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Determining the correct matching boundary condition is fundamental to our understanding of several everyday
problems. Despite over a century of scientific work, existing velocity boundary conditions are unable to
consistently explain and capture the complete physics associated with certain common but complex problems,
such as moving contact lines and corner flows. The widely used Maxwell and Navier slip boundary conditions
make an implicit assumption that velocity varies only in the wall normal direction. This makes their boundary
condition inapplicable in the vicinity of contact lines and corner points, where velocity gradient exists both in
the wall normal and wall tangential directions. In this paper, by identifying this implicit assumption we are able
to extend Maxwell’s slip model. Here, we present a generalized velocity boundary condition that shows that slip
velocity is a function of not only the shear rate but also the linear strain rate. In addition, we present a universal
relation for slip length, which shows that, for a general flow, slip length is a function of the principal strain rate.
The universal relation for slip length along with the generalized velocity boundary condition provides a unified
slip boundary condition to model a wide range of steady Newtonian fluid flows. We validate the unified slip
boundary for simple Newtonian liquids by using molecular dynamics simulations and studying both the moving
contact line and corner flow problems.
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I. INTRODUCTION

The interface between two phases of matter is often
accompanied by rapid changes in scales, multiphysics, geo-
metrical complexities, and intriguing chemical phenomena,
making it an ideal benchmark to expand our knowledge
beyond the confines of the bulk material. Determining the
correct matching boundary conditions is essential for accurate
predictions, as they govern the transfer of mass, momentum,
and energy across such interfaces. Among these, the boundary
condition governing the transfer of tangential momentum
across a fluid-solid interface is a topic that is still being
debated, despite over a century of scientific work [1–7]. The
no-slip boundary condition is known to be valid for many
continuum scale problems. However, in some cases, such as
spreading of fluid on a solid surface (moving contact line)
[8–14], corner flow [15–17], and extrusion of polymer melts
[18–20], assuming no-slip at the boundary leads to velocity and
stress singularities, and the breakdown of the no-slip boundary
condition. While steady flow boundary conditions for simple
regular interfaces are fairly well understood [21–23], there is
still a significant void in our understanding of the behavior
near the intersection of multiple interfaces, such as a moving
contact line (MCL) or a corner point. Here, the limiting factor
is that the breakdown of the no-slip boundary condition at these
intersections occurs at molecular scales. One of the proposed
methods to alleviate these singularities is to assume fluid slip
at these intersections. The two most common slip models are
those presented more than a century ago, by Navier [24] and
Maxwell [25]. However, Navier’s and Maxwell’s assumption
of constant slip length for a given wall-fluid interface contra-
dicts the findings presented in literature [10,11], which shows
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perfect slip at the singular point and no-slip far away from
it. Thompson and Troian [22] showed that at high shear rates
slip length is no longer a constant but rather a function of the
shear rate. They suggested that their model resolves this, as
it naturally allows for varying degrees of slip on approaching
regions of high shear stress and shear rate. However, as shall
be shown in this paper, the nonlinear relationship of slip with
shear rate and the universality of their boundary condition
is valid only for flows with velocity variation in the wall
normal direction. Hence, the existing models [14,22,24,25]
are unable to consistently explain and capture the complete
physics associated with more complex problems.

In this paper, we present a unified slip boundary condition
that is applicable for a wide range of Newtonian fluid flow
problems and includes the no-slip, Navier or Maxwell [24,25],
and Thompson and Troian [22] velocity boundary conditions
as limiting cases. The unified slip boundary condition, which
is validated with molecular dynamics (MD) simulations,
consists of two parts. First is the generalized velocity boundary
condition, which accounts for the variation of flow velocity not
only in the wall normal direction, as is the case for the Navier or
Maxwell [24,25] models, but also in the wall tangent direction.
From this follows the second part where slip length is shown
to be not just a constant, as suggested by Navier or Maxwell
[24,25], nor a nonlinear function of just the shear rate, as
suggested by Thompson and Troian [22], but rather a nonlinear
function of the principal strain rate. This universal relation for
slip length along with the general velocity boundary condition
provides a unified slip boundary condition to model a wide
range of Newtonian fluid flows over a solid surface.

