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Abstract This study presents several new observations
from the study of a numerically simulated warm-core ring
(WCR) in the Gulf of Mexico based on the ECCO2 global
ocean simulation. Using Lagrangian coherent structures
(LCS) techniques to investigate this flow reveals a pattern
of transversely intersecting LCS in the mixed layer of the
WCR which experiences consistent stretching behavior over
a large region of space and time. A detailed analysis of
this flow region leads to an analytical model of the veloc-
ity field which captures the essential elements that generate
the transversely intersecting LCS. The model parameters
are determined from the simulated WCR and the resulting
LCS show excellent agreement with those observed in the
WCR. The three-dimensional transport behavior that cre-
ates these structures relies on the small radial outflow that
is present in the mixed layer and is not seen below the pyc-
nocline, leading to a sharp change in the character of the
LCS at the bottom of the mixed layer. The flow behav-
ior revealed by the LCS limits fluid exchange between the
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WCR and the surrounding ocean, contributing to the long
life of WCRs. Further study of these structures and their
associated transport behavior may lead to further insights
into the development and persistence of such geophysical
vortices as well as their transport behavior.

Keywords Ocean · Warm-core ring · Lagrangian ·
Coherent structures · Transport · Mixing

1 Introduction

Despite the importance and prevalence of warm-core rings
(WCRs) in the Gulf of Mexico (GoM) and other ocean
basins, many of the details of the transport and small-scale
coherent structures in these flows remain poorly understood.
WCRs have a significant impact on oceanic transport and
energy balances (Elliott 1979; Lewis et al. 1989; Oey 2008)
and can also influence weather patterns including hurricanes
due to their interaction with the atmosphere. It is known
that hurricanes may rapidly intensify when passing over a
WCR (Hong et al. 2000; Shay et al. 2000; Scharroo et al.
2005). Additionally, the mixing behavior in a WCR dif-
fers significantly from that of the surrounding ocean and
may greatly influence biological activity such as plankton
blooms (Franks et al. 1986; Biggs 1992).

The primary purpose of this paper is to present some
newly observed structures and their associated transport
behavior in a numerically simulated warm-core ring in the
Gulf of Mexico. The ring studied here is present in the pub-
licly available ECCO2 global ocean simulation. We have
chosen to focus on newly observed small-scale coherent
structures seen in the near-surface region (that is, the ocean-
atmosphere boundary) of the WCR. To study the structures
in these flows, we use the technique of Lagrangian coherent
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structures (LCS). This technique is used to identify struc-
tures relevant to the Lagrangian transport of fluid. These
structures represent barriers to transport and often reveal
flow behavior that may be difficult or impossible to detect
with Eulerian measures.

In Section 2, we briefly present an overview of the LCS
technique before applying this technique to computing the
three-dimensional LCS present in numerical simulations of
a WCR. In Section 3, the results of these LCS computa-
tions are discussed, revealing a previously unobserved type
of structure in the mixed layer. Due to the transversely inter-
secting LCS that appear in this region, we will refer to
these structures as “checkerboard LCS.” The Lagrangian
flow behavior in the checkerboard LCS region is also inves-
tigated in Section 3. In Section 4, a simple analytical model
is presented which produces similar LCS structures and pro-
vides several insights into the mechanisms through which
these structures are generated. Finally, we conclude with a
brief discussion of the results and possible avenues for new
research.

2 Lagrangian coherent structures

The term LCS has come to refer to a class of techniques
used to identify coherent structures in aperiodic, finite time
flows. In steady state or periodic systems, classical dynam-
ical systems techniques can be used to identify hyperbolic
fixed points and their stable and unstable manifolds as well
as other invariant manifolds in the system. These structures
may then be used to study the flow topology and the corre-
sponding mixing and transport in the system. However, in
systems with general time dependence, the same techniques
no longer apply. To address this shortcoming and identify
coherent structures in systems with general time depen-
dence, various methods have been proposed. One of the
most popular and successful methods has been the use of the
finite time Lyapunov exponent (FTLE) to identify regions
of locally maximum stretching in the flow (Haller and Yuan
2000; Shadden et al. 2005). Intuitively, one expects that
regions with qualitatively different dynamics will be sepa-
rated by a thin region of very large Lagrangian stretching
(Haller and Yuan 2000). Fluid parcels that straddle the
boundary between two regions will be greatly deformed
and stretched over time as they separate into different
regions.

