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Abstract. The growth of a boundary layer at the nozzle wall during laminar vortex ring formation by
a nozzle flow generator (piston/cylinder arrangement) is analysed theoretically and numerically and used
for modelling the formation of real vortex rings. The predictions of the model are in good agreement with
previous experimental and numerical results.

1. Introduction

Vortex rings are usually generated in the laboratory by the motion of a piston pushing a column of fluid of
length L through an orifice or nozzle of diameter D. This results in a separation of the boundary layer at the
edge of the orifice or nozzle and its subsequent spiral roll-up.

The piston/cylinder arrangement has been extensively used to address the problem of vortex ring forma-
tion (Shariff and Leonard, 1992; Lim and Nickels, 1995). Recently Gharib et al. (1998) in their experimental
study of vortex ring formation addressed the question of the largest circulation that a vortex ring can attain,
by increasing L/D while keeping the average piston velocity fixed.

Gharib et al. (1998) showed that two distinct states of the flow exist for a wide range of the ratio of piston-
stroke-to-diameter (L/D) or “formation times”. Whereas for small stroke ratios only a single vortex ring was
observed, the flow-field generated by large L/D values always resulted in a leading vortex ring followed by
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a trailing jet. Comparing the total circulation produced by the motion of the piston with that of the resulting
vortex ring, they were able to define the time of the transition between these two flow states, i.e. when the
vortex ring pinches off from its generating axisymmetric jet.

It turned out that the pinch-off was always observed to occur at a stroke ratio (formation time) of ap-
proximately 4. This universal time scale was called the “formation number”. The universality of this number
was tested by generating vortex rings with different jet exit diameters, Reynolds numbers and exit boundary
conditions, as well as with various non-impulsive piston velocities programs.

The existence of the formation number was shown to be consistent with the Kelvin–Benjamin varia-
tional principle for steady axis-touching vortex rings (Kelvin, 1880, Section 18; Benjamin, 1976). According
to this principle, a steady translating vortex ring has maximum energy with respect to impulse-preserving
iso-vortical (i.e. preserving the circulation of each fluid element) perturbations. It has been used in the
mathematical literature for investigating stability and existence of vortex-ring-type solutions (Friedman and
Turkington, 1981; Amick and Fraenkel, 1986; Wan 1988). It follows from this principle that the pinch-off
occurs when the apparatus is no longer able to deliver the energy required for the existence of a steady vor-
tex ring. Gharib et al. (1998) demonstrated that based on the measured impulse, circulation and energy of the
observed vortex rings, the Kelvin–Benjamin variation principle correctly predicts the range of the observed
formation numbers.

Mohseni and Gharib (1998) used this idea to predict the formation number analytically by considering
the dimensionless energy of a vortex ring. It follows from their analysis that the translational velocity of the
ring W = 0.5 UP, where UP is the piston velocity. The predictions of the model were in reasonable agree-
ment with experiment, though the authors mention that in practice the translational velocity of a vortex ring
is higher.

Mohseni (2001) offered a statistical equilibrium theory for the vortex ring pinch-off process. He found
that the final equilibrium state predicted by mixing entropy maximization in statistical equilibrium theory
satisfies an energy extremization similar to the Kelvin–Benjamin variational principle.

Rosenfeld et al. (1998) extended the experimental study of Gharib et al. (1998) by investigating numer-
ically the formation of a laminar vortex ring. Utilizing computational fluid dynamics techniques, the authors
were able to study the influence of parameters, such as the velocity profile of the ring-generating discharg-
ing jet, that are almost impossible to investigate experimentally. The authors considered separately the case
of a specified velocity profile and the general case of piston/cylinder arrangement.

Rosenfeld et al. (1998) showed that the formation number is strongly dependent on the velocity pro-
file and also, though to a lesser extent, depends on the velocity program (the piston velocity as a function
of time). The latter observation was also made by Gharib et al. (1998) who in their experiments obtained
that the formation number lies in the range of 3.8–4.2 for an impulsive velocity program (constant piston
velocity) but can be as large as 4.5 for time-dependent velocity programs.