II. NUMERICAL SETUP

The molecular dynamics simulations presented in this paper
are performed using the LAMMPS package [26]. The pairwise
interaction of molecules, separated by a distance r , is modeled
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TABLE I. Parameters for different cases of wall-fluid interfacial
properties with slip increasing from Case 1 to 4. εwf and σwf are the
Lennard-Jones (LJ) parameters for wall-fluid interaction and, ρw/ρ

is relative density of wall. εwf determines the extent of affinity of the
wall molecules to the fluid molecules and is inversely related to slip
length. σwf corresponds to the molecular diameter or length scale
associated with the LJ potential. An increase in its value leads to
greater slip and viceversa. Higher relative wall density (ρw/ρ) means
a smoother perceived surface leading to greater slip.

Case εwf /ε σwf /σ ρw/ρ

1 1.0 1.0 1.1
2 0.6 1.0 1.1
3 0.6 0.75 4.5
4 0.4 0.75 4.5

by the Lennard-Jones (LJ) potential:

V LJ = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]
. (1)

Here, ε and σ are the characteristic energy and length scales,
respectively. The potential is zero for r > rc = 2.5σ , where rc

is the cutoff radius.
Each wall is composed of at least two layers of molecules

oriented along the (111) plane of a face-centered cubic (fcc)
lattice, with the molecules fixed to their respective lattice
sites. The fluid molecules are initialized on a fcc lattice, with
initial velocities randomly assigned so as to obtain the required
temperature. The fluid in its equilibrium state has a temperature
T = 1.1kB/ε and number density ρ ≈ 0.81σ−3 for the corner
flow problem, and ρ ≈ 0.73σ−3 for the moving contact line
problem. The temperature is maintained using a Langevin
thermostat with a damping coefficient of � = 0.1τ−1, where
τ =

√
mσ 2/ε is the characteristic time and m is the mass of

the fluid molecule. The damping term is only applied to the z

direction to avoid biasing the flow. Table I lists the different
interfacial properties used in our study.

In this paper we consider both the moving contact line
and the corner flow problems. In addition, we also simulate
a single-phase Couette flow to verify Thompson and Troian’s
[22] boundary condition.

A. Moving contact line

The moving contact line is simulated by modeling a
two-phase, two-dimensional Couette flow, where the fluid
channel measures 153.0σ × 27.4σ × 144.0σ . The walls
move in opposite directions with a speed U = 0.1σ/τ and
periodic boundary conditions are imposed along the x and z

directions [Fig. 1(a)].

B. Corner flow

The corner flow is simulated by modeling a cavity flow
with an inclined wall. The cavity measures 91.0σ × 24.4σ ×
72.0σ , where the length in x corresponds to the bottom wall.
The top and bottom walls move in opposite directions with
a speed U = 0.1σ/τ , while the side walls are stationary
[Fig. 1(b)]. A periodic boundary condition is imposed along

Fluid 1 Fluid 2

Solid Wall

Solid Wall

(a)

(b)

FIG. 1. Schematics of the problem geometry. Schematics for (a)
a moving contact line problem and (b) a corner flow problem.

the z direction, which is the out-of-plane axis. θ describes the
corner angle.

C. Single-phase Couette flow

For the single-phase Couette flow, the fluid channel
measures 22.8σ × 25.0σ × 13.7σ . The top wall moves with
a speed U = 0.1σ/τ , while the bottom wall is stationary.
Periodic boundary conditions are imposed along the x and z

directions.
In the case of the moving contact line problem the immis-

cibility of the two fluids is modeled by choosing appropriate
LJ interaction parameters, such that the interatomic forces
between them is predominantly repulsive. For the results pre-
sented here these parameters are εf1f2 = 0.2ε, σf1f2 = 3.0σ ,
and rc = 2.5σ , which ensure a purely repulsive force. For
simplicity the two fluids are assigned identical fluid properties.