The notion of defining coherent structures by the stretch-
ing at their boundaries was formalized in Shadden et al.
(2005) by defining LCS as ridges in the FTLE field. This
method of defining and computing LCS has since proven to
be very effective in many cases, but it is worth noting that
there are alternative definitions as well. In particular, Haller
and others have developed a variational formulation for

computing LCS (Haller 2011; Farazmand and Haller 2012),
there are methods for finding “distinguished” trajectories
(Ide et al. 2002; Madrid and Mancho 2009), and there are
methods for finding maximally invariant sets (Dellnitz et al.
2005; Froyland and Padberg 2009). In this paper, we will
use LCS as defined in Shadden et al. (2005): ridges of the
FTLE field.

LCS techniques are primarily useful for determining and
examining the Lagrangian transport of a system. In the past,
these techniques have been used to investigate unsteady
separation (Haller 2004) and the flow over an airfoil
(Cardwell and Mohseni 2008), transport in jellyfish swim-
ming and feeding (Lipinski and Mohseni 2009; Peng and
Dabiri 2009), three-dimensional turbulence (Green et al.
2007), atmospheric transport (Lekien and Ross 2010), and
many other applications. LCS provide a way to precisely
identify the extent or boundaries of coherent structures and,
correspondingly, a way to quantify their impact on transport
phenomena. Crucially, LCS identify barriers to transport
and therefore reveal the structure underlying mixing and
transport in a flow.

LCS have been applied to many ocean flows with
good results. LCS have been used to study optimal pol-
lution mitigation (Coulliette et al. 2007), transport in a
wind-driven double gyre (Coulliette and Wiggins 2001),
identify mesoscale eddies (Beron-Vera et al. 2008), and
even investigate the transport of oil from the Deepwater
Horizon oil spill (Mezić et al. 2010 Huntley et al. 2013;
Olascoaga and Haller 2012). Most ocean studies using
LCS have focused solely on surface flows and used two-
dimensional LCS computations. The expectation has been
that since oceanic flows are highly stratified and verti-
cal velocities are typically orders of magnitude smaller
than the horizontal velocities, two-dimensional computa-
tions are appropriate. However, the length scales in the
vertical direction are also orders of magnitude smaller than
those in the horizontal, leading to flow gradients in the
vertical direction that may exceed those in the horizontal.
Recently, researchers have begun to focus more directly on
the impacts of three-dimensionality on ocean LCS, noting
that three-dimensional effects may be critically important
even if the vertical velocity component is small (Sulman
et al. 2013).

To compute the LCS, it is necessary to first compute
the FTLE field. The most common method for doing so
involves seeding a region of the flow with a grid of passive
drifter particles at some initial time t0 and advecting these
particles with the flow field for some integration time T.
This gives an approximation to the flow map

�T
t0
(x0) = x0 +

∫ t0+T

t0

v(x(t), t)dt. (1)
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Once the flow map has been computed, the Cauchy-Green
deformation tensor is computed as

� =
(
d�

dx0

)∗ (
d�

dx0

)
, (2)

where ∗ denotes the transpose operator. This tensor contains
information about the geometric deformation of the flow.
The FTLE is then given by

σT
t0
(x0) = 1

|T | ln
√
λmax, (3)

where λmax is the maximum eigenvalue of �. Note that the
integration time T may be either positive or negative so for
any flow, there are always two sets of LCS. For T > 0, the
LCS are typically repelling structures, and for T < 0, they
are attracting. Additionally, the magnitude of T should be
chosen so that sufficient detail is resolved in the LCS. As T
is increased, more LCS are revealed, but if T is too large,
the complexity of the resulting structures may be difficult to
interpret.

Once the FTLE field has been computed, the LCS are
often visualized by directly plotting the FTLE field. The
LCS are defined as ridges in the FTLE field which are
visible just as ridges are visible on a topographical map. Var-
ious mathematical definitions of ridges are available but this
choice does not seem to greatly affect the resulting LCS.
For well-defined ridges, the LCS typically permit very low
or negligible flux and can be thought of as denoting barri-
ers to fluid transport (Shadden et al. 2005). If desired, one
may explicitly extract the ridges from the FTLE field in an
additional step to obtain the LCS.