Recently, Mohseni et al. (2001) considered numerical simulation of vortex ring formation by apply-
ing a non-conservative force of long duration. This was offered as a model for vortex generation in
a piston/cylinder mechanism. They observed that the leading vortex ring pinches off with normalized en-
ergy and circulation of about 0.3 and 2.0, respectively, consistent with the theoretical predictions of Gharib
et al. (1998) and Mohseni and Gharib (1998). These two non-dimensional parameters are formed with three
integrals of the motion (energy, circulation and impulse) and the translational velocity of the leading vor-
tex ring. They showed that by increasing the nozzle diameter or accelerating piston velocity during the
formation process, thicker rings (similar to Hill’s spherical vortex) with larger normalized circulation can
be generated.

The interaction of the trailing jet instability with the leading vortex ring was studied recently by Zhao
et al. (2000). While their numerical simulation confirms the results of Gharib et al. (1998), they conclude that
the interaction of the trailing jet instability with the leading vortex ring causes a 20% variation in vortex ring
circulation, when non-dimensionalized with the orifice diameter and maximum piston velocity. We note in
passing that Mohseni et al. (2001) showed that this variation will be diminished if the vortex ring circulation
is normalized by the translational velocity and the impulse of the leading vortex ring.

While the Kelvin–Benjamin principle offers an elegant theory for the mere existence of the formation
number, by itself it fails to suggest a process for the dynamics of pinch-off. On the other hand, Shusser and
Gharib (2000) have shown that the Kelvin–Benjamin principle is equivalent to the hypothesis that the pinch-
off occurs when the translational velocity of the ring equals the jet flow velocity near the ring. The authors
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proposed a way of modelling vortex ring formation based on this kinematic approach. The purpose of the
present paper is to model the formation of a vortex ring using the idea of Shusser and Gharib (2000).

The main difficulty in the theoretical analysis of the vortex ring formation stems from strong depen-
dence of the formation number on the form of the velocity profile. In the experimental set-up, the velocity
profile is determined by the motion of the piston and the geometry of the orifice or the nozzle, i.e. the
velocity program, piston stroke ratio L/D and Reynolds number (Didden, 1979). Rosenfeld et al. (1998)
reached a conclusion that experimentally found small variations in the formation number are due to different
evolution of the velocity profile of the discharged flow.

Experimentally observed variations of the exit velocity profile are small and cause only slight varia-
tions in the formation number that do not detract from its universality. On the other hand, choosing a wrong
approximation for this profile while modelling vortex ring formation may cause large errors in predicted for-
mation number values. In this work we try to find a realistic approximation for the velocity profile while
modelling the formation of real vortex rings. We do it by analysing boundary layer growth on the inner wall
of the cylinder and its influence on the formation number. The predictions of the model can be compared with
the experimental data of Gharib et al. (1998) and the numerical results of Rosenfeld et al. (1998).

The present paper is a continuation of the studies of Gharib et al. (1998) and Rosenfeld et al. (1998).
Therefore, the review of previous works on vortex ring formation is not repeated here. The reader is referred
to the above papers, as well as to the excellent reviews of Shariff and Leonard (1992) and Lim and Nickels
(1995).

2. Boundary Layer Growth

2.1. Theoretical Model

Consider a boundary layer created at the inner surface of a cylinder of diameter D by a moving piston (see
Figure 1). This boundary layer must be sufficiently thin, because otherwise the roll-up of the vortex sheet
and vortex ring formation are impossible. Due to its being thin, one can neglect the influence of the nozzle
wall curvature and approximate the boundary layer on the wall as a boundary layer on a semi-infinite plate.
For later analysis of the impulsive piston program, we consider the growth of an unsteady boundary layer on
a semi-infinite plate that at the initial moment t = 0 was given a constant velocity UP.

