in the previous subsection. As a variant of the Picard iteration, the SIRM
method achieves a better local solution in each iteration. As (3.24) indicates, we can
only guarantee

∥∥ej∥∥∞ ≤ eKa/2
∥∥ej−1

∥∥
∞ in a global sense.

Before switching to the next numerical example, we compare the performance
of SIRM with another online manifold learning technique, DIRM [18]. The DIRM
method splits the whole system into mn subsystems. Starting with a trial solution,
DIRM simulates each subsystem in turn and repeats this process until a globally
convergent solution is obtained. For iteration j, DIRM connects the unreduced sub-
system i with the reduced versions of all other subsystems and simulates the resulting
system

ẋji = fi(t,X
j
i ),(3.34)

żjl = (Φj
l )

T fl(t,X
j
i ), l = 1, . . . , i− 1, i+ 1, . . . ,mn,

where Xj
i = [Φj

1z
j
1; . . . ; Φ

j
i−1z

j
i−1;x

j
i ; Φ

j
i+1z

j
i+1; . . . ; Φ

j
mn
zjmn

]. If xji ∈ R
n/mn and zjl ∈

R
k, the reduced model of DIRM has a dimension ofmnk+m/mn. Since DIRM reduces

the dimension for each subsystem, rather than the original system, it inevitably keeps
some redundant dimensions.

Table 2 compares the minimal subspace dimension of DIRM and SIRM that is
required for solving (3.31) when the error of the first iteration is smaller than 10−3.
We use all the aforementioned parameters except scanning ν from 10−1 to 10−4. For
the DIRM application, the whole system with n = 500 is divided into 25 subsystems,
and the dimension of each subsystem is 20. When ν is greater than 10−2, the DIRM
method uses three modes for each subsystem, and therefore the dimension of DIRM
is 3×24+20 = 92. When ν decreases to 10−3 and less, DIRM requires four modes for
each system in order to maintain high accuracy, and the subspace dimension grows to
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Table 2

The minimal subspace dimension of DIRM and SIRM that is required for solving the one-
dimensional advection-diffusion equation when the error of the first iteration is smaller than 10−3,
i.e., ‖e1‖∞ < 10−3. Parameter values are n = 500, c = 0.5, δt = 10−3. The time domain is [0, 0.5].
The trial solution is obtained by extracting the first 10 Fourier modes from a coarse simulation based
on 20 grid points.

ν = 10−1 ν = 10−2 ν = 10−3 ν = 10−4

DIRM 92 92 116 116
SIRM 13 12 15 16

4× 24+ 20 = 116. Since SIRM requires fewer modes and simulates only one reduced
system rather than 20 subsystems, it is much more efficient than DIRM for solving
(3.31).

3.4.2. Viscous Burgers equation. The viscous Burgers equation is similar to
the advection-diffusion equation except, in the case of the viscous Burgers equation,
the advection velocity is no longer constant. The general form of the one-dimensional
Burgers equation is given by

(3.35) ut = −uux + νuxx,

where ν is the diffusion coefficient. Let Ω = [0, 1] denote the computational domain.
Periodic boundary conditions (3.32) are applied. The cubic spline function (3.33) is
used for the initial condition.

In the numerical simulation, the diffusion coefficient is given by ν = 10−3. The
full model is obtained using n = 2000 grid points, while the trial solution is obtained
by extracting the first 10 Fourier modes from a coarse simulation with k0 = 100 grid
points. Because the one-dimensional Burgers equation has a positive velocity, a wave
will propagate to the right with the higher velocities overcoming the lower velocities
and creating steep gradients. This steepening continues until a balance with the
dissipation is reached, as shown by the velocity profile at t = 1 in Figure 3(a). Because
states of the Burgers equation have high variability with time evolution, more modes
are necessary in order to present the whole solution trajectory with high accuracy.
Meanwhile, the SIRM method requires more iterations to obtain convergence.