In this study, we have used an efficient ridge tracing
algorithm to directly compute the LCS ridge surfaces in
the WCR. This method greatly speeds the LCS computa-
tions by detecting some initial points on the LCS ridges and
then tracing the ridges through space. By avoiding compu-
tations away from the FTLE ridges, the algorithm reduces
the computational complexity from O(δx−3) to O(δx−2) in
three-dimensional domains (Lipinski and Mohseni 2012).
Additionally, we have verified that all results presented
below are insensitive to grid refinement. Combined with
the good agreement between the observations presented in
Section 3 and the analytical model of Section 4, this gives
a high level of confidence that the results are not due to
numerical artifacts.

3 Observations from a simulated WCR

The observations presented here are based on data from
the cube92 run of the ECCO2 global ocean simulation
which is publicly available at http://ecco2.jpl.nasa.gov/. All
results discussing the WCR refer to the output of this
numerical simulation, not to physical measurements of a

real-world WCR. However, there is significant evidence that
the ECCO2 model captures many aspects of the real ocean
on this scale and generates realistic eddies and near-surface
ocean dynamics.

The ECCO2 model is an eddy-resolving finite volume
simulation that uses a cube–sphere grid projection with an
average spacing of 18 km in the horizontal and 50 verti-
cal levels with spacing ranging from 10 m near the surface
to about 450 m at a maximum depth of 6,150 m. The data
is saved as 3-day averages on a quarter degree latitude-
longitude grid with 50 vertical levels. The underlying model
is the MIT general circulation model (MITgcm, Marshall
et al. 1997). The model is a forward run simulation using
optimized values of uncertain parameters (such as bot-
tom drag) which are calculated by minimizing the misfit
between data and simulation using the Green functions tech-
nique. This results in a realistic and dynamically/physically
consistent model. However, because the model is forward
run without data assimilation, it should not be expected
to closely align with the precise state of the real ocean
at any particular later time. The model includes accurate
bathymetry and is coupled to a sea-ice model for accurate
simulation of the polar oceans. Atmospheric forcing uses
the NCEP-NCAR reanalysis (Kanamitsu et al. 2002). For
additional details of the ECCO2 model, see Menemenlis
et al. (2008).

There are some unknown factors with regards to the accu-
racy of the model, including the level of accuracy of the
vertical velocity components. However, the vertical veloc-
ities in the WCR appear in line with previously published
results (Flierl and Mied 1985; Franks et al. 1986; Kishi
1994) and the LCS techniques used in this paper are rela-
tively insensitive to small errors in the velocity field (Haller
2002). As will be seen in Section 4, the checkerboard LCS
structures observed below do not require a nonzero verti-
cal velocity component. Furthermore, several past studies
have used the ECCO2 model output to investigate eddy
processes, finding results that support the utility of the sim-
ulation (Volkov and Fu 2008; Volkov et al. 2008; Fu 2009;
Chen 2013). In particular, Fu (2009) found good agree-
ment between observations from satellite altimetry data and
eddy propagation in the ECCO2 model, suggesting that the
model accurately captures eddy propagation and the surface
behavior of ocean eddies.

We focus on the structure and transport of a warm-core
ring in the Gulf of Mexico as found in the ECCO2 simu-
lation on 1 February 2010. WCRs periodically form in the
GoM when the loop current in the eastern GoM pinches
off in a closed ring which contains warm Caribbean water.
These rings typically persist for about 7–13 months (Sturges
and Leben 2000) as they drift slowly across the GoM before
dissipating in the western GoM (Hurlburt and Thompson
1980).

http://ecco2.jpl.nasa.gov/
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In WCRs, the flow field is largely two-dimensional, with
horizontal flow speeds on the order of 1 m s−1 and verti-
cal speeds three to four orders of magnitude smaller. These
vertical flow speeds observed in the WCR from the ECCO2
model are roughly in line with those seen in past studies
(Flierl and Mied 1985; Franks et al. 1986; Kishi 1994).
However, the horizontal length scales are on the order of
100 km while the vertical lengths scales are a few hundred
meters. In combination, this means that flow gradients in the
vertical direction may be of the same order or larger than
those in the horizontal direction. Because of this, even a
small vertical displacement may have a large impact on the
trajectories of fluid particles and the full three-dimensional
flow structure must be considered when analyzing fluid
transport in WCRs.