The above problem was considered earlier (Rosenhead 1963, pp. 360–362). The solution was found to
depend strongly on the parameter τ = UPt/x. For small values of τ the flow can be approximated as the
Rayleigh–Stokes solution for an infinite plate, while for large τ it is closer to the Blasius solution. We
mention in passing that for very large τ the assumption of a thin boundary layer becomes invalid and the
flow-field can be found from the recent solution of Das and Arakeri (1998).

For constant piston velocity the parameter τ can be written as τ = L/x, where L is a piston stroke
(L = UPt). We are interested in estimating the boundary layer thickness at the edge of the nozzle. Taking into
account that in most cases L ≤ 4D (Gharib et al., 1998) and that in Gharib et al.’s (1998) experiments the
distance between the piston and the nozzle edge remained larger than 4D, we obtain that τ < 1 and therefore
the Stokes boundary layer solution should be used.

This solution is given by Rosenhead (1963, p. 137) as

u = UP erf

(
y√
νt

)
. (1)

Boundary layer

Figure 1. Boundary layer growth (not to scale) and its displacement effect during the piston motion.
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Here u is the fluid velocity component parallel to the wall, y is the local coordinate normal to the wall, ν is
the kinematic viscosity and

erf(z) = 2√
π

∫ z

0
e−λ2

dλ. (2)

In calculating the velocity defect, one obtains∫ ∞

0
(UP −u) dy = UP

√
νt

π
. (3)

Then integrating over the surface of the nozzle, we find that the presence of the boundary layer decreases the
mass flow near the wall at the nozzle exit by

Q = UP D
√

πνt. (4)

To compensate for slower flow in the boundary layer the flow velocity at the nozzle exit UEX must be greater
than UP. Assuming the flow outside the boundary layer is uniform and the layer itself being thin, we can
write the mass conservation equation as

UEX
πD2

4
− Q = UP

πD2

4
. (5)

Then

UEX = UP

(
1+ 4√

π

1√
Re

√
L

D

)
. (6)

Here Re = UP D/ν.
We now verify the accuracy of the theoretical result by calculating numerically a piston-driven flow in

the cylinder.

2.2. Numerical Model

The axisymmetric time-dependent incompressible Navier–Stokes equations in dimensionless form are em-
ployed for simulating the unsteady flow in the tube:

∂ur

∂t
+ur

∂ur

∂r
+ux

∂ur

∂x
= 1

r

∂

∂r
(rσrr )− 1

r
σθθ + ∂σrx

∂x
,

∂ux

∂t
+ur

∂ux

∂r
+ux

∂ux

∂x
= 1

r

∂

∂r
(rσrx)+ ∂σxx

∂x
, (7)

1

r

∂

∂r
(rur)+ ∂ux

∂x
= 0.

The stress components are given by

σrr = −P + 2

Re

∂ur

∂r
, σθθ = 2

Re

ur

r
,

σrz = 1

Re

(
∂ur

∂x
+ ∂ux

∂r

)
, σzz = −P + 2

Re

∂ux

∂x
. (8)

The velocity components in the axial (x) and radial (r) directions are ux and ur , respectively, and P is the
pressure.

It should be noted that for a very long pipe and a sufficiently high Reynolds number the assumption of
axisymmetric flow becomes invalid. However, this fact has no influence on vortex ring formation because
in practice vortex ring pinches off long before that. Gharib et al. (1998) were especially interested in long
piston strokes. They observed that the flow remained axisymmetric with a good accuracy. Even Glezer and
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(a)

(b)

Figure 2. The computational domain and boundary conditions used in the starting flow in a pipe: (a) computational domain; (b) the
mesh used (for clarity purposes, only every other mesh point is shown in each direction).

Coles (1990), who studied turbulent vortex ring formation and used piston velocities that were about an order
of magnitude higher than those used by Gharib et al. (1998), observed an axisymmetric flow. Das and Arak-
eri (1998), who investigated transition in a piston-driven pipe flow for piston strokes as large as 28 pipe
diameters, state explicitly (p. 257) that the flow remained unidirectional for a considerable time.