The convergence plot for SIRM is shown in Figure 3(b). Equation (2.10) gives an
adaptive dimension, k, in each iteration: their values are 21, 38, and 60 for the first
three iterations when η = 10−6; are 26, 49, and 85 when η = 10−8; are 30, 62, and 105
when η = 10−10; and are 34, 76, and 129 when η = 10−12. When η ≤ 10−8, the error
of the approximate solution decreases in the first few iterations and then converges to
a fixed value, which is mainly determined by the truncation error produced by SVD.
In order to achieve higher resolution, for each iteration, more snapshots are needed
for each iteration to construct the information matrix and include more modes in the
associated reduced model.

What is more, the SIRM method can be used to estimate errors of other approx-
imate models as well. The Euclidean distance between the actual solution u(t) and
the approximate solution û0(t) as a function of t can indicate the accuracy of a coarse
model (or a reduced model),

(3.36) ‖e0(t)‖ = ‖u(t)− û0(t)‖.
However, in many applications, the actual solution u(t) is unknown or very expensive
to obtain. In this case, the SIRM method can be used to obtain a more precise
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Fig. 3. (a) The velocity profiles at t = 0 and t = 1 of the one-dimensional Burgers equation
with constant diffusion coefficient ν = 10−3. n = 2000 grid points are used to obtain the full model
for the fixed space domain [0, 1], while k0 = 100 grids are used to obtain a coarse model. The first
10 Fourier modes are extracted to construct the trial solution. When η = 10−10, it takes three
iterations for SIRM to obtain an accurate solution. (b) Convergence of SIRM for different η and
k0 values. Plot of the maximal L2 error, ‖ej‖∞ = sup{‖ûj(t) − u(t)‖ : t ∈ [0, 1]}, between the
benchmark solution u(t) and the iterative solution ûj(t).

solution û1(t), and the Euclidean distance between û1(t) and û0(t) can be used as an
error estimator,

(3.37) ‖Δ0(t)‖ = ‖û1(t)− û0(t)‖.
Although û1(t) is only guaranteed to have higher accuracy than û0(t) locally, (3.37)
can be applied to identify whether and when the trial solution has a significant dis-
crepancy from the actual solution. More generally, the error of the iterative solution
ûj(t) computed by SIRM,

(3.38) ‖ej(t)‖ = ‖u(t)− ûj(t)‖,
can (at least locally) be approximated by the difference between ûj+1(t) and ûj(t), as
follows:

(3.39) ‖Δj(t)‖ = ‖ûj+1(t)− ûj(t)‖.
For this reason, the criterion

∥∥x̂j − x̂j−1
∥∥
∞ < ε is used in Algorithm 1 to indicate

convergence of SIRM.
Revisiting the one-dimensional Burgers equation, Figure 4 shows that ‖Δj(t)‖ is

a good approximation for the actual error ‖ej(t)‖ for t ∈ [0, 1].

4. Local SIRM. In the previous section, the presented analysis and simulations
illustrate that under certain conditions the SIRM method is able to obtain a conver-
gent solution in the global time domain. However, the SIRM method still has existing
redundancy with respect to both dimensionality and computation, as described in the
following, that could be improved.

First, the reduced subspace formed by POD in SIRM keeps some redundant
dimensions of the original system in each iteration. To explain this, consider a large-
scale dynamical system whose solution exhibits vastly different states as it evolves
over a large time horizon. In order to obtain a highly accurate representation for
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Fig. 4. Comparison of the actual error ‖ej(t)‖ = ‖u(t) − ûj(t)‖ with the estimated error
‖Δj(t)‖ = ‖ûj+1(t) − ûj(t)‖ for t ∈ [0, 1], where u(t) is the actual solution of the one-dimensional
Burgers equation computed by 2000 grid points, û0(t) is the trial solution obtained by extracting the
first 10 Fourier modes from a coarse simulation based on 100 grid points, and ûj(t) (j �= 0) are
iterative solutions computed by the SIRM method.

the entire trajectory, we need a subspace with relatively high dimensionality to form
a surrogate model. However, projection-based model reduction techniques usually
generate small but full matrices from large (but sparse) matrices. Thus, unless the
reduced model uses significantly fewer modes, computing the reduced model could
potentially be more expensive than computing the original one. Notice that the orbit
of a dynamical system (2.1) is a one-dimensional curve; thus, it is desired that a local
section of curve be embedded into a linear subspace of much lower dimensionality.