A view of the near-surface LCS in the GoM on 1
February 2010 is shown in Fig. 1. We have computed the
three-dimensional LCS in the GoM using a ridge track-
ing algorithm to speed computations (Lipinski and Mohseni
2012). An integration time of T = ±4 weeks was used.
This time was chosen to reveal the major structures in the
flow. In Fig. 1, the loop current is clearly visible in the east-
ern GoM as it enters through the Yucatan Channel and exits
through the Florida Straits. A recently shed WCR is in the
central GoM and an older WCR is visible in the western
GoM. Below, we will focus on the single WCR in the central
GoM.

Figure 2 shows a vertical cross section of the LCS in this
WCR. There are several features of note in this figure. First,
the LCS reveal a closed bottom to the WCR. In this part of
the WCR, the attracting and repelling LCS are nearly par-
allel and prevent transport in or out of the eddy. The LCS
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Fig. 1 A two-dimensional slice of the near-surface LCS in the Gulf
of Mexico as computed from the ECCO2 dataset for 1 February 2010.
Attracting LCS are shown in red and repelling are shown in blue. A
large WCR is present in the center of the GoM and an older ring is in
the western GoM. The loop current is also clearly visible

in this region are relatively simple and the primary transport
within the WCR near these structures is simply azimuthal
flow around the WCR as expected. These LCS denote the
separation between fluid that recirculates in the WCR and
that which passes by outside: the Lagrangian boundary to
the WCR. The source of the stretching giving rise to these
LCS is the divergence of trajectories inside and outside the
WCR. The clear LCS in this region indicate limited trans-
port into or out of the eddy at depth which is likely one of the
reasons WCRs persist for so long. Additionally, this closed
bottom indicates that the WCR has limited influence below
a certain depth (about 550 m in this case) and fluid below
this depth does not get entrained or carried with the WCR.
The closed bottom and finite depth of the WCR potentially
allows for volumetric computations to determine precisely
how much water is carried with the WCR and quantify the
corresponding influence on heat, salt, and mass balances in
the GoM.

Next, we note a clear difference between the LCS below
about 120 m and those above with a sharp transition between
these two regions. This 120-m depth marks the bottom of
the mixed layer in the WCR. Below this depth, the attracting
(red) and repelling (blue) LCS are approximately aligned
with one another. However, in the mixed layer, the attract-
ing and repelling LCS intersect transversely, forming a
cross-hatched or “checkerboard” pattern. This checkerboard
pattern is a new flow structure which has not been previ-
ously reported in geophysical flows. The dynamical impacts
and underlying flow structure of the checkerboard LCS are
not immediately obvious, and likely arise through more
complex behavior than the transport that causes the parallel
LCS that appear below the mixed layer.

To investigate the flow behavior within the checkerboard
region, we place a box of passive drifter particles in this
region of the WCR and track their motion over time. The
particle positions are shown after 0, 12.5, and 25 days in
Fig. 3. The box is initially ≈21 km across in the latitu-
dinal and longitudinal directions and covers a depth range
of 50 m. As can be clearly seen in Fig. 3, the initial box
of drifter particles is quickly stretched and wrapped around
the circumference of the WCR while being compressed in
the radial direction. The box very quickly becomes greatly
deformed by the horizontal velocities in the flow, but very
little motion occurs in the vertical direction. Although it is
difficult to see in Fig. 3, the box is also slowly compressed
in the vertical direction and pushed upwards while being
sheared in the radial direction with particles near the sur-
face moving radially outward with respect to those below.
The compression and upward motion is a small effect com-
pared to the other motions observed. The near-surface radial
outflow is expected due to friction-based disruption of the
cyclo-geostrophic balance that is present in much of the
WCR.
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Fig. 2 A vertical cross section of the LCS in a warm-core ring in the Gulf of Mexico computed from the publicly available ECCO2 dataset. The
inset shows the characteristic “checkerboard” pattern formed by the interaction of the attracting (red) and repelling (blue) LCS