The computational domains and the boundary conditions are shown in Figure 2(a). The flow is solved
inside a tube of diameter 2.5 cm and length 20 cm. In the inflow boundary, a uniform axial flow with a mag-
nitude of 8 cm/s was specified, which corresponds to a Reynolds number (based on the tube diameter and
the inflow velocity) of 2000 for water flow. On the tube, zero velocity is specified, while on the outlet, zero
gradient is imposed on the velocity. Zero velocity was assumed as the initial conditions. A commercial CFD
solver (FLUENT 5, Fluent Inc., Lebanon, New Hampshire) was employed to solve numerically the Navier–
Stokes equations. The PISO method was used for pressure–velocity coupling. Second-order temporal and
spatial schemes were used for obtaining accurate predictions.

A mesh of 81×641 nodes was used in the radial and axial directions, respectively (see Figure 2(b)). Mesh
points were clustered near the wall and in the vicinity of the upstream boundary, where the largest gradients
were found. A uniform time step of ∆t = 0.002 s was used to advance the solution in time; it corresponds to
a non-dimensional time step of ∆t∗ = UP∆t/D = 0.0064, i.e. more than 150 time steps for every stroke of
one diameter. Mesh and time-step refinement tests revealed that the mesh and time steps used in the present
numerical simulations are within the convergence zone.

2.3. Results

The axial velocity distribution for several instants is shown in Figure 3. The flow-field is dominated by two
regions: the Stokes boundary layer region and the time-dependent spatially developing region.

In Figure 3(a), one finds a large region of spatially uniform velocity as well as a thin Stokes layer near
the wall and a developing flow in a small entrance region. In the later times, the developing flow region is
propagating downstream, constantly resulting in the reduction of the Stokes flow region. A clear front can
be observed between the developing flow and the Stokes flow. For example, in Figure 3(b) the front is at the
most downstream vertical line.

Figure 4 shows the axial velocity component on the axis at the time of t = 0.65 s. Both flow regions
can be observed here as well. For x < 0.05 m (x/D < 2) the flow is spatially developing and increasing in
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Figure 3. The axial velocity distribution evolution in time for starting flow in a pipe. The small circles mark the points along which
time history is shown in Figure 7. The vertical lines mark location of the lines along which the axial velocity distribution is shown
in Figure 5: (a) t = 0.10 s; (b) t = 0.65 s; (c) t = 1.40 s; (d) t = 4.00 s.

Figure 4. The axial velocity on the axis for t = 0.65 s.

Figure 5. The axial velocity profile at several axial locations and t = 0.65 s.
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Figure 6. The axial velocity profile at several axial cross-sections: (a) x = 0.05 m; (b) x = 0.1 m; (c) x = 0.15 m.
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Figure 7. Axial velocity history at four points on the axis: (a) as a function of t; (b) as a function of
√

t.

magnitude, while for x > 0.06 m the velocity on the axis is uniform. The axial velocity profile at that time
(t = 0.65 s) is shown in Figure 5 at four axial locations, three of which are marked by the vertical lines
in Figure 3. Far downstream (x = 0.1 m, i.e. x/D = 4) the flow-field consists of a Stokes boundary layer
with a large uniform core region. At x < 0.58 m, the velocity profile is typical of the initial stages of a de-
veloping flow. An “overshoot” in the velocity is found near the wall and consequently the velocity on the
axis is smaller than its maximum value in the Stokes layer region. The latter phenomenon was observed
experimentally by Didden (1979).

The time evolution of the axial velocity profile at three axial sections (see their location in Figure 3) is
shown in Figure 6. The previous findings are supported in this figure as well.