Second, for each iteration, SIRM requires that the entire trajectory be computed
from the initial time to the final time of interest, T , which causes computational
redundancy. As a variant of the Picard iteration, the rate of convergence of SIRM
could be very slow for a nonlinear system with a large time domain. Under certain
conditions, SIRM has a locally linear convergence. As inequality (3.18) indicates,
when t ∈ J0 the rate of convergence of ‖ej‖∞ − χ is given by Ka exp(Ka/2)/2.
However, as (3.24) suggests, we cannot guarantee that SIRM could obtain a better
global solution in each iteration. Meanwhile, if we have already obtained convergence
at t = a for some 0 < a ≤ T , it would be a waste of computation to return to t = 0
for the next iteration.

Thus, it is preferable to partition the entire time domain into several smaller
subintervals, obtain a convergent solution for one subinterval, and then move forward
to the next. A simple concept of time-domain partition was already introduced in [7]
in the context of the standard POD-Galerkin method. As opposed to time domain
partition, space domain partition [1] and parameter domain partition [8] also have be
devolved to construct local reduced models using partial snapshots from a precom-
puted database. In this section, we combine the idea of time domain partition with
SIRM and propose a local SIRM algorithm for model reduction. For each subinterval,
the resulting method constructs a convergent sequence of approximating trajectories
solved in subspaces of significantly lower dimensionality. Convergence analysis and
the relation of the presented method with some other numerical schemes are also dis-
cussed. Then, we demonstrate its effectiveness in an example of the Navier–Stokes
simulation of a lid-driven cavity flow problem.
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4.1. Algorithm of local SIRM. Suppose the entire time domain J := [0, T ] is
partitioned into M smaller subintervals J1, . . . , JM with Ji := [ti−1, ti]. We slightly
abuse the notation and denote the subinterval index by the subscript i. Let t0 = 0
and tM = T , such that J = ∪M

i=1Ji. At subinterval Ji, the local solution trajectory
approximately resides in a linear subspace Si spanned by column vectors in Φi. Let
Φi be orthonormal; then the reduced equation formed by the Galerkin projection is
given by

(4.1) ż = ΦT
i f(t,Φiz)

for t ∈ Ji. The SIRM method can be applied to approach a locally invariant subspace
and obtain a convergent solution x(t) for this subinterval. Specifically, we initially set
a trial solution, x̂0(t) for t ∈ Ji. During iteration j, an extended data ensemble, Ŷ j−1

i ,
which contains a small number of snapshots within the subinterval, is constructed and
then served to generate the empirical eigenfunctions of the subspace to be used in the
next iteration cycle. After locally projecting the full model onto this subspace and
constructing a reduced model through (4.1), the time integration is carried out in a
low-dimensional space to obtain an updated approximate solution. Once sufficient
accuracy is achieved, one can move forward to the next subinterval.