This last point merits some additional explanation since
the radial outflow will be a critical component of the ana-
lytical flow presented in Section 4. A near-surface radial
outflow has been previously observed in measurements of
the near-surface velocity structure of a WCR (Joyce and
Kennelly 1985; Olson et al. 1985) as well as numerical mod-
els (Flierl and Mied 1985). This result should be expected
given the near-surface structure of the WCR, frictional
effects, and the specifics of the cyclo-geostrophic balance.
The cyclo-geostrophic balance in a WCR is described by the
equation

|f v| =
∣∣∣∣v

2

r

∣∣∣∣ +
∣∣∣∣ 1

ρ

∂p

∂r

∣∣∣∣ , (4)

where v is the azimuthal velocity, r is the radius, ρ is the
density, f is the Coriolis parameter, and p is the pressure.
The Coriolis term on the left causes acceleration toward the
ring center and balances the centripetal acceleration and the
pressure gradient force on the right. The pressure gradient
arises due to the elevated sea surface height of the WCR. In
a WCR with r ≈ 100 km and v ≈ 1 m s−1, the Coriolis and
pressure gradient terms are on the order of 10−4 m s−2 and
the centripetal acceleration term |v2/r| is about 1 order of
magnitude smaller. In fact, the slightly simpler geostrophic

balance, which neglects the |v2/r| term, is a fairly good
approximation in this case, giving

|f v| =
∣∣∣∣ 1

ρ

∂p

∂r

∣∣∣∣ . (5)

Given the geostrophic balance of Eq. 5, any process
which slows the azimuthal velocity in the WCR will result in
a pressure-driven radial outflow. Such a decrease in velocity
is typically caused by viscous effects, including interaction
with the atmosphere or the surrounding fluid. Although it
is possible that an anticyclonic wind (or a wind field with a
sufficiently negative curl) aligned with a WCR could act to
increase the WCR current speeds, this is not typical. WCRs
are observed to slowly decrease in intensity as they drift
across the Gulf. Any decrease in the azimuthal current speed
disrupts the balance of Eqs. 4 and 5 and (as long as |v2/r|
is sufficiently small) leads to the pressure gradient force
dominating. In the WCR, this results in near-surface radial
outflow and is more fully investigated in Flierl and Mied
(1985). This result is well known in atmospheric flows and
is most notable in the inflow region of a hurricane.

By carefully tracking the drifter particles shown in Fig. 3,
it is possible to directly estimate the deformation caused
by the flow. Since the box is quickly deformed from its
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Fig. 3 A box of drifters placed in the checkerboard LCS region of a WCR. The drifter positions are shown at times of 0, 12.5, and 25 days. The
black circle shows the approximate position of the center of the checkerboard region surrounding the warm-core ring
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initial configuration, care must be used in such computa-
tions. Here, we focus on the circumferential length of the
box and the radial thickness. The circumferential length is
computed as the mean length of the elongating edges of the
box, computed by integrating along each of these edges.
The radial thickness is computed as the average of the dis-
tance between points on the longest two edges of the upper
and lower faces of the box. To ensure accuracy, only the
middle half of these edges is used. The results of this pro-
cess are plotted in Fig. 4. The length of the box increases
approximately linearly for the entire 25 day time period at
a rate of approximately 17.2 km day−1. The radial thick-
ness decreases approximately exponentially over this same
period, reaching a thickness of about 1.6 km after 25 days.

The flow deformation revealed in this analysis gives two
additional insights. First, the observed stretching occurs
over a relatively large region of space (an initially 21 km ×
21 km × 50 m box) and time (25 days). The passive drifters
that begin in this checkerboard LCS region remain in the
checkerboard LCS region for the entire 25-day time period
investigated and experience consistent deformation in both
the circumferential length and radial thickness directions as
shown in Fig. 4. Secondly, the velocity field appears to con-
sist of three main components in the checkerboard region:
(1) a large and sheared velocity component in the azimuthal
direction, (2) a small radial outflow near the surface, and
(3) a small compression and upward motion in the vertical
direction which must be balanced by expansion in the radial
direction for conservation of volume. We note that aspects
(2) and (3) do not necessarily imply that the WCR is expand-
ing in radius since the details of these effects at the outer
edges of the WCR are not studied here. In fact, WCRs are
not observed to grow in radius throughout their existence
which could be explained by a number of effects including a
small amount of fluid “leaking” from the WCR at the edges

and a small downflow near the outer margins of the WCR
leading to a slow recirculation rather than outward expan-
sion. Finally, we note that these observations align very well
with the velocity structure of WCRs reported by Flierl and
Mied (1985), further verifying that the ECCO2 model is
accurately capturing the WCR structure.