The history of the axial velocity at four points on the axis, which are also marked in Figure 3 by the
crossed dots, is shown in Figure 7(a). The initial stage is characterized by the Stokes layer, while the later
stages exhibit spatially developing flow characteristics. There is a noticeable decrease in the axial velocity
when the developing flow front passes, i.e. the axis line velocity decreases in the developing flow region.
Figure 7(b) depicts the same data as a function of

√
t demonstrating the Stokes layer behaviour prior to the

passing of the developing flow front.
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Figure 8. The dependence of the centreline velocity on the Reynolds number at several axial locations: (a) x = 0.01 m;
(b) x = 0.05 m; (c) x = 0.10 m; (d) x = 0.15 m.

Figure 9. The relative error for (6) as a percentage at x = 0.15 m.
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To study the influence of the Reynolds number, we repeated the calculations for inflow velocities U0 of
4 cm/s, 16 cm/s and 32 cm/s, which correspond to Reynolds numbers of 1000, 4000 and 8000, respectively.

Figure 8 shows the dependence of the axial velocity Uaxial at four axial locations as a function of dimen-
sionless time t∗ = U0t/D. We see that though the increase in the Reynolds number from 1000 to 8000 causes
a difference of about 25% in the values of the scaled axial velocity Uc = Uaxial/U0 (see Figure 8(d)), the form
of the time evolution remains the same for all Reynolds numbers.

To verify the validity of the theoretical model of Section 2.1, we plotted on Figure 9 the relative error for
the cross-section x = 0.15. The relative error was defined as (Uc −UEX)/UEX, where UEX is given in (6).
One sees that the error does not exceed 8% and that for Re ≥ 2000 it remains less than 5%.

Summing up, we can conclude that the velocity profile at the exit of the tube is that of a Stokes layer
in a straight pipe with a peak in the axial velocity near the wall. The agreement between the theory and
the numerical calculations is quite acceptable. We now use the boundary layer correction (6) to improve the
slug-flow approximation while modelling the vortex ring formation.

3. Vortex Ring Formation

3.1. Formation Model

Consider formation of a laminar vortex ring in a piston/cylinder arrangement. In order to concentrate on
the main physical factors, we study the basic case of a constant piston velocity UP (an impulsive velocity
program).

For convenience, we briefly summarize the main points of the vortex ring formation model proposed by
Shusser and Gharib (2000).

Vortex ring formation in a piston/cylinder arrangement is caused by roll-up of a cylindrical vortex sheet
ejected from the cylinder. The pinch-off occurs when vorticity flux from the vortex sheet into the ring van-
ishes. Assuming a uniform velocity across the ring-generating jet and calculating the vorticity flux, one can
show that the pinch-off criterion is

W = Vjet, (9)

where W is the translational velocity of the vortex ring and Vjet is the flow velocity of its generating jet near
the vortex ring. Details are given in the Appendix.

Shusser and Gharib (2000) assumed that in the vicinity of the ring the radius of the generating jet is equal
to the vortex ring radius R. Then using conservation of mass one can relate Vjet to the piston velocity UP:

Vjet = UP D2

4R2 . (10)

Substituting (10) into (9), one obtains Shusser and Gharib’s (2000) pinch-off criterion

W = UP D2

4R2 . (11)

To calculate the translational velocity of the vortex ring W and its radius R, Shusser and Gharib (2000)
adopted the approach of Mohseni and Gharib (1998) and approximated the ring as a member of Norbury’s
family of vortex rings (Norbury, 1973). Each particular member of Norbury’s family is characterized by the
non-dimensional thickness of the ring core ε, which varies between zero and

√
2.