Suppose a convergent solution x̂(t) for subinterval Ji−1 is obtained by the SIRM
method. Then, the ending state of Ji−1, x̂(ti−1), is the starting state of the next
subinterval Ji. There are several options to estimate the trial solution x̂0(t) for t ∈ Ji,
and we just list a few here. One can simply set the trial solution as a constant, which
means x̂0(t) = x̂(ti−1) for t ∈ Ji (although this is inaccurate). Alternatively, a coarse
model can be used to obtain a rough estimation of x̂0(t). These two methods can also
be used for SIRM, as discussed in the previous section. The third option is to use the
time history of the solution trajectory to obtain an initial estimation of the invariant
subspace. Similar to [14, 17], one can assume that the solution for subinterval Ji
approximately resides in the invariant subspace of the previous subinterval. Thus,
a set of empirical eigenfunctions can be generated by SVD of the state matrix or
the information matrix formed by snapshots in Ji−1. Especially, if only the starting
snapshot and the ending snapshot are used to construct the initial information matrix,
we have

(4.2) Ŷ 0
i = [x̂(ti−2), x̂(ti−1), γf(ti−2, x̂(ti−2)), γf(ti−1, x̂(ti−1))].

After projecting the full model onto this subspace, we can calculate the trial solu-
tion for t ∈ Ji. Since we do not have snapshots for t < 0, the time-history-based
initialization cannot be used for the first subinterval.

After obtaining a trial solution for a subinterval, SIRM is used to obtain a better
approximation of the actual solution. When the width of a subinterval is small enough,
the reduced equation has a significantly lower dimension. Let m denote the number
of sampling snapshots in the whole trajectory and m′ denote the number of sampling
snapshots within one time interval. For each i, both x̂(ti−1) and x̂(ti) are sampled for
the extended data ensemble. Thus, m = (m′− 1)×M +1. If m′ = 2, the information
matrix Ŷ j

i can be constructed from snapshots at ti−1 and ti,

(4.3) Ŷ j
i = [x̂(ti−1), x̂

j(ti), γf(ti−1, x̂(ti−1)), γf(ti, x̂
j(ti))].

Then, Φj
i can be constructed by the SVD. When m′ is small enough, say, m′ ≤ 5,

there is no need to further reduce dimensions from Ŷ j
i . Instead, Φ

j
i can be computed
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Algorithm 2. Local SIRM.
Require: The initial value problem (2.1).
Ensure: An approximate solution x̂(t).
Divide the whole time domain into smaller subintervals J1, . . . , JM .
for subinterval i do
Set a test function x̂0(t) as the trial solution.
Obtain a local solution by SIRM.

end for

Table 3

Complexity of the full model, SIRM, and local SIRM using implicit schemes for time integration.

Full model NT · (bγ(n)/5 + b2n/20
)

SIRM NI · (4m2n+ β(k, n) +NT · (kγ̂(k, n)/5 + k3/15
)
+mγ(n) +mnk

)

Local SIRM N ′
I · (4mm′n+Mβ(k′, n) +NT · (k′γ̂(k′, n)/5 + k′3/15) +mγ(n) +mnk′)

more efficiently by the Gram–Schmidt process. Algorithm 2 represents the complete
process of the local SIRM method.

Using the formula (3.30), we can obtain the computational complexity for Al-
gorithm 2. Table 3 illustrates the complexity of the full model, the (global) SIRM
method, and the local SIRM method. Compared with the full model, the SIRM
and local SIRM methods are more efficient only when the following conditions are
satisfied: (1) The standard POD-Galerkin approach is significantly faster than the
original model, and (2) the number of sampling points m is much smaller than the
total number of time steps NT .

Next, we compare the computational complexity of SIRM and its variant, local
SIRM. In order to achieve the same level of accuracy for the same problem, the number
of iterations needed, NI , for Algorithm 1 is usually much greater than the average
number of iterations needed, N ′

I , for one subinterval of Algorithm 2. In addition,
since m � Mm′, we can assume k � Mk′. Although there is no general formula
for β(k, n), we may expect that it is at least a linear function of k, and therefore
β(k, n) ≥Mβ(k′, n) holds. In fact, SIRM can be considered a special case of the local
SIRM method where M = 1, and the local reduced model offers more flexibility to
choose a subspace dimension. Furthermore, the unit step of (4.1) could be the same
as the unit step of the full model δt when computing the time integration. Suppose
SVD or the time integration plays a dominant role in determining the complexity of
Algorithm 1; a local reduced model can obtain at least M times speedups.