The equations of motion are numerically integrated using
the Verlet [27] algorithm with a time step �t = 0.002τ . The
simulation is initially run until the flow equilibrates, after
which spatial averaging is performed by dividing the fluid
domain into rectangular bins of size ∼0.5 × 1.0σ along the x-y
plane and extending through the entire depth of the channel.
In addition to spatial averaging, time averaging is done for
a duration of 8000τ for the moving contact line problem. In
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the case of a non-wetting wall, averaging was done for an
extended time of 16 000τ in order to resolve the data. For the
corner flow problem time averaging is performed for a duration
of 200 000τ .

The velocity results presented in this paper are normalized
by the wall velocity, |U | = 0.1στ−1. The dynamic viscosity
of the bulk fluid is μ = 2.1 ± 0.2ετσ−3 and the Reynolds
number of the flows is Re = 0.9 ± 0.1. In order to compute
various quantities at the wall, a reference plane is defined at a
distance of 1σwf away from the wall lattice site. For the single-
phase Couette flow problem, the velocity at the reference plane
is evaluated by fitting the MD data with the analytical solution
for a Couette flow. However, as there is no analytical solution
for the MCL and the corner flow problem, the velocity at
the reference plane is evaluated by linear extrapolation of the
velocity to the reference plane. The strain rates are evaluated
by discretizing the velocity field using a second order accurate
finite difference scheme. Spurious data points at 2σ−3σ away
from the contact point and corner point are excluded as the
data is unresolved.

Studies by Priezjev [28] and Pahlavan and Freund [29] have
shown that the stiffness of thermal walls effect the slip length
and its dependence on shear rate. It is also well known that the
property of the secondary fluid in a two-phase flow governs
the contact angle, which in turn could effect the local stresses
in the vicinity of the contact line in the primary fluid. In this
paper, for simplicity and in order to isolate these effects, the
test cases are modeled with wall molecules fixed to the lattice
site and the two immiscible fluids having identical properties.

III. VERIFYING THOMPSON AND TROIAN’S SLIP
MODEL FOR A MOVING CONTACT LINE PROBLEM

Thompson and Troian showed that for high shear rates
slip is no longer a constant rather it is a function of the
shear rate. Their model provided a mechanism to relieve
the stress singularity at contact lines and corner points. By
scaling slip length (Ls) with its asymptotic value (Lo

s ) and
shear rate (γ̇ ) with its critical value (γ̇c), they showed that
the data for a steady Couette flow experiment collapses to a
single universal curve, given by Ls/L

o
s = (1 − γ̇ /γ̇c)−1/2. The

reproduced results can be seen in Fig. 2(a), here Ls∗ = Ls/Lso

and γ̇ /γ̇c. However, the nonlinear relationship of slip length
with shear rate and the universality of their boundary condition
were only demonstrated for a steady single-phase flow. In order
to verify their boundary condition for more complex flows, we
perform MD simulations of a two-phase Couette flow (moving
contact line problem). Using the values of Lo

s and γ̇c obtained
from the single-phase Couette flow experiment, we scale the
slip length and shear rate for the two-phase Couette flow. It
is seen that Thompson and Troian’s scaling does not result in
collapsed data for the moving contact line problem [Fig. 2(b)].
In addition, it is observed that the slip length starts to diverge
even though the local shear rate has not approached the critical
value. Similar results can be shown in the case of a corner flow.