Using Norbury’s family for vortex ring modelling one assumes that the vortex ring created in the labora-
tory will have the same relationships between its impulse, energy and translational velocity as a member of
Norbury’s family. (The extent to which the normalized circulation and energy of the computed vortex rings
are consistent with the mean core radius, as defined by Norbury, was investigated by Mohseni et al. (2001).)
However, these relationships depend on the thickness of Norbury’s ring ε.
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To calculate the energy, impulse and circulation of the vortex ring, Shusser and Gharib (2000) used the
slug-flow approximation (Shariff and Leonard, 1992; Lim and Nickels, 1995):

E = 1
8πD2ρLU2

P, (12)

I = 1
4πD2ρLUP, (13)

Γ = 1
2 LUP. (14)

Here E is the vortex ring energy, I is the vortex ring impulse, Γ is the vortex ring circulation and ρ is the
density of the fluid. The following relationships can be obtained from (12)–(14):

E = IUP

2
, (15)

I = πD2ρ

2
Γ. (16)

One can use (11), (15) and (16) to derive the following equation for the vortex ring thickness at pinch-off:

α(ε) = B(ε)

2N(ε)
√

π
. (17)

Here

α = E√
ρIΓ 3

, (18)

B = W

√
πI

ρΓ 3 , (19)

b = R

√
ρπΓ

2I
, (20)

N = W

UP
. (21)

It should be noted that, for Norbury’s family, α, B, b and N are functions of the non-dimensional thickness
ε only.

Shusser and Gharib (2000) suggested using (17) to estimate the value of ε. Using Tables 1 and 2 of Nor-
bury (1973), one can calculate α, B, b and N for seven values of ε between 0.2 and

√
2. The results are shown

in Table 1.
One sees from Table 1 that (17) does have a solution. Unfortunately, it is not possible to calculate it ex-

actly due to the absence of data for intermediate values of ε. Nevertheless, it is clear that the root of (17)
corresponds to ε that is slightly more than 0.4. For example, an interpolation of the data from Table 1 by
a polynom of order 4 or higher or by cubic splines yields ε ≈ 0.44.

We therefore approximate the vortex ring as a Norbury ring with a thickness of ε = 0.4. Incidentally, this
is the average value of what one obtains by matching the translational velocity of the vortex ring (ε ≈ 0.3,
Mohseni and Gharib (1998)) and by matching its energy (ε ≈ 0.5, Shusser and Gharib (2000)). We also
consider the sensitivity of the results to variation in ε later.

Table 1. Calculation of α, B, b, N from Norbury’s (1973) data.

ε 0.2 0.4 0.6 0.8 1.0 1.2
√

2

α 0.5567 0.3640 0.2754 0.2214 0.1873 0.1666 0.1601
B 0.8610 0.6907 0.5876 0.5119 0.4553 0.4162 0.3974
b 0.6978 0.6775 0.6558 0.6356 0.6153 0.5921 0.5590
N 0.5135 0.5446 0.5814 0.6188 0.6604 0.7132 0.8

B/2N
√

π 0.4730 0.3578 0.2851 0.2334 0.1945 0.1646 0.1401
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For the basic case of the uniform velocity profile and constant velocity program, criterion (11) yields the
following result for the formation number:

L

D
= π

√
2

4b2 B
. (22)

For a Norbury ring with ε = 0.4, B = 0.6907 and b = 0.6775 (see Table 1). Hence L/D = 3.50.
This is very close to Rosenfeld et al.’s (1998) result for the case of a uniform velocity profile and an

impulsive velocity program (L/D = 3.60). One sees that even for the idealized case of a uniform velocity
profile, our prediction is very close to the numerical results. However, to obtain experimental values of the
formation number, the model should account for boundary layer growth and its influence on the exit velocity
profile.

As the data for Norbury’s vortices is given in Norbury (1973) only in table format, its direct use is not
very convenient in practice. To facilitate calculating vortex ring properties, we utilize Fraenkel’s second-
order formulae for Norbury’s vortices (Fraenkel, 1972):

B(ε) = 1

4

√
1+ 3

4
ε2

[
ln

8

ε
− 1

4
+ 3ε2

8

(
5

4
− ln

8

ε

)]
, (23)

b(ε) = 1√
2
(
1+ 3

4ε2
) . (24)

For ε = 0.4, (22)–(24) yield B = 0.6987, b = 0.6682 and L/D = 3.56. One sees that the difference between
Norbury’s data and Fraenkel’s approximation is very small, as the error is 1.2% for B, 1.4% for b and 1.7%
for the formation number. We can conclude that the accuracy of Frankel’s formulae is good.