Based on the aforementioned complexity analysis, we discuss some heuristics for
some parameter choice strategies of the local SIRM method. Although the selection of
m has some flexibility, a good choice ofm should balance accuracy and computational
speed. Oncem is determined, in order to generate maximal speedups for one iteration,
each subinterval contains a small number of sampling snapshots, say, m′ = 2 or
m′ = 3. Numerical study in section 4.3 indicates that ifm remains constant, a largem′

value cannot significantly increase the accuracy for the lid-driven cavity flow problem.
If the Gram–Schmidt process is used to form a set of orthonormal eigenvectors, the
dimension of each local subspace, k′, can be directly determined by m′. Usually,
k′ = 2m′ if the solution trajectory is represented by one curve. The multiplier 2
stems from the fact that the information matrix contains both state vectors and
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their corresponding tangent vectors. For the lid-driven cavity flow problem, since the
solution involves both ψ and ω, we have k′ = 4m′.

4.2. Convergence analysis. We have already shown the capability of SIRM
to effectively approach a globally invariant subspace for a dynamical system, and
thus generate a sequence of functions that converges to the actual solution. As an
extension of SIRM, local SIRM generates a set of local invariant subspaces and obtains
corresponding local solutions. The union of all these local solutions forms a full
trajectory for the original system.

We begin here with the first subinterval. In an ideal situation, x0 ∈ Sj
1 , while the

state and the vector field satisfy x̂j−1(t) ⊂ Sj
1 and f(t, x̂j−1(t)) ⊂ Sj

1 for all t ∈ J1,
respectively. As Theorem 3.3 indicates, the sequence {x̂j(t)} generated by the local
SIRM method approaches x(t) for t ∈ J1. If the vector field is Lipschitz, then the
local solution to (2.1) on subinterval J2 continually depends on the initial condition
x(t1). For this reason, starting from x̂(t1), we can obtain a sequence of functions that
converges to x(t) for t ∈ J2. We can then move forward to the rest of the subintervals
and achieve the following theorem.

Theorem 4.1 (convergence of local SIRM). Consider solving the initial value
problem (2.1) by local SIRM for the time domain J = [0, T ], which is partitioned into
M smaller subintervals J1, . . . , JM with Ji := [ti−1, ti]. Suppose f(t, x) is a locally
Lipschitz function of x and a continuous function of t for all (t, x) ∈ J×D′, where D′

is an open set that contains x(t) for all t ∈ J . For subinterval Ji, the SIRM method is
applied to obtain an approximation for the local solution. Let x(t) be the local solution
of the full model, and let x̂j(t) be the solution of the reduced model at iteration j. For
each iteration, the reduced subspace Sj

i contains x̂(ti−1). Furthermore, the vector field

satisfies f(t, x̂j−1) ⊂ Sj
i for all t ∈ Ji. Then, for all i ∈ {1, . . . ,M} and t ∈ Ji, the

sequence of functions {x̂j(t)} uniformly converges to x(t).
Finally, it is interesting to consider the local SIRM method as a generalization of

many current time integration schemes. We can again considerm′ = 2 as an example.
The time-history initialization provides a linear subspace spanned by Ŷ 0

i to estimate
the trial solution for t ∈ Ji. Especially, when t = ti, the initial estimation of the state
vector is given by

(4.4) x̂0(ti) = Ŷ 0
i · ς0i ,

where Ŷ 0
i is given by (4.2) and ς0i is a vector that contains four elements. Suppose

the width of each subinterval equals δT and the width of one time step of integration
equals δt. As δT → δt, local SIRM degenerates to the two-step Adams–Bashforth
scheme if

ς0i =

[
0, 1,− δt

2γ
,
3δt

2γ

]T
.