IV. THE GENERALIZED VELOCITY
BOUNDARY CONDITION

In order to address the limitations of existing models,
Maxwell’s slip model for rarefied gases [25] is revisited with
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FIG. 2. Breakdown of Thompson and Troian’s slip model for a
moving contact line problem. Scaled slip length versus shear rate
is plotted for (a) a single-phase Couette flow problem and (b) a
two-phase moving contact line problem. For both plots the properties
of primary fluid is the same (ρ ≈ 0.73σ−3 and T = 1.1kB/ε). The
different cases correspond to different wall-fluid properties, where
hydrophobicity increases from Case 1 to 4. As predicted by Thompson
and Troian, the data for a single-phase Couette flow collapses to
a single curve. However, the same scaling does not result in the
collapse of data for moving contact line problem. Here, ec is the
critical principal strain rate. The principal strain for a single-phase
Couette flow is computed as e1,2 = 1/2(∂u/∂y + ∂v/∂x). Hence, in
the case of a steady incompressible single phase Couette flow the
critical principal strain rate is half of the critical shear rate, ec =
(1/2)γ̇c.

the aim to identify the functionality associated with slip in
a general steady fluid flow. Even though Maxwell’s model
[25,30,31] was established for rarefied gases, it is illustrated
here that an analogous formulation shows promise to identify
model functionalities for slip modeling in liquids, or fluids in
general. This is emphasized by the fact that the Navier slip
model gives the same functionality of slip velocity with shear
rate as Maxwell. Similar steps were taken by Thalakkottor
and Mohseni [32] to extend Maxwell’s slip model to unsteady
flows with success.

Maxwell proposed that the fluid molecules reflected by the
wall can be divided into two categories, namely, diffusive and
specular reflection.
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A. Diffusive reflection
(
udiff

)

The incident fluid molecules can be imagined as being
adsorbed by the wall and then emitted into the fluid, such
that the net velocity will be the same as that of the fluid being
at rest with respect to the wall, that is

udiff(t+c ) = s·U(tc). (2)

Here, tc is the time of collision, t+c is the instantaneous time
immediately after collision with the wall, U is the wall velocity
vector, and s is the wall-tangent unit vector. All the parameters
are evaluated at the wall unless specified.

B. Specular reflection (uspec)

The incident fluid molecules undergo perfect elastic colli-
sion with the wall, such that there is no tangential momentum
transfer with the wall. Therefore,

uspec(t+c ) = s·u(t−c ), (3)

where t−c is the instantaneous time immediately before colli-
sion and u is the fluid velocity adjacent to the wall. The velocity
of the incident molecule is obtained by collision with a fluid
molecule located at a distance away from the wall. Using the
mean free path method [31,33], the incident velocity can be
calculated by performing a spatial discretization of the fluid
velocity about the wall. Here, Maxwell and other researchers
make an implicit assumption that the fluid velocity can only
vary in the wall normal direction. Based on this assumption,
they evaluate the Taylor series expansion of the fluid velocity
by computing the gradient of velocity only along the wall
normal direction. However, for a general flow the fluid velocity
is not limited to variation in only the wall normal direction
and can also vary in the wall tangent direction. Therefore,
using the mean free path method in three dimensions, we
obtain

uspec(t+c ) = s·[u(tc) − �x·∇u(tc)]

= s·[u(tc) − 2
3λδ·∇u(tc)

]
. (4)

�x can be written as �x = 2λ/3δ, where 2λ/3 is the average
distance traveled by a molecule in the x, y, and z directions
in a mean free time, λ is the mean free path, and δ = (±1,

±1,±1) is the direction vector of the incident fluid molecule
[31]. Hence, the spatial discretization of the fluid velocity is
the source of the primary difference between the Maxwell slip
model and our general velocity slip model and, as will be
seen, has significant ramifications on correct prediction near
an interface irregularity.