3.2. Boundary Layer Correction

We now use a more realistic approximation (6) accounting for the boundary layer correction to the flow
velocity in the ring-generating jet. Therefore, instead of (11) our criterion for the pinch-off will be

W = UEXD2

4R2 . (25)

Substituting (6) into (25) and using (13)–(14), (19)–(20), we obtain a quadratic equation for the formation
number L/D:

L

D
−

√
2π

b2 B

1√
Re

√
L

D
− π

√
2

4b2B
= 0. (26)

Taking the positive root one finally arrives at

L

D
= π

2B2b4 Re


1+

√
1+ ReBb2

√
2




2

. (27)

The relationship (27) for three values of ε is plotted in Figure 10, where the numerical results of Rosen-
feld et al. (1998) are also shown. We see that two other values of ε do not give good results. The predicted
formation number values are too low for ε = 0.3 and too high for ε = 0.5.

For ε = 0.4, one sees that owing to the boundary layer correction the values of the formation number now
lie in the range 3.8–4, which is exactly what was found experimentally by Gharib et al. (1998). When the
Reynolds number is large, the model predictions are in very good agreement with the numerical calculations.
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Figure 10. The dependence of the formation number on the Reynolds number: comparison of theoretical and numerical results.

The error is 0.5% for Re = 5000 and 1.3% for Re = 2500. For smaller Reynolds numbers, the accuracy of
the predicted formation time decreases somewhat due to larger relative errors in the boundary layer approx-
imation we used in Section 2 (see Figure 9). Nevertheless, even for low Reynolds number values such as
Re = 1250, the model provides an acceptable accuracy of 5.5%. This means that the model predictions are
reliable for the whole range of Reynolds numbers corresponding to laminar vortex ring formation.

4. Conclusions

We have proposed a new improved model for laminar vortex ring formation in a piston/cylinder arrange-
ment that accounts for the boundary layer growth on the cylinder wall. Numerical calculation of a developing
boundary layer in a piston-driven pipe flow demonstrates that the Stokes layer generated by an impulsively
started flat plate is an adequate model of the boundary layer. Predicted formation number values now fall in
the experimentally observed regime.

5. Appendix. Physical Basis for Shusser and Gharib’s (2000) Pinch-Off Criterion

The ring is formed by the roll-up of a cylindrical vortex sheet emitted from the pipe. Hence the ring will
pinch off when the flux of vorticity from the vortex sheet into the ring vanishes.

Due to the vortex sheet being thin, using the boundary layer approximation one can show that the vortic-
ity flux across the cross-section of the sheet is (Lim and Nickels, 1995, p. 115)∫

ωθu dr ≈
∫

∂u

∂r
u dr = 1

2 V 2
jet. (A.1)

Here ωθ is the azimuthal vorticity, u is the axial velocity inside the sheet, r is the radial coordinate and the
integration is taken across the sheet. It is assumed in (A.1) that the velocity at the inner edge of the sheet
is equal to the flow velocity in the ring-generating jet, Vjet. This assumption is equivalent to postulating
a uniform velocity across the jet.

On the other hand, not all the flux (A.1) will reach the ring. This will happen only for those parts of the
sheet where the local axial velocity u is larger than the translational velocity of the ring W . Assuming that u
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increases monotonically across the sheet from Vout < W to Vjet > W , we obtain for the vorticity flux into the
ring ∫

u>W
ωθ(u − W) dr ≈

∫
u>W

∂u

∂r
(u − W) dr = 1

2 (Vjet − W )2. (A.2)

One sees that the flux (A.2) vanishes and the ring pinches off from its generating jet when the translational
velocity of the ring equals the jet flow velocity near the ring.
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