On the other hand, if one uses the SIRM method to obtain a better estimation at
t = ti, the approximate solution is given by

(4.5) x̂1(ti) = Ŷ 1
i · ς1i ,

where it is assumed that only two snapshots are used to construct the information
matrix Ŷ 1

i , as expressed by (4.3). As δT → δt, local SIRM degenerates to the Crank–
Nicolson scheme if

ς1i =

[
1, 0,

δt

2γ
,
δt

2γ

]T
.
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More generally, suppose m′ snapshots are sampled from the previous subinterval.
Then, as δT → δt, the time-history initialization can degenerate to the m′-step
Adams–Bashforth method if proper coefficients are set for ς0i . In addition, if the

Y j
i has m′ + 1 snapshots from Ji, and the first m′ snapshots are overlapping with
Ji−1, then each iteration defined by SIRM can degenerate to the m′-step Adams–
Moulton method. Furthermore, if δT = m′δt, then each iteration defined by SIRM is
a generalized form of the m′-order Runge–Kutta method with variable coefficients.

However, as a manifold learning approach, local SIRM applies reduced models
to determine the coefficient values for each subinterval. This is more flexible than a
common scheme for time integration because the latter uses predesigned coefficients
for each column of the information matrix. Therefore, the local SIRM method has the
ability to provide more stable results for a fixed time interval. Even if δT � δt, local
SIRM can still generate stable results with high accuracy. In the next subsection, the
local SIRM approach is applied to a lid-driven cavity flow problem.

4.3. Cavity flow problem. Consider a lid-driven cavity flow problem in a rect-
angular domain Ω = [0, 1]× [0, 1]. The space domain is fixed in time. Mathematically,
the problem can be represented in terms of the stream function ψ and vorticity ω
formulation of the incompressible Navier–Stokes equation. In nondimensional form,
the governing equations are given as

ψxx + ψyy = −ω,(4.6)

ωt = −ψyωx + ψxωy +
1

Re
(ωxx + ωyy) ,(4.7)

where Re is the Reynolds number and x a]nd y are the Cartesian coordinates. The
velocity field is given by u = ∂ψ/∂y, v = −∂ψ/∂x. No-slip boundary conditions are
applied on all nonporous walls including the top wall moving at speed U = 1. Using
Thom’s formula [24], these conditions are, then, written in terms of stream function
and vorticity. For example on the top wall one might have

(4.8) ψB = 0,

where B denotes the points on the walls. The boundary conditions for ω are derived
from the definition of ω as given by (4.6). The first-order-correct boundary conditions
are given by

(4.9) ωB =
−2ψB−1

h2
− U

h
,

where subscript B denotes points on the moving wall, subscript B − 1 denotes points
adjacent to the moving wall, and h denotes grid spacing. Expressions for ψ and ω
at remaining walls with U = 0 can be obtained in an analogous manner. The initial
condition is set as u(x, y) = v(x, y) = 0. The discretization is performed on a uniform
mesh with finite difference approximations. For the time integration of (4.7), the
implicit Crank–Nicolson scheme is applied for the diffusion term, and the explicit
two-step Adams–Bashforth method is employed for the advection term.

In the numerical simulation, the Reynolds number is given by Re = 1000. The full
model uses 129×129 grid points and δt = 5×10−3 as a unit time step. The whole time
domain, [0, 50], is divided into 250 subintervals. For each subinterval, the trial solution
is obtained through a simulation based on 33× 33 coarse grid points with a unit time
step of 4δt. The same discretization scheme is applied for the coarse model. Thus,

D
ow

nl
oa

de
d 

08
/2

2/
14

 to
 1

28
.2

27
.1

74
.1

49
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ONLINE MANIFOLD LEARNING FOR MODEL REDUCTION 1949

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−0.1

−0.08

−0.06

−0.04

−0.02

0

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−0.1

−0.08

−0.06

−0.04

−0.02

0

(a) (b)