Now, the momentum of diffusively reflected molecules
together with specularly reflected molecules give the net mo-
mentum of the reflected molecules. The fractions of diffusive
and specular molecules making up the net reflected molecules
are determined by the tangential momentum accommodation
coefficient (σ̃ ). Therefore, the net reflected velocity is written
as

u(t+c ) = σ̃ udiff(t+c ) + (1 − σ̃ )uspec(t+c ). (5)

As the incident and reflected velocities together constitute
the actual fluid molecules close to the surface, the average fluid
velocity at the wall is given as the mean of the velocity before

and after collision:

u(tc) = u(t+c ) + u(t−c )

2
. (6)

By substituting and simplifying, the slip velocity can be written
as

Us = 2

3

(2 − σ̃ )

σ̃
λδ · ∇u · s, (7)

where Us = s·U − s·u. Here, the coefficient [2(2 − σ̃ )λ]/3σ̃

is a measure of slip at the interface and is replaced by slip
length, Ls . This more general form is applicable for liquids
as well, for which the mean free path is not well defined.
Therefore, the generalized velocity boundary condition is
given by

Us = Lsδ · ∇u · s. (8)

If we consider slip velocity to be only dependent on the strain
rate part of the velocity gradient tensor, as in the Navier slip
model for single-phase flows [14], slip length values lower
than the asymptotic value are observed at the leading edge,
which is unphysical. Hence, slip velocity must be a function
of the velocity gradient tensor.

If we consider a two-dimensional problem, then the above
slip model simplifies to Us = Ls[∂u/∂s + ∂u/∂n], where n
is the wall-normal unit vector. Comparing to the Navier or
Maxwell [24,25] slip model, it is seen that the slip velocity has
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FIG. 3. Moving contact line: Slip length versus principal strain
rate at the trailing edge. (a) Unscaled data and (b) scaled data. Results
are presented for four different cases of wall-fluid properties.
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FIG. 4. Moving contact line: Slip length versus principal strain
rate at the leading edge. (a) Unscaled data and (b) scaled data. Results
are presented for four different cases of wall-fluid properties.

an additional dependency on the linear strain rate, ∂u/∂s. It
is known that far away from the corner or contact line ∂u/∂s

reduces to zero, yielding the Navier or Maxwell boundary
condition. Thus, their models can be viewed as a limiting case
of the more general velocity boundary condition presented
here.

Qian et al. [34] derived their generalized Navier boundary
condition based on a force balance argument, which says
that slip is proportional to the tangential fluid force, βUs =∫ z0

0 dz(∂xσ̃xx + ∂zσ̃zx). Here, β is the slip coefficient, z0 is the
boundary layer thickness, and ˜(.) refers to the hydrodynamic
part of the stress. It can be seen that even though our respective
approach in deriving the boundary condition are different,
they too account for the linear stress similar to the linear
strain rate in our boundary condition. This further justifies our
generalized velocity boundary condition. However, in order to
use the slip boundary condition, slip length needs to be known
a priori. This is addressed next.

V. UNIVERSAL CURVE

The above findings suggest that for an arbitrary flow, slip
length must not just be a function of shear rate [22], but rather
a function of a flow parameter that captures the total strain
rate experienced in a fluid element. One such parameter is
the principal strain rate, which represents the maximum and
minimum strain rate in a fluid element. It must be noted that
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FIG. 5. Corner flow: Slip length versus principal strain rate at the
edge where wall is moving towards the corner. (a) Unscaled data and
(b) scaled data. Results are presented for different contact angles and
for wall-fluid properties corresponding to Case 2.

for simple flows where velocity varies in only the wall normal
direction, the principal strain rate is equivalent to the shear
rate. Thus, principal strain rate can be considered as the more
general parameter. This is validated using MD simulations,
for a moving contact line and a corner flow. The schematics
of the problem are shown in Fig. 1 and the different wall-fluid
properties used are listed in Table I.