4 Checkerboard LCS model

As discussed in the previous section, the checkerboard LCS
pattern is a new and prominent feature observed in this
WCR. This pattern only appears in the mixed layer and
there is a sharp transition at the bottom of the mixed layer
from the transversely intersecting LCS above to the parallel
LCS below. We attribute this sudden change to the greatly
reduced radial and vertical flow components below the
mixed layer. In the mixed layer, boundary interactions and
wind forcing cause unique flow characteristics which can
generate the checkerboard LCS pattern. Specifically, wind
forcing influences the near-surface velocity field through
frictional effects and disrupts the cyclo-geostrophic balance
of the WCR. This leads to a pressure gradient-driven radial
flow component due to the elevated sea surface height of
the WCR. This radial outflow component decreases quickly
with depth, leading to relatively large values of shear rate in
the radial flow. Combined with the shear in the much larger
azimuthal velocity component, these two shear components
in different planes acts to create stretching that depends on
the direction of time integration. When a small perturbation
is added, this generates the checkerboard LCS pattern seen
in the WCR. A small amount of compression in the verti-
cal direction was also observed, but it is omitted from the
model since the resulting stretching was much smaller than
that due to shear effects.
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Fig. 4 The deformed circumferential length and radial thickness of
the drifter box shown in Fig. 3. The length grows linearly at a rate
of about 17.2 km day−1 while the thickness decays approximately

exponentially. As shown, a fit of D(t) = 1/(c1 + c2t
c3) was also tried

for the thickness, but the exponential function provides a better fit. A
least squares best fit was used to determine the regression curves
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The model we use is a simple, non-time-dependent veloc-
ity field given by

ẋ = γ̇1z,

ẏ = γ̇2x

[
1 + ε sin

(
2π

λ
y

)]
,

ż = 0, (6)

where γ̇1 and γ̇2 are shear rates, ε is a small perturbation
magnitude, and λ is the perturbation wavelength. Although
this flow is given in Cartesian coordinates, x, y, and z are
analogous to the radial, azimuthal, and vertical directions in
the WCR. The y dependence is periodic just as the WCR is
periodic in the azimuthal direction. The periodic perturba-
tion is associated with deviations from axisymmetry in the
WCR. To more closely match the velocity magnitudes seen
in the WCR, constants could be added to the velocity com-
ponents in Eq. 6. However, constant terms have no affect on
the resulting FTLE values or LCS so they are omitted here
for simplicity.

To understand why this flow creates the checkerboard
pattern in the LCS, we consider the affect of each flow com-
ponent separately. This is shown schematically in Fig. 5.
Starting from an initially square domain in the x-z plane,
representing the region for which the LCS will be com-
puted (similar to the view shown in Fig. 6), the ẋ component
shears the square into a rhombus in opposite directions
depending on whether the forward or backward flow map is

Fig. 5 The stretching behavior resulting from Eq. 6. An initial square
at constant y is stretched into a rhombus in different directions by
the forward or backward flow map based on the shear in the ẋ flow
component. This is analogous to shear in the radial outflow of the
WCR. Then, looking down the z-axis (a top view), the ẏ component
shears the rhombus in the y direction. This is analogous to shear in
the azimuthal velocity of the WCR. Finally, the perturbation creates
localized stretching and LCS at locations that have been mapped to
y(T ) =constant for an integration time T

considered. The ẏ component shears the rhombus out of the
x-z plane in the y direction. Perturbations to the flow then
act at positions that have been mapped to y(T ) =constant,
generating larger stretching at these locations and thereby
creating LCS. The perturbation is crucial to the genera-
tion of the checkerboard LCS. Without it, the stretching
would be constant in space and no LCS would be cre-
ated. These LCS are aligned as shown in Fig. 5. The LCS
actually appear in the original coordinates so the final posi-
tions where the stretching occurs are mapped back to the
original coordinates (inverting the flow map), and create
transversely intersecting forward and backward LCS as
shown at the bottom of Fig. 5.