Fig. 5. Streamline pattern for driven cavity problem with Re = 1000. (a) The full model
uses 129 × 129 grid points. (b) The approximating result obtained through local SIRM. The whole
time domain, [0, 50], is partitioned into 250 subintervals. For each subinterval, a trial solution
is calculated from 33 × 33 grid points. An average of five iterations are used to achieve a better
approximation. We plot the contours of ψ whose values are −1 × 10−10, −1 × 10−7, −1 × 10−5,
−1× 10−4, −0.01, −0.03, −0.05, −0.07, −0.09, −0.1, −0.11, −0.115, −0.1175, 1× 10−8, 1× 10−7,
1× 10−6, 1× 10−5, 5× 10−5, 1× 10−4, 2.5× 10−4, 1× 10−3, 1.3× 10−3, and 3× 10−3.
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Fig. 6. (a) Comparison of the velocity component u(x = 0.5, y) along the y-direction passing
the geometric center between the full model, the coarse model, and the local SIRM method at t = 50.
(b) Comparison of the velocity component v(x, y = 0.5) along the x-direction passing geometric
center between the full model, the coarse model, and the local SIRM method at t = 50.

the coarse model can cost less than 1/64 of the required operations in the full model.
A sequence of functions defined by local SIRM is used to approach the local solution.

The streamline contours for the lid-driven cavity flow are shown in Figure 5. In
5(a), the full model matches well with the numerical results from [9], and the values
of ψ of the contours are the same as shown in Table III of [9]. Local SIRM provides
an approximate solution. The main error occurs around the vortex center, where the
contour of ψ = −0.1175 is missing in 5(b).

Figure 6 shows the velocity profiles for u along the vertical line and v along the
horizontal line passing through the geometric center of the cavity. The coarse model
provides a trial solution, which significantly deviates from the actual one. Then, local
SIRM is used to obtain much more accurate results. For each iteration, three snap-
shots and their corresponding tangent vectors are used to form the information matrix.
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Instead of POD, the Gram–Schmidt process is applied here to form a set of orthonor-
mal empirical eigenfunctions. Since the local data ensemble contains both ψ and ω as
well as the associated tangent vectors, the subspace dimension is 12. An average of
five iterations are carried out to obtain a local convergent solution for each subinterval.

Since an explicit scheme is used for the advection term, the CFL condition,
uδt/δx + vδt/δy ≤ 1 is a necessary condition for stability. Therefore, if the num-
ber of grid points increases from 65 × 65 to 257 × 257, the unit time step decreases
from 10−2 to 2.5 × 10−3 accordingly. Accounting for this, the asymptotic compu-
tational complexity of the full model for the entire time domain is no less than
O(n1.5). The above analysis only focuses on the advection term. Since the diffu-
sion term uses an implicit scheme, there is no extra limit to the unit time step for
the stability requirement. However, a large n will lead to a slower convergence for
many iterative methods, such as the successive over-relaxation method or the conju-
gate gradient method. Thus, O(n1.5) provides only a low bound estimation for the
full model.

Since the Navier–Stokes equation contains only linear and quadratic terms, the
complexity of the reduced model constructed by the Galerkin projection for one-step
integration does not explicitly depend on n. Moreover, the computational complexity
of all the other terms of local SIRM in Table 3 depends at most linearly on n. Thus,
we may roughly estimate that the overall complexity of local SIRM is O(n). Figure 7
compares the running time of the full model and the running time of SIRM for different
resolutions in (4.6) and (4.7). Except n and δt, all the parameters remain the same.
The linear regression indicates that the asymptotic complexity of the full model is
O(n1.74), and the asymptotic complexity of the reduced model is O(n1.07) using the
same scheme.

n

tim
e 

(s
ec

)

213 214 215 216 21726

28

210

212

214

 

 

full model
local SIRM

Fig. 7. Comparison of the computational time of the full model and the local SIRM method
for the lid-driven cavity flow problem. As the resolution increases from 65 × 65 to 257 × 257, the
dimension of the full system, n, increases from 2 × 652 to 2 × 2572. Using a log-log plot, the
asymptotic complexity can be determined by the linear regression coefficient.