The variation of slip length versus the local principal strain
rate for a moving contact line problem is plotted in Figs. 3 and
4, for the trailing and leading edge, respectively. The principal
strain rate for a 2D case is evaluated as e1,2 = (exx + eyy)/2 ±√

((exx − eyy)/2)2 + e2
xy), where exx = ∂u/∂x, eyy = ∂v/∂y,

and exy = 1/2(∂u/∂y + ∂v/∂x). Depending on whether we
are considering the leading or trailing edge, the principal strain
rate e1 or e2 are used, respectively. e1 represents the maximum
extension experienced by the fluid, which corresponds to the
acceleration of the fluid as it moves away from the leading
edge, while e2 corresponds to the maximum compression
corresponding to the deceleration of the fluid on approaching
the trailing edge. In addition we also present the results for a
corner flow with the wall moving toward and away from the
corner, as shown in Figs. 5 and 6, respectively. We observe a
nonlinear relationship between slip length and principal strain
rate, the functional behavior of which suggests the existence
of a universal curve. Scaling slip length by its asymptotic
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FIG. 6. Corner flow: Slip length versus principal strain rate at the
edge where wall is moving away from the corner. (a) Unscaled data
and (b) scaled data. Results are presented for different contact angles
and for wall-fluid properties corresponding to Case 2.

value and the principal strain rate (e1,2) by its critical value
(ec), the data collapses onto a single curve, described by
Ls = Lo

s (1 − e1,2/ec)−α , where e∗ = e1,2/ec. The MD results
show that α is approximately 0.5 (Fig. 7). This relation implies
that close to the critical principal strain rate, slip lengths would
approach macroscopic values and at the critical value one
would observe perfect slip. This is analogous to material failure
by plastic yielding or fracture, where the limiting stress is a
function of the principal stresses [35]. The value of Lo

s and ec

are constants associated with a given wall-fluid pair. It must
be noted that the asymptotic value Lo

s and ec is approximately
the same as that evaluated for a single phase Couette flow
(Fig. 2). Hence, we can say that Thompson and Troian’s
[22] slip model is the zero-linear-strain-rate limit of this
universal relation and, in turn, the Navier or Maxwell [24,25]
model is the low-shear-rate limit of Thompson and Troian’s
model.

Knowing Lo
s and ec for a given wall-fluid pair, one can

evaluate the slip length for any given strain rate using the
universal relationship for slip length presented here. Thereby,
not having to perform computationally expensive MD simula-
tions. The universal relationship for slip length, along with the
generalized velocity boundary condition, provides a unified
boundary condition for steady Newtonian fluid flows. The
unified boundary condition, while being consistent in the
limits with the no-slip, Navier or Maxwell, and Thompson
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FIG. 7. α for different corner angles θ (measured in degrees).
The parameter α is seen to be approximately 0.5 when the results are
computed at a reference plane 0.5σwf away from the wall lattice site.
This is consistent with Thompson and Troian. If the values are not
evaluated at the reference plane then α could show corner–contact-
angle dependency.

and Troian boundary conditions, is also able to capture the
complete physics associated with more complex problem such
as the moving contact line and corner flow.

VI. CONCLUSION

To summarize, by extending the Maxwell slip model we
obtain a generalized velocity boundary condition, which shows
that, for a general flow, slip velocity is a function of both
the shear rate and the linear strain rate. Knowing this, we
find that slip length is a function of principal strain rate.
By scaling slip length (Ls) with its asymptotic value (Lo

s ),
and principal strain rate (e1,2) with its critical value (ec), we
obtain a universal relationship for slip length, Ls = Lo

s (1 −
e1,2/ec)−1/2. The universal relationship for slip length, together
with the generalized velocity boundary condition, gives a
unified boundary condition that describes slip at the boundary
for a wide range of steady Newtonian flows. This was validated
using molecular dynamics simulations for the moving contact
line and the corner flow problems. The boundary condition
captures the physics associated with complex problems, such
as single-phase corner flows and two-phase moving contact
lines, while also being consistent with the slip models of Navier
or Maxwell and Thompson and Troian, for simpler flows. Our
results suggest that the moving contact line and the corner
flow problems, both of which exhibit boundary singularities,
are fundamentally similar in nature and are governed by the
flow conditions presented here.
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