The velocity field of Eq. 6 is simple enough to be
integrated analytically, but the full solution for y(t) is suf-
ficiently complex that it is most instructive to examine the
flow for ε = 0 and then consider the effect of the pertur-
bation. If ε = 0, the flow map from t = 0 to t = T

is

x(T ) = x0 + γ̇1z0T

y(T ) = y0 + γ̇2

(
x0T + 1

2
γ̇1z0T

2
)

z(T ) = z0. (7)

Thus, material which is mapped to y(T ) = constant and
therefore acted on uniformly by the perturbations originates
on the plane defined by

y(T ) = y0 + γ̇2

(
x0T + 1

2
γ̇1z0T

2
)

(8)

where (x0, y0, z0) are the starting coordinates. The per-
turbation creates compression and expansion in y(T ) at a
wavelength of λ. Thus, we expect the resulting LCS to
spaced at intervals of

�x = λ

γ̇2T
, �y = λ, �z = 2λ

γ̇1γ̇2T 2
, (9)

and a slope in x-z plane of

�z

�x
= 2

γ̇1T
. (10)

These results are valid for ε � 1. A more detail analysis
of the full solution of Eqs. 6 reveals that larger values of ε
increase the spacing between the LCS, but do not change
the slope.

To compare the model velocity field to the checkerboard
LCS seen in the WCR from the ECCO2 simulation, we must
first estimate the parameters γ̇1, γ̇2, and λ in the WCR. γ̇1

corresponds to the shear rate of the radial velocity compo-
nent with respect to the vertical direction. An examination
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Fig. 6 The LCS resulting from
Eq. 6. The LCS show a
checkerboard pattern which is
similar to the that seen in the
WCR. The red curves are
attracting LCS and the blue
curves are repelling LCS
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of the azimuthally averaged WCR shows that the radial out-
flow component has a maximum near the surface of about
2.5 × 10−2 m s−1 and decreases to zero at a depth of about
75 m so γ̇1 ≈ 3.33 × 10−4 s−1. γ̇2 corresponds to the
shear rate of the azimuthal velocity with respect to the radius
in the checkerboard region. In the same way, we find that
γ̇2 ≈ 1.15 × 10−5 s−1 in the checkerboard region. Despite
the fact that the radial flow velocity in the WCR is much
smaller than the azimuthal component, γ̇1 is an order of
magnitude larger than γ̇2 due to the smaller length scales
in the vertical direction. For this reason, the shear in the
WCR radial outflow is a critical component for generating
the checkerboard LCS pattern.

Finally, we determine the parameters of the model asso-
ciated with the sinusoidal perturbation. The value of ε does
not significantly affect the resulting LCS. We use ε = 0.01,
corresponding to a 1 % perturbation of the azimuthal veloc-
ity. An examination of the WCR shape reveals that it is
slightly elliptical. This is common in WCRs (Cushman-
Roisin et al. 1985) and generates a perturbation wavelength
of 1/2 the WCR circumference. The circumference of the
checkerboard region is about 5.9 × 105 m, giving a value
of λ = 2.95 × 105 m. Computing the LCS in this model
with the same integration time that was used for the WCR
(T = ±4 weeks) results in the checkerboard LCS pattern
shown in Fig. 6.

To directly compare the checkerboard LCS resulting
from the model and the WCR, we examine two metrics: the
spacing between the LCS and the slope of the LCS. For the
WCR, the LCS have a slope of around 2–3 m km−1, a hor-
izontal spacing of about 8–15 km, and a vertical spacing
of 20–40 m depending on precisely where these measure-
ments are made. For the model velocity field of Eq. 6, the
LCS have a slope of 2.5 m km−1, a horizontal spacing of
10.6 km, and a vertical spacing of 26.6 m. These results
all lie within the range of values measured in the simulated
WCR and show very good agreement between the model
and the checkerboard region in the WCR.