Table 4

The maximal L2 error between the benchmark solution and approximate solutions solved by the
local SIRM method for different m and m′ values.

m′ = 2 m′ = 3 m′ = 5 m′ = 6 m′ = 10

m = 500 0.5689 0.5499 0.5407 0.5411 0.5403
m = 250(m′ − 1) 1.5029 0.5499 0.2335 0.1930 0.1175
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Finally, Table 4 shows the maximal L2 error for the local SIRM method using dif-
ferentm and m′ values. If each local reduced equation is solved in a larger subinterval
with more modes while the total number of sampling snapshots remains the same,
there is no significant improvement in accuracy. On the other hand, if the length of
each subinterval remains the same but we sample more snapshots, a more accurate
solution can be achieved. Thus, a good m value should balance accuracy and cost of
the reduced model, while a small m′ is desired for the lid-driven cavity flow problem.

5. Conclusion. In this article, a new online manifold learning framework, sub-
space iteration using reduced models (SIRM), was proposed for the reduced-order
modeling of large-scale nonlinear problems where both the data sets and the dynam-
ics are systematically reduced. This framework does not require prior simulations
or experiments to obtain state vectors. During each iteration cycle, an approximate
solution is calculated in a low-dimensional subspace, providing many snapshots to con-
struct an information matrix. The POD (SVD) method could be applied to generate
a set of empirical eigenfunctions that span a new subspace. In an ideal case, a se-
quence of functions defined by SIRM uniformly converges to the actual solution of the
original problem. This article also discussed the truncation error produced by SIRM
and provided an error bound. The capability of SIRM to solve a high-dimensional
system with high accuracy was demonstrated in several linear and nonlinear equa-
tions. Moreover, SIRM could also be used as a posterior error estimator for other
coarse or reduced models.

In addition, the local SIRM method was developed as an extension that can reduce
the cost of SIRM. The SIRM method is used to obtain a better approximate solution
for each subinterval of a partitioned time domain. Because each subinterval has less
state variation, the associated reduced model could be small enough. The numerical
results of the nonlinear Navier–Stokes equation through a cavity flow problem implied
that the local SIRMmethod could obtain significant speedups for a large-scale problem
while maintaining good accuracy.

There are some interesting open questions to study in the future. For example,
since the choice of the extended data ensemble is not unique, there might be other
methods that can be used to form an information matrix that results in a more
efficiently reduced model. It should be noted that the POD-Galerkin approach is
not the only technique that can be used to extract the dominant modes from an
information matrix and to construct a reduced model. How to combine SIRM with
other model reduction techniques that exhibit higher efficiency remains a topic for
future research.
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[14] R. Markovinović and J. D. Jansen, Accelerating iterative solution methods using reduced-

order models as solution predictors, Internat. J. Numer. Meth. Engrg., 68 (2006), pp. 525–
541.

[15] J. D. Meiss, Differential Dynamical Systems, SIAM, Philadelphia, 2007.
[16] B. C. Moore, Principal component analysis in linear systems: Controllability, observability,

and model reduction, IEEE Trans. Automat. Control, 26 (1981), pp. 17–32.
[17] M. L. Rapún and J. M. Vega, Reduced order models based on local POD plus Galerkin

projection, J. Comput. Phys., 229 (2010), pp. 3046–3063.
[18] M. Rathinam and L. R. Petzold, Dynamic iteration using reduced order models: A method

for simulation of large scale modular systems, SIAM J. Numer. Anal., 40 (2002), pp. 1446–
1474.

[19] M. Rathinam and L. R. Petzold, A new look at proper orthogonal decomposition, SIAM J.
Numer. Anal., 41 (2003), pp. 1893–1925.
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