5 Conclusions

A LCS analysis of a numerically simulated WCR in the
Gulf of Mexico has revealed some previously unobserved
transport structures. The WCR studied here is present in the
ECCO2 global ocean simulation which has proven useful in
other studies for investigating ocean eddy behavior. In the
WCR, the eddy core is surrounded by a series of “checker-
board” LCS in the mixed layer which form a cross-hatched
pattern of transversely intersecting LCS when viewed in the
r-z plane. Fluid in this region undergoes consistent stretch-
ing behavior. As with most ocean flows, there is very little
vertical transport in the WCR and a box of passive drifter
particles placed in the checkerboard region is elongated in
the circumferential direction, becoming wrapped around the
WCR, while becoming thinner in the radial direction. Such
uniform stretching behavior does not admit transport across
the checkerboard LCS region, contributing to the long life
of WCRs.

A detailed investigation of the Lagrangian stretching
behavior in the checkerboard region gives rise to an analyti-
cal model which produces similar LCS. The most important
parameters of the model are the vertical shear rate of the
radial velocity component, the horizontal shear rate of the
azimuthal velocity, and the principle wavelength of perturba-
tions representing deviations from axisymmetry. These para-
meters were estimated directly from the numerically simu-
lated WCR velocity field and used to compute the LCS gene-
rated by the model. The LCS produced by this analytical mo-
del show very good agreement with those seen in the WCR.
Transversely intersecting LCS are produced by the model
with slopes and spacings that match those seen in the WCR.

It is important to note that although the velocity field in
the simulated WCR is largely two dimensional, the length
scales in the vertical direction are much smaller than the
horizontal. For this reason, gradients in the vertical direc-
tion can be of the same order or larger than those in the
horizontal. The analytical model used to produce the
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checkerboard LCS here relies on three-dimensional stretch-
ing behavior which cannot occur in a two-dimensional
domain. Even though the vertical motion is ignored, the ver-
tical shear is critically important. Additionally, the small
radial outflow near the surface of the WCR is absolutely
critical in producing the transversely intersecting LCS pat-
tern seen here. This radial flow is thought to occur pri-
marily because frictional effects in the mixed layer disrupt
the cyclo-geostrophic balance of the WCR and enable a
pressure-driven radial outflow. Below the mixed layer, there
is essentially no radial flow component and therefore the
character of the LCS changes to include only parallel LCS.

The checkerboard LCS seen in this study have been
shown to be associated with the shear present in this region
of the simulated WCR. In WCRs and other well devel-
oped mesoscale ocean eddies, flow tends to be well ordered
and laminar and the lack of strong updrafts and overturning
flow in WCRs limits the available mechanisms for mix-
ing and homogenization. The presence of the checkerboard
LCS reveals one region in the WCR where shear greatly
affects the Lagrangian dynamics of fluid motion. A study
of drifters placed in this region revealed that a large box-
shaped domain is quickly stretched into a long, thin filament
around the ring circumference. Small-scale mixing caused
by breaking waves, wind gusts, biological interactions, and
small-scale turbulence is always present in the ocean and
the stretching and shearing in the checkerboard region cre-
ates opportunities for mixing and homogenization within
the WCR on small scales while minimizing fluid exchange
with the surrounding ocean.

The checkerboard LCS pattern that is seen in the simu-
lated WCR studied here suggests several new directions for
further study. Firstly, the radial outflow observed near the
surface of the WCR is critically important to the genera-
tion of the checkerboard LCS pattern. There is good reason
to expect this behavior due to frictional effects enabling
pressure gradient-driven flow, but the existing literature
in this area is limited. Additional ocean studies or high-
fidelity numerical models investigating this effect may be
quite informative. Additionally, we have focused on a single
WCR. It is possible that other WCRs in the ECCO2 simula-
tion or the real world may not meet all the criteria to create
the checkerboard LCS. The prevalence of this pattern is
currently unknown. Finally, the large fluid shearing and cor-
responding azimuthal homogenization within the checker-
board region likely has affects on biological systems. It
is known that warm-core rings influence phytoplankton
blooms (Franks et al. 1986; Biggs 1992) and fish distribu-
tions (Olson and Backus 1985) in the ocean. The advective
transport in this region will impact the distribution of nutri-
ents, pollutants, temperature, salt, oxygen, etc. within and
around the WCR. It would be particularly interesting to
investigate the biological effects of the checkerboard region

through simulation and observation. The analytical model
of Section 4 provides a potential starting point for sim-
plified simulations of the checkerboard region that include
biological systems and nutrient distribution.
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